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ABSTRACT
The increased use of AI algorithmic aids in high-stakes decision
making has prompted interest in explainable AI (xAI), and the
role of counterfactual explanations to increase trust in human-
algorithm collaborations and to mitigate unfair outcomes. However,
research is limited in understanding how explainable AI improves
human decision-making. We conduct an online experiment with
559 participants, utilizing an “algorithm-in-the-loop" framework
and real-world pre-trial data to investigate how explanations of al-
gorithmic pretrial risk assessments generated from state-of-the-art
machine learning explanation methods (counterfactual explana-
tions via DiCE & factual explanations via SHAP) influences the
quality of decision-makers’ assessment of recidivism. Our results
show that counterfactual and factual explanations achieve different
desirable goals (separately improve human assessment of model ac-
curacy, fairness, and calibration), yet still fall short of improving the
combined accuracy, fairness, and reliability of human predictions
— reinstating the need for sociotechnical, empirical evaluations
in xAI. We conclude with user feedback on DiCE counterfactual
explanations, as well as a discussion of the broader implications of
our results to AI-assisted decision-making and xAI.
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1 INTRODUCTION
Explainable Artificial Intelligence (xAI) has become an essential part
of the “responsible AI" agenda set by both academia and industry,
garnering great interest among stakeholders from decision-makers
and decision-subjects, to regulatory bodies and engineers [6, 19].
Indeed, critical life-changing decisions are being undertaken by
decision-makers with the assistance of AI; one-third of counties
in the United States (U.S.) utilize algorithmic risk assessment tools
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to inform pretrial release/detention of defendants pending adjudi-
cation of their cases [9]. In light of this, model explanations have
been identified as a promising locus for promoting accountability,
detecting bias, and promoting human-algorithm trust [10, 28, 38].

This interest in xAI has led to substantial technical advances
in the explainablility of machine learning models, from the de-
velopment of model-agnostic methods (LIME and Shapley values)
to example-based methods (Counterfactual and Adversarial Ex-
planations) [5]. This technical progress, however, has not come
without its criticisms; a growing volume of work points to the gap
between research on real-world, user-centric needs for AI explana-
tions and the current algorithm-centric work in xAI which relies
on “researchers’ intuition of what constitutes a ‘good’ explanation”
[31, 32]. Counter-intuitive findings from user studies on the human-
interpretability of current xAI approaches to model explanations
(e.g. findings that varying algorithmic explanations does not im-
prove human performance, and that users do not prefer simple
explainable models over black box models [35, 39]) also point to
the need for more comprehensive empirical evaluations of how ex-
planations achieve their intended performance and accountability
goals (if at all).

In this study, we address the gap between algorithm-centric and
user-centric work by investigating, in an online experiment with
real-world pretrial data, the influence of state-of-the-art machine
learning model explanations on human assessments of recidivism
within Green and Chen’s “algorithm-in-the-loop" framework [18].
It is important to note that we use risk of recidivism prediction
merely as an example to test our hypotheses due to its prevalence as
an application of AI-assisted decision-making as well as its dataset
availability. There is a rich literature, which is outside of the scope
of this paper, that outlines the serious limitations and negative
impact of using these tools in practice [12, 15, 25, 44].

2 CONTRIBUTIONS
The contributions of this study are three fold: (1) we introduce
an additional normative principle, “effective explanations," to the
“algorithm-in-the-loop" framework; a principle fromhuman-computer
interaction research and the explanation sciences, (2) we offer, to
the best of our knowledge, the first study with empirical evidence
(including user feedback) on different human-algorithm aspects of
explanations generated using the Diverse Counterfactual Expla-
nations (DiCE) library [34], and (3) we examine from a variety of
angles whether explanations of different types (counterfactual vs
factual) and of different characteristics (diverse/complete vs selec-
tive), achieve their intended goals of improving accuracy, reliability,
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and fairness of AI-assisted human decisions. We also make our code
publicly available. 1

3 RELATEDWORK
3.1 Types of Explanations in xAI
Recent work in xAI has primarily targeted two aims: (1) trans-
parency and (2) post-hoc explanations. In our study, we focus on
post-hoc explanations, particularly local explanations, as they are
largely what decision-makers and decision-subjects interact with,
especially given the increasing interest in the deployment of deep
learning models [3]. Addressing current xAI directions, Wachter
et al. has posited from the explanation sciences that the xAI com-
munity views generating explanations too narrowly, and proposed
that human-desirable explanations should be “contrastive, selec-
tive, and social" [32]. We test two of these tenets, “contrastive"
and “selective," in our study. We explore “contrastive" through pre-
senting counterfactual explanations (via counterfactual examples)
versus factual explanations (via feature attribution), and “selective"
through selecting what to show in these explanations according
to either epistemic (in the counterfactual case) or statistical (in the
factual case) importance.

