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ABSTRACT
Communication within groups of agents has been lately the focus

of research in dynamic epistemic logic (DEL). This paper studies

a recently introduced form of partial (more precisely, topic-based)
communication. This type of communication allows for modelling

scenarios of multi-agent collaboration and negotiation, and it is par-

ticularly well-suited for situations in which sharing all information

is not feasible/advisable. After presenting results on invariance and

complexity of model checking, the paper compares partial commu-

nication to public announcements, probably the most well-known

type of communication in DEL. It is shown that the settings are,

update-wise, incomparable: there are scenarios in which the effect

of a public announcement cannot be replicated by partial communic-

ation, and vice versa. Then, the paper shifts its attention to strategic
topic-based communication. It does so by extending the language

with a modality that quantifies over the topics the agents can ‘talk

about’. For this new framework, it provides a complete axiomatisa-

tion, showing also that the new language’s model checking problem

is PSPACE-complete. The paper closes showing that, in terms of

expressivity, this new language of arbitrary partial communication

is incomparable to that of arbitrary public announcements.
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1 INTRODUCTION
Epistemic logic (EL; [22]) is a powerful framework for representing

the individual and collective knowledge/beliefs of a group of agents.

When using relational ‘Kripke’ models, its crucial idea is the use

of uncertainty for defining knowledge. Indeed, such structures

assign to each agent a binary indistinguishability relation among

epistemic possibilities. Then, it is said that agent i knows that 𝜑

is the case (syntactically: Ki 𝜑) when 𝜑 holds in all situations i
considers possible. Despite its simplicity, EL has contributed to

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

the formal study of complex multi-agent epistemic phenomena in

philosophy [21], computer science [14], AI [27] and economics [12].

One of the most appealing aspects of EL is that it can be used for

reasoning about information change. This has been the main sub-

ject of dynamic epistemic logic (DEL; [31, 37]), a field whose main

feature is that actions are semantically represented as operations

that transform the underlying semantic model. Within DEL, one
of the simplest meaningful epistemic actions is that of a public an-
nouncement: an external source providing the agents with truthful

information in a fully public way [17, 28]. Yet, the agents do not

need an external entity to feed them with facts: they can also share

their individual information with one another. This is arguably a

more suitable way of modelling information change in multi-agent

(and, in particular, distributed) systems. Agents might occasionally

receive information ‘from the outside’, but the most common form

of interaction is the one in which they themselves engage in ‘con-

versations’ for sharing what they have come to know so far. It is

this form of information exchange that allows independent entities

to engage in collaboration, negotiation and so on.

Communication between agents can take several forms, with

some of these alternatives explored within DEL. A single agent

might share all her information with everybody [8]. Alternatively,

a group of agents might share all their information only among

themselves, as represented by the action of “resolving distributed

knowledge” from [3]. One can even think about this form of commu-

nication not as a form of ‘sharing’, but rather as a form of ‘taking’

[10, 11], which allows the study of public and private forms of

reading someone else’s information (e.g., hacking).

These approaches for communication have a common feature:

the sharing agents share all their information. This is of course
useful, as then one can reason about the best the agents can do

together. But there are also scenarios (arguably more common) in

which sharing all her available information might not be feasible

or advisable for an agent. For the first, there might be constraints

on the communication channels; for the second, agents might not

be in a cooperative scenario, but rather in a competitive one. In

such cases, one would be rather interested in studying forms of

partial communication, through which agents share only ‘part of

what they know’. There might be different ways to make precise

what each agent shares, but a natural one is to assume that the ‘con-

versation’ is relative to a subject/topic, defined by a given formula

𝜒 . Introduced in [39], this type of communication allows a more

realistic modelling of scenarios of multi-agent collaboration and

negotiation. The first part of this paper studies computational as-

pects of this partial communication framework. It starts (Section 2)

by recalling the main definitions and axiom system, providing then

novel invariance and model checking results. After that, it discusses

(Section 3) the setting’s relationship with the public announcement
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framework, showing that although the languages are equally ex-

pressive, in general the operations cannot mimic each other.

Still, in truly competitive scenarios, what matters the most is the

decision of what to share. In other words, what matters is to reason

about strategic topic-based communication. To do so, the second

part of this paper introduces a framework for quantifying over the

conversation’s topic. It presents (Section 4) the basic definitions,

providing then results on invariance, axiom system, expressivity

and model checking. After that, it compares this new setting with

that of arbitrary public announcements, proving that the languages

are, expressivity-wise, incomparable. Section 5 contrasts choices

made with their alternatives, and Section 6 summarises the paper’s

contents, discussing also further research lines.

2 BACKGROUND
Throughout this text, let A be a finite non-empty group of agents,

and let P be a non-empty enumerable set of atomic propositions.

Definition 2.1 (Model). A multi-agent relational model (from now

on, a model) is a tuple 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩ where𝑊 (also denoted as

𝔇(𝑀)) is a non-empty set of objects called possible worlds, 𝑅 =

{𝑅i ⊆𝑊 ×𝑊 | i ∈ A} assigns a binary “indistinguishability” rela-
tion on𝑊 to each agent in A (for G ⊆ A, define 𝑅G :=

⋂
k∈G 𝑅k),

and 𝑉 : P → ℘(𝑊 ) is an atomic valuation (with 𝑉 (𝑝) the set of
worlds in𝑀 where 𝑝 ∈ P holds). A pair (𝑀,𝑤) with𝑀 a model and

𝑤 ∈ 𝔇(𝑀) is a pointed model, with 𝑤 being the evaluation point.
A model 𝑀 is finite iff both𝑊 and

⋃
𝑤∈𝑊 {𝑝 ∈ P | 𝑤 ∈ 𝑉 (𝑝)}

are finite. If 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩ is finite, its size (notation: |𝑀 |) is
|𝑊 | +∑i∈A |𝑅i | +

∑
𝑤∈𝑊 | {𝑝 ∈ P | 𝑤 ∈ 𝑉 (𝑝)} |.

In a model, the agents’ indistinguishability relations are arbitrary.

In particular, they need to be neither reflexive nor symmetric nor

Euclidean nor transitive. Hence, “knowledge” here is neither truth-
ful nor positively/negatively introspective. It rather corresponds

simply to “what is true in all the agent’s epistemic alternatives”.

