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1 INTRODUCTION
Supply chain issues, delays and shutdowns have dominated head-
lines, impacting individuals’ ability to access, and companies’ abil-
ity to deliver, crucial products and services. Changing consumer
behaviours, accelerated by the Covid supply chain shock, have com-
panies struggling more than ever to close the last-mile delivery gap.
Attabotics Inc. [2] a Calgary-based robotics company that special-
izes in inventory management systems, offers a modern solution
through its compact vertical warehouse structure and robotic or-
der pickers. Attabotics replaces the rows and aisles of traditional
fulfillment centers with a patented storage structure that uses both
horizontal and vertical space, reducing a company’s warehouse
footprint by up to 85%. This empowers retailers, grocers, and e-
commerce providers to place different sized fulfillment centers near
high-density urban areas, decreasing carbon emissions by clos-
ing the last-mile delivery gap. With more than $165 million USD
in investment, Attabotics’s solution has been adopted by major
brands, and has been featured in multiple venues like The Wall
Street Journal, Time Magazine, and Tech Crunch.
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Figure 1: The system can control physical/virtual robots by
directing them to bring bins to workstations, where physi-
cal/virtual humans or robots pick items to complete orders.

Attabotics recently engaged the Alberta Machine Intelligence
Institute [1] (Amii) to leverage machine learning to help improve
both speed and efficiency without sacrificing safety or reliability.
The project focused on applying AI to make smarter decisions with
the goal of increasing warehouse throughput by at least 25% to
help grow profits and ensure customers get their products faster.
Amii’s expertise in machine learning has helped Attabotics improve
throughput within these simulated warehouses using real-world
data. We have also validated these performance improvements on
a physical, in-house robot warehouse. Current work aims to move
this proof of concept decision-making system to production.

Key Performance Indicator. While many metrics are possible, we
choose to focus on throughput, the number of items delivered per
time period. For a given set of orders, each of which can contain
multiple counts of multiple SKUs (a Stock Keeping Unit is a unique
ID assigned per product), howmany SKUs per minute are packaged,
on average? For any order set, maximizing throughput is closely
related to minimizing total time needed to complete the orders.

Problem Definition. Robots are tasked to fulfill orders by bringing
bins from the warehouse, to the workstations, swapping with the
next bin, and charging when needed. Attabotics and Amii identified
two main decision points where machine learning could be applied
to increase throughput: (1) determining which SKUs should be
placed in what bins and (2) deciding which bins robots should bring
to workstations to fulfill orders as they occur.

2 APPROACH
Attabotics’ control software runs in real time and can control both
physical and simulated robots (i.e., a “digital twin” as shown in
Figure 1). Developing and testing various solutions in software is
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Figure 2: Results show that changes in throughput fromusing
rule mining to assign SKUs to bins (left) and augmenting
heuristic selection with data-driven inputs (right).

both faster and involves less wear-and-tear on the robots. A video
(https://youtu.be/o_VHF6UVC5o) summarizes our approach.

2.1 Multi-Simulator Learning
The first insight was that rather than relying only on the true
control software to provide data, which runs in real-time, we also
developed a high-speed simulation environment. Modern machine
learning techniques rely on data — the more data we have, the
better. This new simulator (the UltraSim) was less realistic, but
could run significantly faster, providing more data to help train our
models. Furthermore, the fast simulation could be further sped up.

Consider a robot deciding what bin to select next. The con-
trol software could simulate all possible choices (and their conse-
quences). Or, the fast simulator could more quickly simulate all the
possible choices. If you could look infinitely far into the future, you
could find the optimal decision, but this would take infinitely long
in the real-world. This is exactly what supervised learning can be
used for: given a certain decision about robot movement, rather
than letting a simulation run and find out how long it would take
the robot to finish its movement, a supervised learning model could
predict how long it would take. Although imperfect, predictions
allowed us to improve throughput, as discussed in Section 2.3.

The second insight was that the solution needed to be portable.
We built a data pipeline so that our high-speed simulation, our
bin allocation rules (Section 2.2), and supervised learning models
(Section 2.3) could be quickly re-trained when robot capabilities
improve, product demand or SKUs in the warehouse change, or a
different warehouse layout is introduced.

2.2 Item and Bin Allocation
Exploratory data analysis highlighted several key factors that con-
tribute to an increase in throughput. One of the most important was
bin compaction, defined by the number of (relevant) SKUs delivered
by a single robot for a given order. This section will briefly discuss
how to put the right items into bins in the warehouse, while the
next section will discuss which bins to pick for a given order.

Given historical data of processed orders, we applied the Apriori
algorithm [3] to obtain association rules, which contain item-sets
of various lengths. These rules can be ranked with their respec-
tive support values. Support of an association rule indicates the
frequency of the item-set across all orders in the data. These rules
are then cross-checked with physical constraints (e.g., 3D measure-
ments and weight) of the items in the rules and the bins we intend

to allocate them into. These filtered rules are then used to assign
SKUs into bins in the warehouse, weighted by their support values.

2.3 Bin Selection and Order Fulfillment
Our decision-making agent combines machine learning with sim-
ple heuristics (e.g., number of lines completed) in order to make
smarter choices about which bin to bring to a workstation. By using
supervised learning over past robot travel in the warehouse, we
can estimate the time needed to move a bin from any location to
another. This allows us to decrease the total time it takes to fulfill
an order by choosing bins that are both (1) quick to arrive and (2)
contain relevant items. Note that this same supervised learning
model is also used for state updates in the UltraSim.

3 RESULTS
Figure 2 shows the impact of bin compaction (left) and bin selection
(right). Experiments are for two different customer warehouses with
7–10 days of historic data. Differences are statistically significant
for bin selection (𝑝 < 0.0001 via paired t-tests) but not for bin
compaction. Error bars show the throughput’s standard deviation.

Performance of the newly developed systems will next be demon-
strated at customer sites, moving from R&D to production. We
expect the successes of robots in our internal test warehouse (and
in simulation) will transfer to customers’ physical warehouses.

4 CONCLUSION & FUTUREWORK
This work shows the potential of using machine learning to op-
timize space-efficient warehousing robotic solutions. By helping
companies maintain space-efficient fulfillment centres closer to the
customers they serve, and through innovative robotic solutions, At-
tabotics is helping to ensure the future stability in our local supply
chains, helping them be more resilient to disruption.

Although successful, there are many avenues for future research.
• In addition to smart item-bin allocation, real-time or overnight
bin replenishment will be required for long-term throughput per-
formance.
• Seasonality and customers’ buying pattern changes will require
re-optimization. Showing continual optimization will further sup-
port our claim that this use of machine learning inside of robotic
warehouses is game changing.
• We are currently developing an OpenAI Gym [4] environment
where reinforcement learning [5] (RL) can be applied to make
order fulfillment decisions with direct impacts in the real-world.
We expect that an RL agent will be able to significantly outperform
our data-driven heuristic approach.
• Instead of a single warehouse, we could consider extending to
multiple warehouses of different sizes and locations as a much
larger network supply chain problem.
• We have assumed a warehouse configuration is provided. The
modeling techniques we have developed could also be used to
help current or future customers “right size” new warehouses by
understanding how different tradeoffs affect different KPIs.
• This project has focused on throughput. Due to the robustness
of our data pipeline, we can always change the precise metric
optimized for at the request of the customer (e.g., if different
orders have different priorities).
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