3.2 Limited Empirical Studies on Explanations
Previous studies providing quantitative evaluations of the human-
interpretability of AI explanations have covered multiple fronts.
Some have examined what types of explanations are preferable;
Lakkaraju et al. found through a user study that subjects are faster
and more accurate at describing local decision boundaries based
on decision sets as opposed to rule lists [24]. Closer to our own
work, Riverio and Thrill showed that subjects found counterfac-
tual explanations appropriate when their expectations matched
the model output, and found neither factual nor counterfactual ex-
planations appropriate when their expectations did not match the
model output [41]. Others, like Kulesza et al. and Narayanan et al.
have investigated properties of explanations like complexity (num-
ber of lines, new concepts), soundness (“nothing but the truth"),
and completeness (“the whole truth") and how they affect users’
mental models [23, 35]. Similar to these studies, our work provides
empirical grounding on the effects of the types and properties of
explanations on AI-assisted human decisions.

3.3 The “Algorithm-in-the-loop" Framework
We utilize Green and Chen’s framework (consisting of normative
principles and evaluation metrics) to evaluate what they define as
“algorithm-in-the-loop" systems: systems that “employ algorithmic
decision making aids to enhance human decision making" [18]. The
framework’s normative principles are accuracy, reliability, and fair-
ness of human decisions. Unlike the human-in-the-loop paradigm,
the framework focuses on a sociotechnical evaluation that centers
human (instead of algorithm) performance as the main outcome of
interest.

The participants of their two experiments (on AI-assisted risk of
recidivism and loan spending predictions) largely failed to satisfy
the principles of accuracy, reliability, and fairness. Green and Chen

1https://github.com/x-labs-xyz/aamas23-factual-counterfactual-explanations

also counter-intuitively found that providing participants with ex-
planations or feedback did not improve their performance. Their
results exhibited the limitations of such systems and their promise
to enhance human decision making into a more efficient and eth-
ical affair. Establishing new principles to evaluate these systems
is needed to investigate their limitations and improve or reassess
whether their utilization for certain tasks is justified.

4 WHAT MAKES AN “EFFECTIVE
EXPLANATION"?

In addition to Green and Chen’s three principles of accuracy, relia-
bility, and fairness, we identify an additional principle to govern
decision-makers’ interactions with AI explanations: “effective ex-
planations". We identified the following desiderata for this principle:
trust, insight, and fair and ethical decision making [27, 28, 45]:

Trust: Explanations should elicit appropriate trust in the al-
gorithm, i.e. trust should be calibrated to match the algorithm’s
performance (e.g. fairness and accuracy) [8, 42].

Insight: Explanations should convey useful information about
the local prediction and potentially the algorithm’s inner-workings
(directly via global explanations, or indirectly via observed patterns
over many local explanations).

Fair and Ethical Decision making: Explanations should miti-
gate decision-makers’ biases, and make decision-makers more apt
at identifying and correcting points of limitations in the system
(e.g. false positives and false negatives) [45].

5 METHODS
This study was approved by the Human Subjects Research Program
Institute Review Board (IRB) at New York University Abu Dhabi.

5.1 Data, Model, & Explanations
5.1.1 Dataset. We focused our experiment on pretrial detention as
machine learning is increasingly being used in courts around the
U.S. to predict pretrial violation [9]. We utilized ProPublica’s public,
real-world dataset from their 2016 investigation into the Correc-
tional Offender Management Profiling for Alternative Sanctions
(COMPAS) risk assessment tool used by many U.S. courts [1]. The
dataset included COMPAS risk scores for likelihood of recidivism,
on a scale from 0 to 10 (at increments of 1), for pretrial defendants.
Our processed dataset consisted of 6,159 defendants, 34% of which
were Caucasian, 51.4% of which were African-American, and the
rest of which were Hispanic, Asian, Native American, or other.

5.1.2 Risk Assessment Model. We trained a gradient boosted clas-
sifier to predict risk of recidivism using defendants’ age, number of
prior convictions, number of juvenile felony charges, number of
juvenile misdemeanor charges, current offense type, and current
charge degree (felony/misdemeanor) [14]. Since race and gender
are normally excluded in the training of real-world risk assessment
tools, they were also excluded from our model [2]. With an 80-20
train-test split, our model achieved an area under the receiver op-
erating curve of 0.68 — a result comparable to COMPAS and the
Public Safety Assessment [30, 36]. When assessing our model’s
fairness, we found our model to be well-calibrated. 300 defendants
from the test set were then randomly selected for use in the study.
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5.1.3 SHAP & DiCE Explanations. To obtain factual explanations
in the form of feature attribution explanations, we employed SHap-
ley Additive exPlanations (SHAP) to generate shapley values that
show what features (and by how much) push the model output to
be higher or lower than the average model output over the train-
ing data [29]. The features were then divided into two sets: those
that push the model output to be higher (positive shapley values)
than the average model output, and those that push it to be lower
(negative shapley values). Each set was then sorted in descending
order (i.e. in order of importance).