Definition 2.2 (Relative expressivity). Let L1 and L2 be two lan-

guages interpreted over pointed models. It is said that L2 is at least
as expressive as L1 (notation: L1 ≼ L2) if and only if for every

𝛼1 ∈ L1 there is 𝛼2 ∈ L2 such that 𝛼1 and 𝛼2 have the same truth-

value in every pointed model. Write L1 ≈ L2 when L1 ≼ L2 and

L2 ≼ L1; write L1 ≺ L2 when L1 ≼ L2 and L2 $ L1; write

L1 ≍ L2 when L1 $ L2 and L2 $ L1.

Note: to show L1 $ L2, it is enough to find two pointed models

that agree in all 𝛼1 ∈ L2 but can be distinguished by some 𝛼2 ∈ L1

2.1 Basic Language
Here is this paper’s basic language for describing pointed models.

Definition 2.3 (Language L). Formulas 𝜑,𝜓 in L are given by

𝜑,𝜓 ::= 𝑝 | ¬𝜑 | 𝜑 ∧𝜓 | DG 𝜑

for 𝑝 ∈ P and ∅ ⊂ G ⊆ A. Boolean constants and other Boolean

operators are defined as usual. Define also Ki 𝜑 := D{i} 𝜑 . The size
of 𝜑 , denoted |𝜑 |, is given by |𝑝 | := 1, |¬𝜑 | = |DG 𝜑 | := |𝜑 | + 1 and
|𝜑 ∧𝜓 | := |𝜑 | + |𝜓 | + 1.

The language L contains a modality DG for each non-empty

group of agents G ⊆ A. Formulas of the form DG 𝜑 are read as “the

Table 1: Axiom system L.

PR: ⊢ 𝜑 for 𝜑 a propositionally valid scheme

MP: If ⊢ 𝜑 and ⊢ 𝜑 → 𝜓 then ⊢ 𝜓

K
D
: ⊢ DG (𝜑 → 𝜓 ) → (DG 𝜑 → DG𝜓 ) G

D
: If ⊢ 𝜑 then ⊢ DG 𝜑

M
D
: ⊢ DG 𝜑 → DG′ 𝜑 for G ⊆ G′

agents in G know 𝜑 distributively”; thus, Ki 𝜑 is read as “agent i
knows 𝜑”. The language’s semantic interpretation is as follows.

Definition 2.4 (Semantic interpretation for L). Let (𝑀,𝑤) be a
pointed model with 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩. The satisfiability relation ⊩
between (𝑀,𝑤) and formulas in L is defined inductively. Boolean

cases are as usual; for the rest,

(𝑀,𝑤) ⊩ 𝑝 iffdef 𝑤 ∈ 𝑉 (𝑝),
(𝑀,𝑤) ⊩ DG 𝜑 iffdef for all 𝑢 ∈𝑊 , if 𝑅G𝑤𝑢 then (𝑀,𝑢) ⊩ 𝜑 .

Given a model𝑀 and a formula 𝜑 ,

• the set ⟦𝜑⟧𝑀 := {𝑤 ∈ 𝔇(𝑀) | (𝑀,𝑤) ⊩ 𝜑} contains the worlds
in𝔇(𝑀) in which 𝜑 holds (also called 𝜑-worlds);

• the (note: equivalence) relation

∼𝑀𝜑 := (⟦𝜑⟧𝑀 × ⟦𝜑⟧𝑀 ) ∪ (⟦¬𝜑⟧𝑀 × ⟦¬𝜑⟧𝑀 )
splits𝔇(𝑀) into (up to) two equivalence classes: one containing
all 𝜑-worlds, and the other containing all ¬𝜑-worlds.

A formula 𝜑 is valid (notation: ⊩ 𝜑) if and only if (𝑀,𝑤) ⊩ 𝜑 for

every𝑤 ∈ 𝔇(𝑀) of every model𝑀 .

Axiom system. The axiom system L (Table 1) characterises the

formulas in L that are valid (see, e.g., [14, 19]). Boolean operators

are taken care of by PR andMP. For the modality DG, while rule

G
D
indicates that it ‘contains’ all validities, axiom K

D
indicates that

it is closed under modus ponens, and axiom M
D
states that it is

monotone on the group of agents (if 𝜑 is distributively known by G,
then it is also distributively known by any larger group G′).

Theorem 2.5. The axiom system L (Table 1) is sound and strongly
complete for L.

Structural equivalence. The following notion will be useful.

Definition 2.6 (Collective Q-bisimulation [30]). Let Q ⊆ P be a set

of atoms; let 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩ and 𝑀 ′ = ⟨𝑊 ′, 𝑅′,𝑉 ′⟩ be two models.

A non-empty relation 𝑍 ⊆ 𝑊 ×𝑊 ′ is a collective Q-bisimulation
between 𝑀 and 𝑀 ′ if and only if every (𝑢,𝑢 ′) ∈ 𝑍 satisfies the

following.

• Atoms. For every 𝑝 ∈ Q: 𝑢 ∈ 𝑉 (𝑝) if and only if 𝑢 ′ ∈ 𝑉 ′(𝑝).
• Forth. For every G ⊆ A and every 𝑣 ∈𝑊 : if 𝑅G𝑢𝑣 then there is

𝑣 ′ ∈𝑊 ′ such that 𝑅′G𝑢 ′𝑣 ′ and (𝑣, 𝑣 ′) ∈ 𝑍 .
• Back. For every G ⊆ A and every 𝑣 ′ ∈𝑊 ′: if 𝑅′G𝑢 ′𝑣 ′ then there

is 𝑣 ∈𝑊 such that 𝑅G𝑢𝑣 and (𝑣, 𝑣 ′) ∈ 𝑍 .
Write 𝑀 ⇄Q

𝐶
𝑀 ′ iff there is a collective Q-bisimulation between

𝑀 and𝑀 ′. Write (𝑀,𝑤) ⇄Q
𝐶
(𝑀 ′,𝑤 ′) iff a witness for𝑀 ⇄Q

𝐶
𝑀 ′

contains the pair (𝑤,𝑤 ′). Remove the superindex “
Q
” when Q is the

full set of atoms P. Note: the relation of collective Q-bisimilarity is

an equivalence relation, both on models and pointed models.
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The language L is invariant under collective bisimilarity.

