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ABSTRACT

As more Al systems are deployed, humans are increasingly required
to interact with them in multiple settings. However, such Al sys-
tems seldom learn from these interactions with humans, which
provides an important opportunity to improve from human ex-
pertise and context awareness. Several recent results in the fields
of reinforcement learning (RL) and human-in-the-loop learning
(HILL) show that Al agents can perform better when humans are
involved in their training process. Humans can provide rewards to
the agent, demonstrate tasks, design curricula, or act directly in the
environment, but these potential performance improvements also
come with architectural, functional design, and engineering com-
plexities. This paper discusses Cogment, a unifying open-source
framework that introduces a formalism to support a variety of
human(s)-agent(s) collaboration topologies and training approaches.
Cogment addresses the complexity of training with humans within
a production-ready platform. On top of Cogment, we introduce
Cogment Verse a research platform dedicated to the research com-
munity to facilitate the implementation of HILL and Multi-Agent
RL experiments. With these platforms, our end goal is to enable
the generalization of intelligence ecosystems where Al agents and
humans learn from each other and collaborate to address increas-
ingly complex or sensitive use cases. The video demonstration is
available at https://youtu.be/v-KODgIL9KO
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1 INTRODUCTION

The involvement of Al systems in many aspects of our societies,
industries, and everyday life is increasing. It is also becoming in-
creasingly clear that in order to ensure that their involvement is
beneficial, the Al agents should be able to interact directly with the
people they are designed to support, from training to operational-
ization and use.

Many systems are too critical to be fully trusted to be completely
autonomous agents (e.g., medical applications), necessitating col-
laboration between humans and Al agents. In many other use cases,
the complexity or lack of data renders traditional AI methods un-
able to provide full automation in a reasonable time frame, and
collaborating and learning from human expertise then become a
central aspect of such systems. Additionally, people operate at dif-
ferent speeds than Al systems, and their time is precious — it is
critical to efficiently leverage what humans can contribute in such
a collaboration paradigm. Addressing these constraints starts with
an environment in which humans and AI agents can operate and
train together.

In the past few years, human involvement has grown beyond data
annotation to become what we call human-in-the-loop learning
(HILL); providing Al agents with feedback and guidance. In many
domains, the performance of Al agents was shown to improve by
taking feedback, as reward or preferences, from humans [15, 25],
by learning from human demonstrations [14], or taking advantage
of human input in other ways, as discussed later. However, there
was no unifying framework that allowed researchers to quickly
develop applications that supported HILL or that enabled engineers
to deploy at scale. Cogment is designed to address these needs. It
is a framework that facilitates the development and deployment
of projects involving multiple actors (humans or Al agents) that
interact with each other in a simulated or real environment.

Cogment Verse is built upon Cogment [16], an open source
platform designed to address the challenges of building and
operating human-in-the-loop learning systems.

The first of those challenges is interoperability between sim-
ulations, deep learning or other AI frameworks, and interactive
user interfaces. Thanks to its distributed micro service architecture,
Cogment is able to execute episodes over any kind of simulation or


https://youtu.be/v-K0DqIL9K0

Demonstrations

agent decision making and involve any kind of interactive applica-
tion.

The second challenge is the limited availability of humans. Unlike
Al agents, humans are not available 100% of the time and cannot
operate faster than real time. Thanks to its fully asynchronous
orchestration, Cogment does not stop training while waiting for
humans to be available or to decide on the next action. Because it
can be deployed on the cloud at scale, Cogment is also well suited
to leverage large crowds of humans.

The third challenge is the cost of acquiring human data. Because
Cogment episodes are configuration-driven, it is easy to have a
mixed training curriculum involving both interactive episodes and
headless ones. Due to its unified data store, Cogment enables the
training process to leverage online data as it is collected and also
mix in valuable historical data.