To generate counterfactual explanations, we employed the DiCE
library to obtain three counterfactual examples for each defendant
[34]. These examples were randomly generated and “diverse" in
the sense that they offered a number of different changes across
different features needed to generate the opposite model output.
DiCE allows setting constraints on the values of features as well
as the type of features that can be varied. We constrained the age
value to be between 18 and 96, the highest and lowest ages in our
dataset. For the treatment with “diverse" counterfactual explana-
tions, we allowed any of the six features used in the model to be
varied in the generated examples, but for the treatment with “selec-
tive" counterfactual explanations, we only allowed the age, number
of prior convictions, and charge degree (felony/misdeameanor) to
be varied. These three features were chosen as they were deemed
to carry more weight in the defined risk formula released by the
Public Safety Assessment, which we considered an indication of the
epistemic importance of those features in the prediction of recidi-
vism [2]. When the risk assessment model score was greater than 5
(high risk of recidivism), counterfactual examples were presented
that would reverse that outcome, i.e. examples that show changes
to the defendant profile that would make the algorithm consider
the defendant low risk. Similarly, when the score was less than or
equal to 5 (low/medium risk), examples were presented that would
make the algorithm consider the defendant high risk.

5.2 Experiment Task
Each experiment session consisted of a tutorial page, a demographic
survey, 30 prediction tasks of the same treatment, and an exit survey,
in that order.

5.2.1 Tutorial. The tutorial, accessible to participants throughout
their session, consisted of explanations of criminal justice termi-
nology (what pretrial detention is, examples of crimes under each
category, and what different parts of the defendant profile mean),
and risk assessments (what the risk assessment model is predicting,
which parts of the defendant profile it uses, and that “As with most
algorithms, the predictions are not 100% accurate.").

5.2.2 Intro Survey. The experiment opened with eight multiple
choice questions on participants’ gender, age, education degree
level, ethnicity, political views, technical literacy (machine learning
familiarity), and domain literacy (U.S. Criminal Justice familiarly)
[17]. The literacy questions were on a 5-point Likert scale.

5.2.3 Task Layout. Each prediction task presented participants
with the profile of a defendant, along with, depending on the treat-
ment participantswere assigned to, either the risk assessmentmodel

score only or the model score and an explanation (factual or coun-
terfactual) to shed light on why the model predicted that score.
The defendant profile included the six features that the model was
trained on along with the race and gender of defendants to mimic
the information judges are presented with [11]. A profile example
can be seen in Appendix Figure 1. Participants were then asked to
provide a risk score, by choosing from options on a scale from 0 to
10 at increments of 1, for each defendant: “How likely is this person
to commit another crime before trial?"

5.2.4 Treatments. Participants were presented 30 prediction tasks
from one of the following six treatments:

(1) Baseline: only the defendant profile with no reference to
the risk assessment model. This was a control treatment.

(2) Risk Assessment Model Only (unexplained): the defen-
dant profile along with the decile risk assessment model
score with no further explanation. This was also a control
treatment.

(3) Diverse Counterfactual: the defendant profile, the decile
risk assessment model score, and three “diverse" counter-
factual explanations presenting variations to the defendant
profile that would flip the risk assessment model’s predicted
outcome.

(4) Selective Counterfactual the defendant profile, the decile
risk assessment model score, and three “selective" counter-
factual explanations presenting variations to the profile that
would flip the risk assessment model’s predicted outcome.
“Selective" was defined in terms of selecting what features
could be varied in the explanations.

(5) Complete Feature Attribution: the defendant profile, the
decile risk assessment model score, and a list of features that
make the defendant higher risk and a list of features that
make them low risk compared to the average model output,
in descending order of importance.

(6) Selective Feature Attribution: the defendant profile, the
decile risk assessment model score, and only the most in-
fluential feature that makes the defendant higher risk, and
only the most influential feature that makes them lower risk
compared to the average model output.

5.2.5 Exit Survey. The experiment concluded with eight multiple
choice questions (on a 5-point Likert scale) and two open-response
questions on participants’ response confidence levels, perceptions
of algorithm accuracy and fairness, use of presented explanation,
ability to explain their decision making process, and level of ac-
countability they should face (relative to the algorithm’s developers)
if their decision is contested [16].

5.3 AMT Data Collection & Processing
Experiments were conducted using AMT human intelligence tasks
(HITs). AMT workers were U.S.-based, previously completed at
least 1,000 HITs with an 85%+ approval rating, [21]. The intro and
exit surveys included one attention check each [4].
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5.4 Evaluation Metrics & Models
We used the following metrics defined by Green and Chen2:

5.4.1 Prediction Score & Gain. The brier score was used to assess
the quality of participant predictions, defined as: (𝑓 −𝑜)2 where 𝑓 is
the predicted (forecasted) probability, and 𝑜 is the outcome (1 if the
event occured, and 0 if it didn’t occur). A brier score may take any
value between 0 and 1; the lower the brier score, the more accurate
the predictions, hence a brier score of 0 is the best, and 1 is the
worst. From the brier score, a prediction score for each participant
was calculated using the average brier score of the 30 predictions a
participant made in their treatment, and is defined as: 1

𝑁

∑𝑁
𝑖=0 (1 −

(𝑓𝑖 − 𝑜𝑖 )2) where 𝑁 is the number of predictions (i.e. 30) for a set
of 𝑖 tasks. The prediction scores for the risk assessment model was
calculated in the same way. From the prediction score, the average
prediction score 𝑆 across all participants in a given treatment 𝑡 may
be calculated as: 𝑆𝑡 = 1

𝑀

∑𝑀
𝑗=0

1
𝑁

∑𝑁
𝑖=0 (1 − (𝑓𝑖 − 𝑜𝑖 )2) where 𝑀 is

the total number of participants in the treatment.
Additionally, the performance gain achieved by each treatment

(𝐺𝑎𝑖𝑛𝑡 ) was defined as the ratio between (a) Δ𝑡 : the average predic-
tion score of participants in the treatment over participants in the
baseline (𝑆𝑡−𝑆𝐵 ), and (b)Δ𝑅 : the performance of the risk assessment
model over the participants in the baseline (𝑆𝑅 − 𝑆𝐵 ):

𝐺𝑎𝑖𝑛𝑡 =
Δ𝑡
Δ𝑅

=
𝑆𝑡 − 𝑆𝐵

𝑆𝑅 − 𝑆𝐵

where 𝑆𝑡 , 𝑆𝐵 , 𝑆𝑅 are the average prediction scores of participants in
treatment 𝑡 , participants in the baseline 𝐵, and the risk assessment
model 𝑅, respectively.

5.4.2 Influence. To assess how much participants altered their
predictions when presented with different types of information
(i.e. treatments), we calculated an influence score. The influence of
the risk assessment model on prediction 𝑝𝑘

𝑖
by participant 𝑘 about

defendant 𝑖 was defined as:

𝐼𝑘𝑖 =
𝑝𝑘
𝑖
− 𝑏𝑖

𝑟𝑖 − 𝑏𝑖

where 𝑏𝑖 is the average prediction made about the defendant by
participants in the baseline treatment and 𝑟𝑖 is the prediction made
about the defendant by the model. To obtain reliable calculations,
predictions for which |𝑟𝑖−𝑏𝑖 | < 0.05were excluded [17]. This metric
allowed us to evaluate differences between individual predictions,
and not just averages (i.e. average prediction scores). 𝐼 = 0 means
the participant ignored the risk assessment model, 𝐼 = 0.5 means
the participant equally weighted their initial prediction and risk
assessment model, and 𝐼 = 1 means the participant completed
relied on the model for their prediction. For each defendant in
the dataset, the average influence the model had on participants
making predictions about that defendant was also calculated across
all treatments as well as in each individual treatment.

5.4.3 Disparate Interactions. Participants’ “disparate interactions"
or racially-biased interactions with the risk assessment model were

2The analyses were run on a standard 2019 MacBook Pro (2.4GHz 8-Core 9th Gen Intel
Core i9 Processor, 32GB 2400MHz memory)

evaluated in two ways. Firstly, using the influence metric, by cal-
culating the influence disparity between black and white defen-
dants in two cases: (1) when the model prediction was higher than
the average prediction participants made in the baseline treatment
(RA influence disparity> : cases when themodel encouraged partici-
pants to increase their score), and (2) when themodel predictionwas
lower than the average baseline prediction (RA influence disparity< :
cases when the model encouraged participants to decrease their
score):

RA influence disparity>/< = 𝐼𝑏𝑙𝑎𝑐𝑘,>/< − 𝐼𝑤ℎ𝑖𝑡𝑒,>/<

where 𝐼𝑏𝑙𝑎𝑐𝑘 and 𝐼𝑤ℎ𝑖𝑡𝑒 are the average influence values for black
and white defendants respectively.

The secondmeasure was deviation disparity, where deviationwas
defined as the degree to which participants increased or decreased
the model’s score for each defendant. Deviation was calculated for
each prediction task, and the average deviation for white and black
defendants and the deviation disparity between the two races were
also calculated:

Deviation disparity = 𝐷𝑏𝑙𝑎𝑐𝑘 − 𝐷𝑤ℎ𝑖𝑡𝑒

where 𝐷𝑏𝑙𝑎𝑐𝑘 and 𝐷𝑤ℎ𝑖𝑡𝑒 are the average deviation for black and
white defendants respectively.

5.4.4 Overview of Statistical Models. We ran linear, ordinary least
squares (OLS) regressions to examine associations between dif-
ferent features, and linear mixed-effects models when analyzing
results at the level of predictions to account for repeated samples
of defendants and participants in the predictions [22]. T-Tests were
used to examine statistical significance.

6 RESULTS
6.1 Demographics of AMT Participants
There were 738 unique participants who participated in our study
for a fee of $2.40. After excluding responses from those who failed
either one of the attention checks or had incomplete/poor quality
responses, the number of participants was reduced from 738 to 559
participants, resulting in 16,770 predictions available for use in the
analyses (559 participants x 30 predictions-per-participant).

Slightly more men (52.4%) than women (47.6%) participated. The
mean age was 35-44 years with 27.3% of participants within that age
range. More than half of participants reported an education level of
a bachelor’s degree or higher (72.6%), and a majority self-identified
as White (71.3%). On average, in all treatments except the baseline
treatment, participants reported a greater familiarity with the U.S.
criminal justice system than with machine learning.

6.2 Approaches to Prediction Task
Mentions of features that participants took into account when
predicting risk scores was common across all treatments where the
most referenced features were age, criminal history, and nature of
the crime. However, some participants’ approaches to race were
notable; a few participants expressed concerns with algorithms
(in general, not ours specifically), their biased predictions, and
their use in criminal justice, one even explicitly mentioning that
these concerns guided how they approached our experiment from
the get-go, “I took it for granted that the algorithm, programmed

Session 1E: Human-Agent Teams
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

329



by humans, would incorporate a degree of cultural and systemic
racism in its judgments. So, given other measures of likelihood of
commission of crimes before trial, I tended to downgrade its risk
scores of African-American subjects". As these general concerns
were in response to an optional, open-response question that less
than half of participants completed, the responses indicate that
there may have been other participants who also approached the
prediction tasks with an awareness of algorithmic bias.

6.3 Strategies for Incorporating Explanations
Participants’ responses to how they incorporated the explanations
could be categorized into the following attitudes: (1) explanations
were useful/used in their decision making process, (2) explanations
were insightful to finding patterns in how the algorithm works,
(3) explanations were not useful due to specific critiques, and (4)
explanations were ignored for no specified reason. Examples for
each category are available in the Appendix.

Table 1: Performance gains of each treatment. Gains of the fac-
tual treatments were larger than those of the counterfactual
treatments, and gains of the diverse/complete treatments
were larger than those of the selective treatments.

Treatment Prediction Score Gain

RA Only 0.76 0.56
Diverse Counterfactual 0.75 0.45
Selective Counterfactual 0.74 0.38
Complete Feature Attr. 0.76 0.54
Selective Feature Attr. 0.75 0.47

6.4 Principle 1: Accuracy
Across all treatments, the average risk assessment model prediction
score was 0.80 and the average participant prediction score was
0.74. Participants in all five treatments still under-performed the
model performance (𝑝 < 10−6). Even though all four explanation
treatments improved (𝑝 < 0.005) participant performance relative
to the baseline (no risk assessment model) treatment, they did not
lead to a statistically significant increase in participant performance
relative to the unexplained risk assessment model treatment. As
seen in Table 1, the performance gains of the explanation treatments
were also lower than of the unexplained risk assessment model
treatment, where the largest gain in an explanation treatment was
a gain of 0.54 in the complete feature attribution treatment.

6.5 Principle 2: Reliability
Green and Chen defined a reliable prediction as one for which partic-
ipants (1) accurately evaluated both their own and the algorithm’s
performance, and (2) calibrated the incorporation of the algorithm’s
score into their prediction based on its performance. We also intro-
duce (3) an exploration of accountability under this principle. The
results are summarized in Table 2.

6.5.1 Evaluation. We used two survey responses to look at par-
ticipants’ evaluation of their own performance: (1) self-reported

Table 2: Reliability of participant predictions. The reliability
results of each treatment (OLS regression between self-report
and actual outcome) showing participants’ ability to evaluate
their own performance (Conf), ability to evaluate the risk
assessment model accuracy (Acc Eval) and fairness (Fair
Eval), and ability to calibrate their predictions for the risk
assessment model accuracy (Acc Cal) and fairness (Fair Cal).
✓indicates the desired behavior was observed (positive asso-
ciation, 𝑝 < 0.05), and 0 indicates no statistically significant
relationship.

Conf
Acc

Eval

Acc

Cal

Fair

Eval

Fair

Cal

RA Only (unexplained) 0 0 ✓ 0 0
Diverse Counterfactual 0 ✓ ✓ 0 0
Selective Counterfactual 0 0 ✓ 0 0
Complete Feature Attr. 0 0 ✓ ✓ 0
Selective Feature Attr. 0 0 ✓ 0 0

performance confidence, and (2) self-reported performance con-
fidence relative to other participants. The latter was a question
included to allow participants to not only report their absolute
performance confidence (an incomplete measure due to the largely
non-expert participant population), but also their performance con-
fidence relative to other non-experts (other participants completing
the experiment). The mean survey responses for both questions
were between “Moderately" (3) and “Very" (4) confident for all
treatments.

Conf: Within each treatment, we regressed self-reported per-
formance against actual performance controlling for participant
demographic information and exit survey responses. There were
no statistically significant associations between self-reported confi-
dence and actual performance in any treatment. Similarly, when
we regressed self-reported confidence in performance relative to
other participants (calculated as participant prediction score rank in
the 559 worker sample) against actual performance, we found no
statistically significant associations. This indicates that participants
were unable to accurately assess their own performance neither
absolutely, nor with respect to other non-expert participants.

To examine participants’ evaluations of risk assessment model
performance, we looked at two aspects of the model: accuracy and
fairness. Acc Eval: Within each treatment, we regressed partici-
pants’ self-reported perception of risk assessment model accuracy
against the actual model accuracy they experienced controlling for
participant performance, demographic information, and exit survey
responses. Only the diverse counterfactual treatment showed a
positive and statistically significant association (𝑝 < 0.05); partici-
pants were only able to successfully assess the accuracy of the risk
assessment model in that treatment.

Fair Eval: As for assessing fairness, we similarly regressed
within each treatment participants’ self-reported perception of risk
assessment model fairness against the actual model fairness they
experienced (measured as difference in risk assessment model false
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positive rates for black and white defendants — the lower the dif-
ference, the higher the fairness) 3. We only found a negative and
statistically significant relationship between self-reported model
fairness and the model’s difference in false positive rates between
black and white defendants in the complete feature attribution
treatment; participants were only able to successfully assess risk
assessment model fairness in that treatment.

6.5.2 Calibration. To look at whether participants adjusted their
use of the risk assessment model according to the model’s perfor-
mance, we regressed within each treatment the influence of the
model on each participant against the model (1) accuracy, and (2)
fairness they experienced4. We found positive and statistically sig-
nificant associations between influence and risk assessment model
accuracy across all treatments (𝑝 < 0.008) (Acc Cal), but no statis-
tically significant associations between influence and risk assess-
ment model fairness (Fair Cal). Participants in the explanation
treatments were able to adjust the influence of the model on their
predictions according to its accuracy but not its fairness.

6.5.3 Accountability. To assess whether participants sensibly ad-
justed how much accountability they should face compared to the
algorithm developers, we utilized their response to this survey
question, “If one of the decisions you make goes wrong or is ques-
tioned, how much accountability do you think you should face?"
Within each treatment, we regressed their response against the
overall influence of the risk assessment model on their predictions
controlling for risk assessment model performance, participant per-
formance, demographic information, and exit survey responses.
The diverse counterfactual treatment showed a positive and sta-
tistically significant correlation between influence and how much
participants think they should be held accountable (𝑝 < 0.003).
However, the degree of accountability was also associated with their
self-reported confidence (𝑝 < 0.05), and how fair they perceived
the algorithm to be: the fairer the algorithm, the more participants
believed they should be held accountable (𝑝 < 0.001). As for the
other treatments, the unexplained risk assessment model treatment
and the complete feature attribution treatments showed a posi-
tive and statistically significant relationship between participant
self-reported confidence and accountability. The more confident
participants were in their performance, the more they believed they
should be held accountable (𝑝 < 0.05).

6.6 Principle 3: Fairness
6.6.1 Influence Disparity. We measured influence disparity for
cases where the risk assessment model prediction was greater than
the average baseline prediction (𝑅𝐴 > 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) and for cases where
it was less than the average baseline prediction (𝑅𝐴 < 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒).
For both 𝑅𝐴 < 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and the 𝑅𝐴 > 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 cases, there were
no statistically significant results.