Theorem 2.7 (⇄𝐶 implies L-eqivalence). Let (𝑀,𝑤) and
(𝑀 ′,𝑤 ′) be two pointed models. If (𝑀,𝑤) ⇄Q

𝐶
(𝑀 ′,𝑤 ′) then, for

every𝜓 ∈ L containing only atoms from Q,

(𝑀,𝑤) ⊩ 𝜓 if and only if (𝑀 ′,𝑤 ′) ⊩ 𝜓 .

Proof. For showing that a form of model equivalence implies

invariance for a language, one usually uses induction on the lan-

guage’s formulas.
1
For P-bisimilarity and L, see [30]. □

Model checking This problem for L is in P [14, Page 67].

2.2 Partial (Topic-Based) Communication
Through an action of partial communication, a group of agents

S ⊆ A share, with everybody, all their information about a given

topic 𝜒 . To define it, consider first a simpler action. After agents in S
share all their information with everybody, an agent i will consider

a world𝑢 possible from a world𝑤 if and only if she and every agent

in S considered 𝑢 possible from𝑤 (i.e., i’s new relation 𝑅S!i is the

intersection of 𝑅i and 𝑅S). In other words, after full communication,

at𝑤 agent i will consider 𝑢 possible if and only if neither her nor

any agent in S could rule out 𝑢 from 𝑤 before the action. But if

agents in S share only ‘their information about 𝜒 ’ (intuitively, only

what has allowed them to distinguish between 𝜒- and ¬𝜒-worlds),
edges between worlds agreeing in 𝜒 ’s truth-value are not ‘part of

the discussion’; thus, they should not be eliminated.

Definition 2.8 (Partial communication [39]). Let 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩
be a model; take a group of agents S ⊆ A and a formula 𝜒 . The

model 𝑀S: 𝜒 ! = ⟨𝑊,𝑅S: 𝜒 !,𝑉 ⟩, the result of agents in S sharing all

they know about 𝜒 with everybody, is such that

𝑅S: 𝜒 !i := 𝑅i ∩ (𝑅S ∪ ∼𝑀𝜒 ).
Thus, 𝑅S: 𝜒 !G =

⋂
i∈G 𝑅

S: 𝜒 !
i = 𝑅G ∩ (𝑅S ∪∼𝑀𝜒 ) = 𝑅G∪S ∪ (𝑅G ∩∼𝑀𝜒 ).

Additionally, 𝑅∅: 𝜒 !i = 𝑅i.

Definition 2.9 (Modality [S: 𝜒!] and language LS:𝜒 ! [39]). The
language LS:𝜒 ! extends L with a modality [S: 𝜒!] for each S ⊆ A

and each formula 𝜒 . More precisely, define first L0

S:𝜒 ! = L, and
then defineL𝑖+1

S:𝜒 ! as the result of extendingL
𝑖
S:𝜒 ! with an additional

modality [S: 𝜒!] for S ⊆ A and 𝜒 ∈ L𝑖
S:𝜒 !. The language LS:𝜒 ! is

then defined as

⋃
𝑖∈N L𝑖

S:𝜒 !. For its semantic interpretation,

(𝑀,𝑤) ⊩ [S: 𝜒!] 𝜑 iffdef (𝑀S: 𝜒 !,𝑤) ⊩ 𝜑 .
Defining ⟨S: 𝜒!⟩ 𝜑 := ¬ [S: 𝜒!] ¬𝜑 implies ⊩ ⟨S: 𝜒!⟩ 𝜑 ↔ [S: 𝜒!] 𝜑 .
The size of a formula 𝜑 ∈ LS:𝜒 ! is as in Theorem 2.3, with the

additional clause | [S: 𝜒!] 𝜑 | := |𝜒 | + |𝜑 | + 1.

Further motivation and details on partial communication can be

found in [39]. Still, here are two revealing properties:⊩ [S: 𝜒1!] 𝜑 ↔
[S: 𝜒2!] 𝜑 for ⊩ 𝜒1 ↔ 𝜒2 (logically equivalent topics have the same

communication effect) and ⊩ [S: 𝜒!] 𝜑 ↔ [S:¬𝜒!] 𝜑 (communica-

tion on a topic is just as communication on its negation).

1
The proofs typically start by pulling out the universal quantifier over formulas, the

statement becoming “for every 𝜑 , any structurally equivalent pointed models agree on
𝜑 ’s truth-value”. This yields a stronger inductive hypothesis (IH) thanks to which the

proof can go through. This will be done throughout the rest of the text.

Table 2: Additional axioms and rules for LS:𝜒 !.

A𝑝

S:𝜒 !: ⊢ [S: 𝜒 !] 𝑝 ↔ 𝑝

A¬S:𝜒 !: ⊢ [S: 𝜒 !] ¬𝜑 ↔ ¬ [S: 𝜒 !] 𝜑

A∧S:𝜒 !: ⊢ [S: 𝜒 !] (𝜑 ∧𝜓 ) ↔ ( [S: 𝜒 !] 𝜑 ∧ [S: 𝜒 !]𝜓 )

AD

S:𝜒 !: ⊢ [S: 𝜒 !] DG 𝜑 ↔ (DS∪G [S: 𝜒 !] 𝜑 ∧ D𝜒

G [S: 𝜒 !] 𝜑)

RES:𝜒 !: If ⊢ 𝜑1 ↔ 𝜑2 then ⊢ [S: 𝜒 !] 𝜑1 ↔ [S: 𝜒 !] 𝜑2

Axiom system. The axioms and rule of Table 2 form, together

with those in Table 1, a sound and strongly complete axiom system

for LS:𝜒 !. They rely on the DEL reduction axioms technique (for an

explanation, see [40] or [37, Section 7.4]), with axiom AD

S:𝜒 ! being

the crucial one. Using the abbreviation

D
𝜒

G 𝜑 := (𝜒 → DG (𝜒 → 𝜑)) ∧ (¬𝜒 → DG (¬𝜒 → 𝜑))
(“agents in G know distributively that 𝜒 ’s truth value implies 𝜑” ),

the axiom indicates that a group G knows 𝜑 distributively after

the action ([S: 𝜒!] DG 𝜑) if and only if the group S ∪ G knew, dis-

tributively, that 𝜑 would hold after the action (DS∪G [S: 𝜒!] 𝜑) and
the agents in G know distributively that 𝜒 ’s truth-value implies the

action will make 𝜑 true (D
𝜒

G [S: 𝜒!] 𝜑).
From Table 2 one can define a truth-preserving translation from

LS:𝜒 ! to L, thanks to which the following theorem can be proved.

Theorem 2.10 ([39]). The axiom system LS:𝜒 ! (L [Table 1]+Table 2)
is sound and strongly complete for LS:𝜒 !.

Structural equivalence. The modality [S: 𝜒!] is invariant under
collective bisimilarity.

Theorem 2.11 (⇄𝐶 impliesLS:𝜒 !-eqivalence). Let (𝑀,𝑤) and
(𝑀 ′,𝑤 ′) be two pointed models. If (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′) then, for
every𝜓 ∈ LS:𝜒 !,

(𝑀,𝑤) ⊩ 𝜓 if and only if (𝑀 ′,𝑤 ′) ⊩ 𝜓 .

Proof. The languageLS:𝜒 ! is
⋃

𝑖∈N L𝑖
S:𝜒 !, so the proof proceeds

by induction on 𝑖 , proving rather a stronger statement: for every

𝜓 ∈ LS:𝜒 ! and every 𝑀 and 𝑀 ′, if (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′) then
(1) (𝑀,𝑤) ⊩ 𝜓 iff (𝑀 ′,𝑤 ′) ⊩ 𝜓 , and (2) (𝑀S:𝜓 !

,𝑤) ⇄𝐶 (𝑀 ′S:𝜓 !
,𝑤 ′).

This is [16, Theorem 2.11]. □

Expressivity. It is clear that L ≼ LS:𝜒 !, as every formula in the

former is also in the latter. Moreover: the reduction axioms in

Table 2 define a recursive translation tr : LS:𝜒 ! → L such that

𝜑 ∈ LS:𝜒 ! implies ⊩ 𝜑 ↔ tr (𝜑) [39].2 This implies LS:𝜒 ! ≼ L and

thus L ≈ LS:𝜒 !: the languages L and LS:𝜒 ! are equally expressive.

Model checking The original work on topic-based communica-

tion [39] did not discuss computational complexity. Here we address

that of the model checking problem for LS:𝜒 !.

Given a finite pointed model (𝑀,𝑤) and a formula 𝜑 ∈ LS:𝜒 !,

the model checking strategy is as follows. Start by creating the

list sub(𝜑) of all subformulas of 𝜑 and all partial communication

2
Note: the translation’s complexity might be exponential, as it is for similar DELs (e.g.,
public announcement: [26]).
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modalities [S: 𝜒!] in it. Next, similarly to the approach in [25], label

each element of sub(𝜑) with the sequence of partial communication

modalities inside the scope of which it appears. Finally, order the

resulting list as follows: for 𝜓𝜎
1
,𝜓𝜏

2
∈ sub(𝜑) (with 𝜎 and 𝜏 the

labellings) we have that𝜓𝜎
1
precedes𝜓𝜏

2
if and only if

• 𝜓𝜎
1
and𝜓𝜏

2
are parts of modalities [S: 𝜒!], and 𝜎 < 𝜏 ,3 or else

• 𝜓𝜎
1
appears within some [S: 𝜒!], and𝜓𝜏

2
does not, or else

• 𝜓𝜎
1
is of the form [S: 𝜒!],𝜓𝜏

2
is not, and 𝜎 < 𝜏 , or else

• neither𝜓𝜎
1
nor𝜓𝜏

2
are parts of some [S: 𝜒!], and 𝜏 < 𝜎 , or else

• both𝜓𝜎
1
are𝜓𝜏

2
are of the form [S: 𝜒!], and 𝜎 < 𝜏 , or else

• 𝜎 = 𝜏 , and𝜓𝜎
1
is a part of𝜓𝜏

2
, or else

• 𝜓1 appears to the left of 𝜒 in 𝜑 .

The intuition behind such an ordering is to allow a model checking

algorithm to deal with 𝜒 ’s within [S: 𝜒!]’s before dealing with

formulas within the scope of the modality. This way we ensure

that, when we need to evaluate 𝜑 in [S: 𝜒!] 𝜑 , we already know

the effect of [S: 𝜒!] on the model. As an example, consider 𝜑 :=

[S1:𝑝 ∧ 𝑞!] [S2:𝑞!] DG 𝑝 . The resulting ordered list sub(𝜑) is then 𝑝 ,
𝑞, 𝑝 ∧ 𝑞, [S1:𝑝 ∧ 𝑞!], 𝑞 [S1:𝑝∧𝑞!] , [S2:𝑞!] [S1:𝑝∧𝑞!] , 𝑝 [S1:𝑝∧𝑞!], [S2:𝑞!] ,
DG 𝑝

[S1:𝑝∧𝑞!], [S2:𝑞!]
, [S2:𝑞!] DG 𝑝

[S1:𝑝∧𝑞!]
, 𝜑 .

Note: each subformula of 𝜑 is labelled with exactly one (maybe

empty) sequence of partial communication modalities. Moreover,

we label communication modality symbols separately. The number

of subformulas of 𝜑 and modality symbols is bounded by O(|𝜑 |).
Since each element of sub(𝜑) is labelled by only one sequence of

modalities, we use at most polynomial number of them.

Algorithm 1 An algorithm for global model checking for LS:𝜒 !

1: procedure GlobalMC(𝑀,𝜑)

2: for all𝜓𝜎 ∈ sub(𝜑) do
3: for all 𝑤 ∈𝑊 do
4: case𝜓𝜎 = DG 𝜒

𝜎

5: check ← true
6: for all (𝑤, 𝑣) ∈ 𝑅G do
7: if (𝑤, 𝑣) is labelled with 𝜎 then
8: if 𝑣 is not labelled with 𝜒𝜎 then
9: check ← false
10: break
11: if check then
12: label 𝑤 with DG 𝜒

𝜎

13: case𝜓𝜎 = [S: 𝜒 !]𝜎
14: for all i ∈ A do
15: for all (𝑣,𝑢) ∈ 𝑅i do
16: if (𝑣,𝑢) is labelled with 𝜎 then
17: if 𝑣 is labelled with 𝜒 iff 𝑢 is labelled with 𝜒 then
18: label (𝑣,𝑢) with 𝜎, [S: 𝜒 !]
19: else
20: check ← true
21: for all j ∈ S do
22: if (𝑣,𝑢) ∉ 𝑅j then
23: check ← false
24: break
25: if check then
26: label (𝑣,𝑢) with 𝜎, [S: 𝜒 !]
27: case𝜓𝜎 = [S: 𝜒 !] b𝜎
28: if 𝑤 is labelled with b𝜎,[S: 𝜒 !] then
29: label 𝑤 with [S: 𝜒 !] b𝜎

The labelling Algorithm 1 is inspired by that for epistemic lo-

gic [20]. The crucial difference is that, besides labelling states, we

also label transitions (case [S: 𝜒!]𝜎 ). This allows us to keep track

of which relations ‘survive’ updates with partial communication

3
That is, 𝜎 is a proper prefix of 𝜏 .

modalities. The labelling of transitions is taken into account when

dealing with the epistemic case DG 𝜒
𝜎
: we check only transitions

that have ‘survived’ at a current step of an algorithm run.

Correctness of the algorithm can be shown by an induction on 𝜑 ,

noting that cases of the algorithmmimic the definition of semantics.

From a computational perspective, the preparation of sub(𝜑) can be
done in O(|𝜑 |2) steps. The running time of GlobalMC is bounded

by O(|𝜑 |2 · |𝑊 | · |A| · |𝑅 |) for the case of [S: 𝜒!]𝜎 .

Theorem 2.12. The model checking problem for LS:𝜒 ! is in P.

3 PARTIAL COMMUNICATION VS. PUBLIC
ANNOUNCEMENTS

The action for partial communication is, in a sense, similar to that

for a public announcement: both are epistemic actions through

which agents receive information about the truth-value of a specific

formula. The difference is that, while in the latter the information

comes from an external source, in the former the information comes

from agents in the model. It makes sense to discuss the relationship

between their formal representations.

Under its standard definition [28], the public announcement of

a formula b transforms a model by eliminating all ¬b-worlds. For
a fair comparison with partial communication, here is an alternat-

ive public announcement definition that rather removes all edges

between worlds disagreeing on b ’s truth-value [32].4

Definition 3.1 (Public announcement). Let 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩ be a

model; take a formula b . The model𝑀b ! = ⟨𝑊,𝑅b !,𝑉 ⟩ is such that

𝑅b !i := 𝑅i ∩ ∼𝑀b .

Thus, 𝑅b !G = 𝑅G ∩ ∼𝑀b .

The world-removing version and the edge-deleting alternative

are collectively P-bisimilar ([16, Proposition A.1]), and thus inter-

changeable from L’s perspective. Here is a modality for describing

the operation’s effect.

Definition 3.2 (Modality [b!]). The language Lb ! extends L with

a modality [b!] for b a formula.
5
. For their semantic interpretation,

(𝑀,𝑤) ⊩ [b!] 𝜑 iffdef (𝑀,𝑤) ⊩ b implies (𝑀b !,𝑤) ⊩ 𝜑 .
Defining ⟨b!⟩ 𝜑 := ¬ [b!] ¬𝜑 implies ⊩ ⟨b!⟩ 𝜑 ↔ (b ∧ [b!] 𝜑).

It can be shown that Lb ! is invariant under collective bisimil-

arity ([16, Theorem A.1]). An axiom system can be obtained by

using the reduction axioms technique, with the crucial axiom being

[b!] DG 𝜑 ↔ (b → DG [b!] 𝜑) [41]. As before, the existence of the
reduction axioms implies Lb ! ≼ L. This, together with the straight-

forward L ≼ Lb !, implies L ≈ Lb !: the languages L and Lb ! are
equally expressive.

When comparing partial communication with public announce-

ments, a first natural question is about the languages’ relative ex-

pressivity. The answer is simple: LS:𝜒 ! and Lb ! are both reducible

to L, and thus they are equally expressive.

4
Cf. [17], which removes only edges pointing to ¬b-worlds. The option used here

has the advantage of behaving, with respect to the preservation of certain relational

properties (reflexivity, symmetry, transitivity), as the standard definition does.

5
More precisely, L1

b !
extends L0

b !
= L with [b !] for b ∈ L0

b !
, L2

b !
extends L1

b !
with

[b !] for 𝜒 ∈ L1

S:𝜒 ! and so on. The language Lb ! is then defined as

⋃
𝑖∈N L𝑖

b !
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At the semantic level, one might wonder whether the operations

can ‘mimic’ each other. More precisely, one can ask the following.

• Given b ∈ L: are there S ⊆ A, 𝜒 ∈ L such that 𝑀b ! ⇄𝐶 𝑀S: 𝜒 !

for every𝑀? (In symbols: ∀b . ∃S . ∃𝜒 .∀𝑀 . (𝑀b ! ⇄𝐶 𝑀S: 𝜒 !)?)
• Given S ⊆ A, 𝜒 ∈ L: is there b ∈ L such that 𝑀S: 𝜒 ! ⇄𝐶 𝑀b !

for every𝑀? (In symbols: ∀S .∀𝜒 . ∃b .∀𝑀 . (𝑀S: 𝜒 ! ⇄𝐶 𝑀b !)?)
Some known model-update operations have this relationship. For

example, action models [9] generalise a standard public announce-

ment: for every formula b there is an action model that, when

applied to any model, produces exactly the one that a public an-

nouncement of b does. For another example, edge-deleting versions

of a public announcement (both that in [17] and that in Definition

3.1) can be represented within the arrow update framework of [24].

Here, the answer to the first question is straightforward: the

agents might not have, even together, the information that a public

announcement provides.

Fact 3.3. Take A = {a} and P = {𝑝}; consider the (reflexive and
symmetric) model𝑀 below on the left. A public announcement of 𝑝
yields the model on the right.

𝑝 a 𝑝!

⇒ 𝑝

Now, there is no S ⊆ A and 𝜒 ∈ L such that𝑀S: 𝜒 ! ⇄𝐶 𝑀𝑝!. The group
S can be only ∅ or {a} and, in both cases, 𝑅S: 𝜒 !a = 𝑅a, regardless of
the formula 𝜒 .

Thus, ∀𝑀 .∀b . ∃S . ∃𝜒 . (𝑀b ! ⇄𝐶 𝑀S: 𝜒 !) fails: for the given

model, the effect of a public announcement of 𝑝 cannot be replic-

ated by any act of partial communication. This answers negatively

the (stronger) first question above: there are no agents S and topic

𝜒 that can replicate the given public announcement in every model.

The answer to the second question is interesting: through partial

communication, the agents can reach epistemic states that cannot

be reached by a public announcement.

Fact 3.4. Take A = {a, b} and P = {𝑝, 𝑞}; consider the (reflexive
and symmetric) model𝑀 below on the left. A partial communication
between all agents about 𝑝 ↔ 𝑞 (equivalence classes highlighted)
yields the model on the right.

𝑝

𝑝,𝑞

a, b

a

a {a,b}: (𝑝↔𝑞) !
⇒

𝑝

𝑝,𝑞

a, b a

Now, there is no b ∈ L such that 𝑀b ! ⇄𝐶 𝑀{a,b}: (𝑝↔𝑞)!. For this,
note that a public announcement preserves transitive indistinguishab-
ility relations; yet, while𝑀 is transitive,𝑀{a,b}: (𝑝↔𝑞)! is not.

Thus, ∀𝑀 .∀S .∀𝜒 . ∃b . (𝑀S: 𝜒 ! ⇄𝐶 𝑀b !) fails: for the provided
model, the effect of a ‘conversation’ among a and b on 𝑝 ↔ 𝑞

cannot be replicated by any public announcement. This answers

negatively the (stronger) second question above: there is no 𝜒 that

can replicate the given partial communication in every model.

4 ARBITRARY PARTIAL COMMUNICATION
The partial communication framework allows us to model inter-

agent information exchange. Yet, consider competitive scenarios.

While it is interesting to find out what a form of partial commu-

nication can achieve (fix the agents and the topic, then find the

consequences), one might be also interested in deciding whether

a given goal can be achieved by some form of partial communic-

ation (fix the goal: is there a group of agents and a topic that can

achieve it?). This quantification over the sharing agents and the

topic they discuss adds a strategic dimension to the framework.

This is particularly useful when communication occurs over an

insecure channel, as one would like to know whether some form of

partial communication (who talks, and on which topic) can achieve

a given goal (e.g., make something group or common knowledge

while also precluding adversaries or eavesdroppers from learning

it, as in [33]). Thus, in the spirit of [6], one can then quantify, either
over the agents that communicate or over the topic they discuss.

Quantifying over the communicating agents does not need ad-

ditional machinery: A is finite, so a modality stating that “𝜑 is true
after any group of agents share all their information about 𝜒” is

definable as [∗: 𝜒!] 𝜑 :=
∧

S⊆A [S: 𝜒!] 𝜑 . Quantifying over the topic,

though, requires additional tools.

4.1 Language, Semantics, and Basic Results
Definition 4.1 (Modality [S: ∗!]). The language L∗S:𝜒 ! extends

LS:𝜒 ! with a modality [S: ∗!] for each group of agents S ⊆ A. More

precisely, take L∗,0S:𝜒 ! = L
∗
to be L plus [S: ∗!]. Then, define L∗,𝑖+1S:𝜒 !

as the result of extendingL∗,𝑖S:𝜒 ! with [S: 𝜒!] for S ⊆ A and 𝜒 ∈ L∗,𝑖S:𝜒 !.
The language L∗S:𝜒 ! is defined as

⋃
𝑖∈N L∗,𝑖S:𝜒 !. For the semantic

interpretation,

(𝑀,𝑤) ⊩ [S: ∗!] 𝜑 iffdef every 𝜒 ∈ L is s.t. (𝑀S: 𝜒 !,𝑤) ⊩ 𝜑
(every 𝜒 ∈ L is s.t. (𝑀,𝑤) ⊩ [S: 𝜒!] 𝜑).

If one defines ⟨S: ∗!⟩ 𝜑 := ¬ [S: ∗!] ¬𝜑 , then
(𝑀,𝑤) ⊩ ⟨S: ∗!⟩ 𝜑 iffdef there is 𝜒 ∈ L s.t. (𝑀S: 𝜒 !,𝑤) ⊩ 𝜑 .
The size of𝜑 ∈ L∗S:𝜒 ! is defined as in Theorem 2.9 with the following

additional clause: | [S: ∗!] 𝜑 | := |𝜑 | + 1.

Note: [S: ∗!] quantifies over formulas inL, and not over formulas

in L∗S:𝜒 !. As in [6], this is to avoid circularity issues. One could have

also chosen to quantify over formulas in LS:𝜒 !, but L ≈ LS:𝜒 !

(Page 3) so nothing is lost by using L instead.
6

Axiom system. Axiomatising L∗S:𝜒 ! requires an additional notion.

Definition 4.2 (Necessity Forms). Take 𝜑 ∈ L∗S:𝜒 !, 𝜒 ∈ L, S, G ⊆ A

and ♯ ∉ 𝑃 . The set of necessity forms [18] is given by

[ (♯) ::= ♯ | 𝜑 → [ (♯) | DG [ (♯) | [S: 𝜒!] [ (♯)
The result of replacing ♯ with 𝜑 in [ (♯) is denoted as [ (𝜑).

The (note: infinitary) axiom system for L∗S:𝜒 ! is given by the

axioms and rules on Tables 1, 2 and 3. The system is similar to

well-known axiomatisations of other logics of quantified epistemic

actions (see [35] for an overview). In Table 3, the soundness of

A[S: ∗!] and R[S: ∗!] follow from [S: ∗!]’s semantic interpretation.