2 COGMENT VERSE

To enable researchers to get started with Cogment easily, we intro-
duce Cogment Verse (https://github.com/cogment/cogment-verse)
which includes several code examples. They include off-policy RL
algorithms like DQN [11], rainbow DQN [6], DDPG [8], TD3 [5],
and on-policy algorithms like advantage actor-critic (A2C) [10] and
proximal policy optimization (PPO) [17]. Cogment Verse includes
base implementations of these algorithms in both single and multi-
agent settings. Different kinds of HILL paradigms like learning
from demonstrations (using behavioral cloning [19]), learning from
human interventions [3], and explicit human feedback [21] are also
included. In all these examples, multiple humans can interact with
one or multiple learning agents simultaneously. These RL, MARL,
and HILL algorithms are tested with a wide variety of environments
including simple OpenAl Gym environments [2], Atari, MinAtar
[23], boardgames, card games, and other multi-agent environments
in PettingZoo [18], procedural generation environments (i.e., Proc-
gen [4]), and robotics environments such as Robosuite [26] and
IsaacGym [9].

Different research groups have used Cogment & Cogment Verse
in a wide range of applications, which we discuss in the following
sections.

3 HUMAN-MACHINE TEAMING FOR AIR
DEFENSE

Defense-critical applications, such as securing airspace from intru-
sions, are of paramount importance. Complete automation of such
a defense system is impossible owing to the potential real-world
impact. On the other hand, continuous control and monitoring of
such systems by humans is infeasible as well because of the amount
of continual oversight needed. We developed a system where hu-
mans and embodied Al agents can collaborate towards a successful
defense of the airport’s air space.

A team of five ally drones was tasked with protecting an airspace
against one or more enemy drones. The complete experimental
setup was implemented in Cogment. The ally drones were pre-
trained from human demonstrations (collected from multiple non-
expert humans). They were then trained in a standard RL setting
using D3QN [20]. The policy is also updated on the basis of human
intervention and feedback at any time during the episode.
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4 MULTI-TEACHER ASYMMETRIC SELF-PLAY

Training a goal-conditioned agent that can generalize to unseen
goals in sparse reward environments is a difficult challenge. Plap-
pert et al. [13] proposed to tackle this by introducing a ‘teacher’
agent that proposes increasingly difficult goals (e.g., via a curricu-
lum) to the goal-conditioned ‘student’ agent. We further extended
this idea [7] by using multiple teachers to increase the diversity
of the goals generated and improve the training speed and sample
complexity. Using Cogment allowed us to switch between actors
(student and the teacher agents), use each other’s replay experi-
ences, and run multiple parallel trials were leveraged in this set-
ting. The code is also open-sourced at https://github.com/kharyal/
selfplayRL/tree/fetch_reach. Another ongoing research project is
utilizing Cogment for learning to reach goals from natural language
instructions — also within the multi-teacher asymmetric self-play
framework.

5 TIMBER HARVESTING

In [24], the authors proposed a system to operate a complex ma-
chine for timber harvesting. For further experimentation involving
learning from human demonstrations, the authors are utilizing
Cogment for simultaneous multiple human demonstrations and
potentially for learning from human feedback as the reward signals
in such environments are sparse.

6 WARM START OFF-POLICY RL

Cogment has been used [22] for analyzing the behavior of RL poli-
cies that are pre-trained using methods like behavior cloning. The
authors also compared with the off-policy setting and proposed a
novel method, Confidence Constrained Learning (CCL), for warm
starting RL. CCL improves learning by balancing between the policy
gradient and constrained learning according to a confidence mea-
sure of the Q-values. The offline and off-policy learning capabilities
of Cogment via its data store were leveraged in this work.

7 HANABI

Hanabi was originally proposed as a benchmark for training coop-
erative agents [1]. Later, it was used [12] to measure the zero-shot
training capabilities in collaborating with novel players. As part of
ongoing research, Cogment Verse implemented the entire pipeline
of 1) self-play, 2) training together with randomly selected pre-
trained agents, 3) testing and improving zero-shot coordination
capabilities by involving human players during training or testing
phases [12]. The ability of Cogment to efficiently switch between
different actors, run multiple parallel trials, and support different
training paradigms (self-play in phase-1 and multi-agent in phase-2)
simultaneously helped in this endeavor.

8 CONCLUSION

This paper has given a high-level introduction to Cogment and
Cogment Verse. Our hope is that readers will consider using this
open-source framework for their own research in HILL, multi-agent
simulations, or reinforcement learning. This framework will allow
researchers to quickly test ideas, scale to large numbers of humans
and agents in a single system, and integrate high-fidelity simula-
tions. We also welcome ideas for improvement or collaboration.
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