3To focus on the most prevalent aspect of bias, this analysis was restricted to the 72%
of participants who experienced a greater or equal false positive rate for black than
white defendants.
4Most participants (83%) had influence values between 0 and 1. Those who adjusted
beyond the risk assessment model or went against the model did not and were excluded
from this analysis.

6.6.2 Deviation Disparity. There was a statistically significant dif-
ference between the average deviation for black and white defen-
dants across all treatments (𝑝 < 0.04). The average black deviation
was more negative than the average white deviation in every treat-
ment; participants on average deviated to scores lower than the
model scores for black defendants compared to white defendants.
This difference in average deviation was greater in the explana-
tion treatments than in the unexplained risk assessment model
treatment, where the largest difference of 0.59 was observed in
the diverse counterfactual treatment, and the smallest of 0.15 was
observed in the unexplained risk assessment model treatment.

6.7 Principle 4: Explanation Effectiveness
6.7.1 Trust. A prerequisite of trust is the proper evaluation of the
risk assessment model’s accuracy and fairness, in order to calibrate
trust accordingly. As seen in Section 6.5, participants largely failed
to properly assess the model. Thus, the appropriate calibration of
trust was challenging to measure.

6.7.2 Insight. We first looked at how valuable and useful partic-
ipants reported the explanations were to their decision making
process. The average response to the survey question on how use-
ful the explanations were was between “Moderately" (3) and “Very"
(4) (average of 3.21) useful for all treatments except the selective
counterfactual treatment, which was between “Slightly" (2) and
“Moderately" (3) (average of 2.85) useful. This indicates that partici-
pants found the explanations to be reasonably informative.

We then examined whether the information gained from expla-
nations led to improved participant performance and an improved
participant ability to articulate how they arrived at the joint predic-
tion outcome. First, within each treatment, we regressed participant
performance against their self-reported degree to which they found
the explanation useful controlling for risk assessment model per-
formance, participant demographic information, and exit survey re-
sponses. We found no statistically significant associations between
participant performance and self-reported explanation usefulness
in any treatment; the increased informativeness of explanations
did not lead to improved performance.

We then regressedwithin each treatment participant self-reported
ability to explain how they arrived at their predictions against their
self-reported degree to which they found the explanation useful
controlling for risk assessment model performance, participant per-
formance, demographic information, and exit survey responses. We
only found a positive and statistically significant (𝑝 < 0.05) rela-
tionship between participants’ self-reported explanation usefulness
and ability to explain their decision making process in the selective
feature attribution treatment.

6.7.3 Fair & Ethical Decision-Making. We first examined whether
there was a reduction in decision-maker ‘bias’ in the explanation
treatments, where ‘bias’ was defined in a similar manner to model
fairness: difference in the participant false positive prediction rates
for black and white defendants [11]. No explanation treatment led
to a statistically significant decrease in participant bias relative to
the unexplained risk assessment model treatment.

We then investigated whether explanations improved perfor-
mance in the presence of false positive and false negative risk
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assessment model predictions. We analyzed a subset of the data
where the model score presented was a false positive or false neg-
ative. We used a linear mixed-effects model with random effects
for participant and defendant identities, and regressed participant
performance against participant treatment controlling for risk as-
sessment model performance, participant demographic information,
and the defendant features. Only the diverse counterfactual treat-
ment case led to a statistically significant (𝑝 < 0.05) increase in par-
ticipant performance, relative to the unexplained risk assessment
model treatment, while the defendant features had no statistically
significant effect on performance.

7 DISCUSSION & FUTUREWORK
7.0.1 Explanation Informativeness & Human Performance. Despite
participants reporting that explanations were reasonably informa-
tive, the explanation treatments did not improve accuracy relative
to the unexplained risk assessment model treatment. This counter-
intuitive result is opposite to common assumptions that explana-
tions improves performance (via improved human interpretability
of algorithms) [35, 40], but is in line with more recent empirical
findings on explanations and human performance [39, 45].

Furthermore, explanations did not lead to an increase in partic-
ipants’ self-reported confidence in articulating how they arrived
at the joint prediction outcome. Thus, even if explanations had im-
proved human performance, this does not necessarily indicate that
explanations were “interpretable" to the degree that is necessary to
ensure decision-makers feel they can adequately explain the joint
prediction outcome — a critical element for effective accountability
measures [10].

7.0.2 Challenges of Assessing & Addressing Fairness. In only one
treatment did the risk assessment model exert more influence at
increasing risk score of black defendants compared to white defen-
dants. Apart from this, we observed less disparate interactions than
we expected (and compared to [16]); our analysis showed that par-
ticipants on average reduced the model’s scores of black defendants
more than white defendants. Survey responses provide evidence
that participants had a preconceived awareness of algorithmic bias
against black defendants and adjusted their predictions accordingly
— possibly a result of increased activism and scholarship on racial
bias in algorithms, especially in criminal justice [7, 37]. In terms of
human-algorithm interaction, this increased awareness raises ques-
tions on the nature and extent of human adjustments to perceived
bias in algorithms [26, 43]. Our results showed that participants in
most of the treatments still fell short of accurately assessing risk
assessment model fairness, calibrating the influence of the model
scores, and correcting for false positive and false negative model
predictions.

7.0.3 The Argumentative Potential of Explanations. Relative towhen
the risk assessment model was not explained, the diverse counter-
factual was the only treatment shown to improve participants’
performance in the presence of false positive and false negative
model predictions. This result indicates that certain types of ex-
planations could legitimize or disguise inaccurate and unfair AI
predictions [13], motivating further empirical studies of xAI.

7.0.4 DiCE User Feedback on Proximity & Diversity of Explanation
Type. A point of user feedback identified the need at times for fac-
tual explanations to accompany or replace the counterfactual ones.
Our results lend some support to this feedback since we observed
that factual and counterfactual explanations satisfied different cri-
teria (e.g. assessing model fairness versus accuracy, respectively);
rarely did both explanation types lead to the same desirable behav-
ior. Indeed, prior work has also shown that users’ preferences for
counterfactual versus factual explanations vary according to the
nature of each prediction and users’ expectations of each predic-
tion [41]. Thus, explanations that adapt to these varying needs, by
combining factual and counterfactual explanations, may be more
effective than one or the other.

This feedback, along with our observation that participants pre-
ferred and performed better in the diverse/complete than the selec-
tive treatments, reinstates the importance of studying the trade-off
between complete or diverse explanations and the potential of infor-
mation overload [20]. An important future axis of exploration can
focus on whatWachter et al. identified as “social" or “interactive"
explanations that involve iteration until the explanation leads to a
point of mutual understanding between the explainer and explainee
[32].

A APPENDIX
A.1 Web Experiment Task Interface
We provide an image in Figure 1 of the interface used to present
tasks in the web-based experiemnt.

A.2 Participant Qualitative Response on
Explanations

Participants’ responses to how they incorporated the explanations
could be categorized into the following attitudes: (1) explanations
were useful/used in their decision making process, (2) explanations
were insightful to finding patterns in how the algorithm works,
(3) explanations were not useful due to specific critiques, and (4)
explanations were ignored for no specified reason.

For (1) and (2), participants mainly reported finding explanations
insightful in these ways:

• Influencing their perceptions of what features were impor-
tant for the prediction task (e.g., “I liked being able to see
why something was high risk/versus lower risk. On a few
instances, age was mentioned and I kept forgetting to take
into account age so that affected my score.")

• Highlighting instances where the explanations/algorithm’s
prediction was erroneous/unfair (e.g., “I felt the algorithm
was off base. It would state it would give a lower score if the
defendant had more juvenile misdemeanor charges than he
really had.", “... I also think there were similar circumstances
where the only difference was race, yet the risk factor was
judged quite differently in a few examples."

• Generating more curiosity about how the explanations relate
to the risk score (e.g., “... I did wonder if that is what the
algorithm’s basis for scoring is, if the high and low risk
variables even out, would they give a score of 5?")
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Figure 1: Interface of a single task in the web-based experiment. Tasks consisted of up to three sections: (A) defendant profile, (B)
risk assessment model score (and accompanying explanation), and (C) participant prediction.

• Creating more room for ‘human forgiveness’ (the absence
of which is often cited in debates on human vs machine
decision making [33]) in human-algorithm interactions (e.g.,
“If the person came close to the cutoff age that the AI said it
[risk score] would have been lower, then I usually did lower
the prediction number to correspond.")

As for critiques - (3) & (4) -, participants offered more, as well
as more specific critiques for the counterfactual explanations. For
the feature attribution explanations, critiques mainly referenced
instances where participants did not agree with the high/low risk
feature categorization. The two main critiques of the counterfactual
explanations were the following:

• Explanations were irrelevant/factual explanations would
have have been more relevant (e.g., “I did not [incorporate
the explanations] because I did not think that they were
very relevant. They told me how the algorithm could have
decided differently but not why it decided the way it did."

• Explanations were not proximate enough to each defendant’s
profile (e.g., “None of them seemed really appropriate so I

started ignoring them - really high numbers of other convic-
tions or weird crimes/unrelated or extreme age differences."

Critiques of the selective counterfactual explanations specifi-
cally, focused on disagreements with the explanations’ emphasis
on age, despite age being regularly mentioned by participants as
an important factor.
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