6
Still, for languages with other types of group knowledge, adding a dynamic modality

might increase the expressive power. For more on this (in the context of common

knowledge and quantified announcements), the reader is referred to [15].
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Table 3: Axiom and rule of inference for the arbitrary case.

AS: ∗!: ⊢ [S: ∗!] 𝜑 → [S: 𝜒 !] 𝜑 for 𝜒 ∈ L

RS: ∗!: If ⊢ [ ( [S: 𝜒 !] 𝜑) for all 𝜒 ∈ L, then ⊢ [ ( [S: ∗!] 𝜑)

Completeness of the whole system can be shown by combining and

adapting techniques from [41] (to deal with distributed knowledge)

and [7] (to tackle quantifiers). The reader interested in details is

referred to [1], where the authors presented a relatively similar

completeness proof for a system with distributed knowledge and

quantification over public announcements.

Theorem 4.3. The axioms and rules on Tables 1, 2 and 3 are sound
and (together) complete for L∗S:𝜒 !.

Structural equivalence. The modality [S: ∗!] is also invariant

under collective bisimilarity.

Theorem 4.4 (⇄𝐶 implies L∗S:𝜒 !-eqivalence). Let (𝑀,𝑤) and
(𝑀 ′,𝑤 ′) be two pointed models. If (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′) then, for
every𝜓 ∈ L∗S:𝜒 !,

(𝑀,𝑤) ⊩ 𝜓 if and only if (𝑀 ′,𝑤 ′) ⊩ 𝜓 .

Proof. As for Theorem 2.11 (this is [16, Theorem 4.4]). □

Expressivity. The modality [S: ∗!] adds expressive power.

Theorem 4.5. L∗S:𝜒 ! is strictly more expressive than LS:𝜒 !.

This result can be proven as the analogous result for APAL [6,

Proposition 3.13]. Assume towards a contradiction that the lan-

guages are equally expressive so, given a formula in L∗S:𝜒 !, there
is an equivalent formula in LS:𝜒 !. Since both formulas are finite,

there is an atom 𝑝 that appears in neither. However, [S: ∗!] in L∗S:𝜒 !
quantifies over any formula, and thus over formulas including 𝑝 .

With this, one can build two models that include worlds that satisfy

𝑝 . Then, using induction, we can show that the formula in LS:𝜒 !

(without 𝑝) cannot tell the models apart, while the formula in L∗S:𝜒 !
(where quantification ranges also over formulas with 𝑝) can. This

technique is used (with more details) in the proofs in Section 4.3.

4.2 Model Checking
The complexity of the model checking problem for L∗S:𝜒 ! is PSPACE-
complete: this is in line with the complexity of other logics of quan-

tified information change as, e.g., arbitrary public announcements

[6], group announcement logic [2], coalition announcement logic

[4] and arbitrary arrow update logic [38]. However, this case has

an interesting twist. Model checking algorithms for the aforemen-

tioned logics compute a bisimulation contraction of the model, and

then continue working on the contracted model. This is not possible

in our case: a model and its collective bisimulation contraction are

not collectively bisimilar [29]: they might differ in some formulas’

truth-value. We still compute bisimulation contractions, but we

use them just to inform our algorithm about bisimilar states. The

computation continues on the original non-contracted model.

Definition 4.6 (S-definable restrictions). Let (𝑀,𝑤) be a pointed
model; take S ⊆ A. A model (𝑁,𝑤) is an S-definable restriction of

(𝑀,𝑤) if and only if (𝑁,𝑤) = (𝑀S: 𝜒 !,𝑤) for some 𝜒 ∈ L∗S:𝜒 !.

Fact 4.7. Let (𝑀,𝑤) be a finite pointed model. Then there is a
finite number of S-definable restrictions of (𝑀,𝑤).

The proof below presents an algorithmMC (𝑀,𝑤,𝜑) that returns
true if and only if (𝑀,𝑤) ⊩ 𝜑 , and returns false if and only if

(𝑀,𝑤) ⊮ 𝜑 . The main challenge is that modalities [S: ∗!] quantify
over an infinite number of formulas. However, for any given finite
model𝑀 , there is only a finite number of possible S-definable model

restrictions. Showing that the problem is PSPACE-hard uses the

classic reduction from the satisfiability of QBF.

Theorem 4.8. The model checking for L∗S:𝜒 ! is PSPACE-complete.

Proof. Let (𝑀,𝑤) be a pointed model, and 𝜑 ∈ L∗S:𝜒 !. In Al-

gorithm 2, Boolean cases and the case for DG are as expected, and

thus omitted.

Algorithm 2 An algorithm for model checking for L∗S:𝜒 !
1: procedureMC(𝑀,𝑤,𝜑)

2: case 𝜑 = [S: 𝜒 !]𝜓
3: return MC(𝑀S: 𝜒 !, 𝑤,𝜓 )
4: case 𝜑 = [S: ∗!]𝜓
5: Compute collective P-bisimulation contraction ∥𝑀 ∥𝐶
6: for all S-definable restrictions (𝑁, 𝑤) of (𝑀,𝑤) do
7: if MC(𝑁, 𝑤,𝜓 ) returns false then
8: return false
9: return true

The basic idea in the construction of S-definable restrictions is to
consider a subset of all possible bipartitions of (𝑀,𝑤), taking care

that bisimilar states end up in the same partition. This can be done

by checking that for each state, if it is in a partition, then all states

in the same collective bisimulation equivalence class are also in the

same partition. Collective bisimulation equivalence classes can be

computed by, e.g., a modification of Kanellakis-Smolka algorithm

[23] that takes into account not only relations but also intersec-

tions thereof. Having computed collective bisimulation equivalence

classes of (𝑀,𝑤), one can construct an S-definable restriction of the
model by taking a bipartition such that if 𝑣 belongs to one partition,

then all 𝑢 ∈ [𝑣] also belong to the same partition, with [𝑣] being a

collective bisimulation equivalence class.

Constructing restrictions takes polynomial time and thus space.

The space required for the case of [S: 𝜒!]𝜓 is bounded by O(|𝜑 | ·
|𝑀 |). For the case of [S: ∗!]𝜓 , collective bisimulation contraction

can be computed in polynomial time and space, and each restriction

has a size of at most |𝑀 |. If one traverses a given formula depth-first

and reuses memory, the space to store model restrictions is polyno-

mial in |𝜑 | (even though the algorithm itself runs in exponential

time). Thus, the space required for the case of [S: ∗!]𝜓 is bounded

by O(|𝜑 | · |𝑀 |).
Finally, since computing each subformula of 𝜑 requires space

bounded by O(|𝜑 | · |𝑀 |), the space required by the whole algorithm
is bounded by O(|𝜑 |2 · |𝑀 |). The algorithm follows closely the

semantics of L∗S:𝜒 !, and correctness can be shown via induction

on 𝜑 . For the case of quantifiers note that, in order to switch from

bipartitions to particular formulas corresponding to those partitions,

one can use characteristic formulas [36]. These formulas are built
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in such a way that they are true only in one state of a model (up to

collective bisimularity).

For showing PSPACE-hardness, use the classic reduction from the

satisfiability of QBF. W.l.o.g., consider QBFs without free variables

in which every variable is quantified only once. Consider a QBF

with 𝑛 variables {𝑥1, . . . , 𝑥𝑛}. We need a model and a formula in

L∗S:𝜒 ! that are both of polynomial size of the QBF. The (reflexive

and symmetric) model𝑀𝑛
below satisfies this:𝑤0 is the evaluation

point, and for each variable 𝑥𝑖 there are two states, 𝑤1

𝑖
and 𝑤0

𝑖
,

corresponding respectively to evaluating 𝑥𝑖 to 1 and to 0. Assume

that each𝑤1

𝑖
satisfies only 𝑝𝑖 and each𝑤0

𝑖
satisfies only 𝑞𝑖 .

𝑤0

𝑝1𝑤1

1

𝑞1𝑤0

1

. . . 𝑝𝑛𝑤1

𝑛
𝑞𝑛𝑤0

𝑛

a a . . . a

a

Let Ψ := 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛Φ(𝑥1, . . . , 𝑥𝑛) be a quantified Boolean for-

mula (so 𝑄𝑖 ∈ {∀, ∃} and Φ(𝑥1, . . . , 𝑥𝑛) is Boolean). The formula

chosen𝑘 below indicates, intuitively, that the values (either 1 or 0)

of the first 𝑘 variables have been chosen.

chosen𝑘 :=
∧

1⩽𝑖⩽𝑘

(K̂a 𝑝𝑖 ↔ ¬ K̂a 𝑞𝑖 ) ∧
∧

𝑘<𝑖⩽𝑛

(K̂a 𝑝𝑖 ∧ K̂a 𝑞𝑖 ).

Here is, then, a recursive translation from a QBF Ψ to a formula𝜓

in L∗S:𝜒 !:𝜓0 := Φ(K̂a 𝑝1, . . . , K̂a 𝑝𝑛),

𝜓𝑘 :=

{
[{a, b} : ∗!] (chosen𝑘 → 𝜓𝑘−1) if 𝑄𝑘 = ∀
⟨{a, b} : ∗!⟩(chosen𝑘 ∧𝜓𝑘−1) if 𝑄𝑘 = ∃

,

𝜓 := 𝜓𝑛 . We need to show that

𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛Φ(𝑥1, . . . , 𝑥𝑛) is satisfiable if and only if

(𝑀𝑛,𝑤0) ⊩ 𝜓 .

For this, observe that each state in 𝑀𝑛
can be characterised by

a unique formula. Moreover, relation b is the identity. Therefore,

[{a, b} : ∗!] and ⟨{a, b} : ∗!⟩ can force any restriction of a-arrows
from𝑤0 to𝑤𝑖 ’s. In themodel, states𝑤1

𝑖
and𝑤0

𝑖
correspond the truth-

value of 𝑥𝑖 . The guard chosen𝑘 guarantees that only the truth-values

of the first 𝑘 variables have been chosen, and that they have been

chosen unambiguously (i.e. there is exactly one edge from 𝑤0 to

either𝑤1

𝑖
and𝑤0

𝑖
). Thus, together with [{a, b} : ∗!] and ⟨{a, b} : ∗!⟩,

the guards chosen𝑘 emulate ∀ and ∃. Then, once the values of all
𝑥𝑖 ’s have been set, the evaluation of the QBF corresponds to the

a-reachability of the corresponding states in𝑀𝑛
. □

4.3 Arbitrary Partial Communication vs.
Arbitrary Public Announcements

The languages LS:𝜒 ! and Lb ! are equally expressive (both ‘reduce’

to L). As it is shown below, this changes when quantification (over

topics and announced formulas, respectively) is added.

Definition 4.9. The language L∗
b !
extends Lb ! with a modality

[∗!] such that

(𝑀,𝑤) ⊩ [∗!] 𝜑 iffdef for every 𝜒 ∈ L: (𝑀,𝑤) ⊩ [𝜒!] 𝜑 .7

Define ⟨∗!⟩ 𝜑 := ¬ [∗!] ¬𝜑 , as usual.

The theorem below shows that L∗
b !
and L∗S:𝜒 ! are incomparable

w.r.t. expressive power (i.e., L∗S:𝜒 ! $ L
∗
b !
and L∗

b !
$ L∗S:𝜒 !). This

result is obtained by adapting techniques and models from [6] and

[38] to the case of partial communication.
8

Theorem 4.10. L∗
b !
, L∗S:𝜒 ! are incomparable, expressivity-wise.

Proof. For L∗S:𝜒 ! $ L
∗
b !
, consider ⟨{a, b} : ∗!⟩(Kb 𝑝 ∧¬Kb Kb 𝑝)

in L∗S:𝜒 !. For a contradiction, assume there is an equivalent 𝛼 ∈ L∗
b !
.

Since 𝛼 is finite, there is an atom 𝑞 that does not occur in it. The

strategy consists in building two P \ {𝑞}-bisimilar pointed models,

then argue that they can be distinguished by ⟨{a, b} : ∗!⟩(Ka 𝑝 ∧
¬Ka Ka 𝑝) but not by any 𝛼 . Consider the (reflexive and symmetric)

models below.

𝑀 𝑝𝