
Robust JaCaMo Applications via Exceptions and Accountability
Demonstration Track

Matteo Baldoni
Università degli Studi di Torino, Dip. di Informatica

Torino, Italy
matteo.baldoni@unito.it

Cristina Baroglio
Università degli Studi di Torino, Dip. di Informatica

Torino, Italy
cristina.baroglio@unito.it

Roberto Micalizio
Università degli Studi di Torino, Dip. di Informatica

Torino, Italy
roberto.micalizio@unito.it

Stefano Tedeschi
Università degli Studi di Torino, Dip. di Informatica

Torino, Italy
stefano.tedeschi@unito.it

ABSTRACT
Robustness is the degree to which a system can function correctly
in the presence of perturbations. We present two extensions to the
JaCaMo agent platform to realize robust MAS applications. The
first extension delivers an exception handling mechanism suited for
MAS; the second one is grounded on the notion of accountability to
create feedback chains among the agents. Both extensions provide
high-level abstractions that facilitate the design and development
of a MAS that meets robustness requirements.

KEYWORDS
JaCaMo; Engineering MAS; Exception Handling; Accountability
ACM Reference Format:
Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi.
2023. Robust JaCaMoApplications via Exceptions andAccountability: Demon-
stration Track. In Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2023), London, United Kingdom,
May 29 – June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
Robustness, “the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental
conditions” – generally called perturbations [13], is a crucial require-
ment of distributed software systems [9, 10, 14, 15]. Multi-Agent
Systems (MAS) [18] are an effective approach to realize distributed
systems bymeans of heterogeneous, and autonomous agents. Agent
organizations (MAO), in particular, provide abstractions for modu-
larizing code spread over many components, and orchestrate their
execution by way of norms. JaCaMo [8] is one of the best-known
platforms for implementing MAOs, but it focuses on providing the
means for capturing the normal, correct behavior of the system and
lacks of structural mechanisms allowing agents to exchange and
propagate information (feedback) when they face perturbations.
As in [1], the availability of feedback about perturbations is crucial
to build robust distributed systems. Also MAS robustness should
ground on the ability to convey feedback about perturbation to the
agents that can handle it. But since agents generally are peers, and
are not related by relationships like caller-callee or parent-child,

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

the realization of robustness should occur through the definition
of distributions of responsibilities among the agents, that become
part of the MAO. This demonstration presents two extensions to
the JaCaMo platform which allow building robust agent organiza-
tions. The first borrows from software engineering the concepts
of exception and exception handling, while the second relies on the
notion of accountability. Exception handling is suitable for treating
perturbations anticipated at design time (i.e., exceptions) by activat-
ing handlers, that are also specified at design time. Accountability,
instead, defines feedback “channels” that agents can use at runtime
to gain situational awareness about what occured and then take
actions. Raising and handling exceptions as well as asking and re-
turning for an account will be tasks, under the responsibility of
specific agents. The two extensions provide the means for repre-
senting such tasks as goals, and for distributing the reponsibilities
of such goals to the capable agents. Note that each such goal can be
assigned to many agents, specifying the minimum and maximum
cardinality of how many agents need to achieve the goal (as stan-
dard in a JaCaMo organization specifications). Moreover, we allow
specifying many raising and handling goals for each exception,
and many requesting, accounting and treatment goals (possibly
involving many agents) for each accountability.

2 JACAMO + EXCEPTIONS
We consider a production cell for metal plates inspired to [16]. The
system involves five robots (agents) that coordinate their activities
for producing plates. The process can be realized as a JaCaMo
organization where the organizational goal of producing a plate is
decomposed into sub-goals the robots should achieve. We introduce
the management of the possible malfunction of one of the motors of
the elevating rotary table (ERT ). Such a condition should be detected
as soon as possible to stop the production and schedule repair. A
first solution would be to add the treatment of the perturbation as a
part of the original goal decomposition. This solution, however, is
strongly discouraged by practice. In fact, mixing business logic and
exception handling logic complicates the verification of processes as
well as later modifications [11]. Our proposal is to keep the original
goal decomposition distinct from any malfunction treatments, and
introduce new abstractions for modeling treatments as exceptions
to be raised and handled1. For instance, the following Notification
Policy complements the goal decomposition.
1Source code available at http://di.unito.it/moiseexceptions.

Demonstrations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

3050

http://di.unito.it/moiseexceptions


1 <notification−policy id="npTable" target="turnTableMoveUp"
2 condition="scheme_id(S) & failed (S,turnTableMoveUp)">
3 <exception−specification id="exMotor">
4 <exception−argument id="motorNumber" arity="1" />
5 <raising−goal id="notifyStoppedMotorNumber" />
6 <handling−goal id="scheduleTableMotorFix" />
7 </exception−specification>
8 </notification−policy>

The policy specifies how the ERT motor malfunction exception
is handled by scheduling repair. In fact, the policy targets goal
turnTableMoveUp, assigned to ERT in the original decomposition,
and is activated whenever such a goal fails (see the condition ex-
pressed in NOPL syntax [12]). The policy then specifies the type of
exception, exMotor, and its argument: the number identifying the
motor affected by the problem (fundamental in order to act on the
right motor). The exception, thus, amounts to a piece of information
to be exchanged between some agent that detects the problem, and
some that can handle it. To model this relationship, we extend the
notion of goal, native in JaCaMo, in two ways. A Raising Goal is
used to make an agent produce an exception (i.e., the structured
piece of information), and raise it by making this exception avail-
able, through the organization, to the agents that can handle it. A
Handling Goal is used to model the treatment of an exception
when it becomes available. Both types of goals can be included in
agent missions, as any other goal in JaCaMo. This has an important
consequence: whenever an agent enacts an organizational role, it is
asked to commit to all the goals included in the missions associated
with that role, including raising and handling goals. So, from the
perspective of agent programming, the treatment of exceptions is
completely transparent: agents just need to bring about their goals
when asked to, independently of whether these goals are in the
original decomposition or part of some notification policy.

In the example, the goals notifyStoppedMotorNumber and sched-
uleTableMotorFixmust be included in the missions of agents having
the right capabilities for completing them. So, either ERT itself could
the exception raiser, or the exception could be raised by external,
observing agent. An important feature of our proposal, in fact, is a
clear separation of concerns among the agents where a perturbation
occurs, where it is detected, and, then, where it is treated. That is,
the agent whose goal fails may be different from the agent that
actually detects the failure and raises the exception. And the agent
handling the exception is usually different from the one that raised
it. The details of the implementation can be found in [2, 3, 6, 17].

3 JACAMO + ACCOUNTABILITY
Accountability allows agents to get runtime information to be used
in their decision making. Specifically, a party, named account-taker
(a-taker) is entitled to ask for an account about a goal of interest
to another party, named account-giver (a-giver), that is obliged
to provide such an account upon request. Through accountability,
thus, agents have access to information otherwise inaccessible, and,
hence, have greater awareness of what is going on in the overall
system. This allows the agents to take advantage of opportunities,
and to adapt to changing system conditions.

For instance, suppose the production cell is part of a production
plant that should possibly never be stopped. Assume that an agent
is in charge of supervising the production process. This agent can,

under certain conditions, ask the feed belt robot the amount of plates
still to be processed. Depending on such a number, the supervisor
can decide to slowdown the production, in order to avoid a full stop.
Also in this case, this behavior could be included within the original
goal decomposition of the production process, but the result would
be a mix-up between business and control logic. Our solution keeps
separate business and control logic, and exploits accountability to
allow the supervisor to obtain the needed information from the
feed belt robot. The following Accountability Agreement, included
in the definition of the organization, serves this purpose2.

1 <accountability−agreement id="aa1">
2 <target id="conveyPlateToTable" />
3 <requesting−condition value="true" />
4 <account−template>
5 <account−argument id="availablePlates" arity="1" />
6 <goal id="requestRemainingStock" atype="requesting" />
7 <goal id="notifyRemainingStock" atype="accounting" />
8 <goal id="slowDownProduction" atype="treatment"
9 when="account(_, availablePlates (N)) & N <= 10 & N > 0" />
10 <goal id="stopProduction" atype="treatment"
11 when="account(_, availablePlates (0)) " />
12 </account−template>
13 </accountability−agreement>

The accountability agreement is the abstraction we offer to allow
accounts to flow from a-givers to a-takers. Specifically, an account-
ability agreement targets a goal, e.g., conveyPlateToTable, which
represents the object of the account. An agreement is activated by
a requesting condition, that can even be true, meaning that it can
be asked at any time throughout the execution. An important part
of the agreement concerns the structure of the account, and how it
can be asked and provided. The structure of the account is given as
a list of arguments with their corresponding arity. In our example,
a single argument availablePlates with arity one, is sufficient to
convey the number of plates in the queue. Concretely, we leveraged
the model presented in [4] and the formalization from [5, 7].

Tomodel the request and the notification of an accountwe extend
JaCaMo goals, as we did for exceptions, by introducing the notions
of Requesting Goal and Accounting Goal. Intuitively, when an
agent wants to get some specific information outside its context,
and has the permission to ask for them, the agent needs just to ac-
complish a requesting goal. This activates, by way of the normative
system of the organization, the associated accounting goal specified
in the agreement. For instance, when goal requestRemainingStock
is marked as achieved, goal notifyRemainingStock is activated, and
the agent responsible for it (i.e., feed belt) receives the obligation to
carry it out. The agreement reports also an optional Treatment
Goal. When specified, the goal specifies how the account should be
addressed by the a-taker. In our scenario, there are two alternative
treatment goals: one to be activated when the number of available
plates is between 0 and 10, then the production is slowed down;
and one to be activated when such a number is 0, and hence all the
production cell is stopped.

Also in this case, the requesting, the accounting and the treat-
ment goals are part of role missions, as for standard JaCaMo goals.
By committing to suchmissions, agents take on the responsibility to
perform these goals whenever a corresponding obligation is issued
by the normative system of the organization.

2Source code available at http://di.unito.it/moiseaccountability.

Demonstrations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

3051

http://di.unito.it/moiseaccountability


ACKNOLEDGEMENTS
This publication is part of the project NODES which has received
funding from the MUR –M4C2 1.5 of PNRR with grant agreement
no. ECS00000036.

REFERENCES
[1] David L. Alderson and John C. Doyle. 2010. Contrasting Views of Complexity

and Their Implications for Network-Centric Infrastructures. IEEE Tr. on Sys.,
Man, and Cyber. 40, 4 (2010).

[2] Matteo Baldoni, Cristina Baroglio, Olivier Boissier, Roberto Micalizio, and Stefano
Tedeschi. 2021. Demonstrating Exception Handling in JaCaMo. In Advances
in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The
PAAMS Collection - 19th International Conference, PAAMS 2021, Salamanca, Spain,
October 6-8, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12946),
Frank Dignum, Juan M. Corchado, and Fernando De La Prieta (Eds.). Springer,
341–345. https://doi.org/10.1007/978-3-030-85739-4_28

[3] Matteo Baldoni, Cristina Baroglio, Olivier Boissier, Roberto Micalizio, and Ste-
fano Tedeschi. 2021. Distributing Responsibilities for Exception Handling in
JaCaMo. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems (Virtual Event, United Kingdom) (AAMAS ’21),
Ulle Endriss, Ann Nowé, Frank Dignum, and Alessio Lomuscio (Eds.). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 1752–1754.
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1752.pdf

[4] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2021.
Reimagining Robust Distributed Systems through Accountable MAS. IEEE Inter-
net Computing 25, 6 (2021). https://doi.org/10.1109/MIC.2021.3115450

[5] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2021.
Robustness Based on Accountability in Multiagent Organizations. In Proceedings
of the 20th International Conference on Autonomous Agents andMultiAgent Systems
(AAMAS ’21), Ulle Endriss, Ann Nowé, Frank Dignum, and Alessio Lomuscio
(Eds.). International Foundation for Autonomous Agents and Multiagent Systems,
142–150. http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p142.pdf

[6] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2022.
Exception Handling as a Social Concern. IEEE Internet Computing 26, 6 (2022),

33–40. https://doi.org/10.1109/MIC.2022.3216272
[7] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2023.

Accountability in multi-agent organizations: from conceptual design to agent
programming. Autonomous Agents and Multi-Agent Systems 37, 1 (2023), 1–37.

[8] Olivier Boissier, Rafael H. Bordini, Jomi Hübner, and Alessandro Ricci. 2020.Multi-
agent oriented programming: programming multi-agent systems using JaCaMo.
MIT Press.

[9] Samuel H. Christie, Amit K. Chopra, and Munindar P. Singh. 2021. Bungie:
Improving Fault Tolerance via Extensible Application-Level Protocols. Computer
54, 5 (2021), 44–53. https://doi.org/10.1109/MC.2021.3052147

[10] Samuel H. Christie, Amit K. Chopra, and Munindar P. Singh. 2022. Man-
drake: multiagent systems as a basis for programming fault-tolerant decentral-
ized applications. Autonomous Agents and Multi-Agent Systems 36, 1 (2022).
https://doi.org/10.1007/s10458-021-09540-8

[11] Claus Hagen and Gustavo Alonso. 2000. Exception Handling in Workflow Man-
agement Systems. IEEE Trans. Software Eng. 26, 10 (2000), 943–958. https:
//doi.org/10.1109/32.879818

[12] Jomi F. Hübner, Olivier Boissier, and Rafael H. Bordini. 2009. A Normative Organ-
isation Programming Language for Organisation Management Infrastructures. In
Coordination, Organizations, Institutions and Norms in Agent Systems V (Lecture
Notes in Computer Science, Vol. 6069). Springer, 114–129.

[13] ISO/IEC/IEEE. 2010. Systems and software engineering - Vocabulary.
24765:2010(E) - ISO/IEC/IEEE International Standard (2010).

[14] Anuj K Jain, Manuel Aparico IV, and Munindar P Singh. 1999. Agents for process
coherence in virtual enterprises. Commun. ACM 42, 3 (1999), 62–69.

[15] Anup K. Kalia and Munindar P. Singh. 2015. Muon: designing multiagent com-
munication protocols from interaction scenarios. Autonomous Agents and Multi-
Agent Systems 29, 4 (2015), 621–657.

[16] Claus Lewerentz and Thomas Lindner. 1995. Case study “production cell”: A
comparative study in formal specification and verification. Springer, 388–416.

[17] Stefano Tedeschi. 2021. Exception Handling for Robust Multi-Agent Systems. Ph.D.
Dissertation. Università degli Studi di Torino, Dipartimento di Informatica, Torino,
Italy.

[18] Michael Wooldridge. 2009. An introduction to multiagent systems. John Wiley &
Sons.

Demonstrations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

3052

https://doi.org/10.1007/978-3-030-85739-4_28
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1752.pdf
https://doi.org/10.1109/MIC.2021.3115450
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p142.pdf
https://doi.org/10.1109/MIC.2022.3216272
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1109/32.879818
https://doi.org/10.1109/32.879818

	Abstract
	1 Introduction
	2 JaCaMo + Exceptions
	3 JaCaMo + Accountability
	References



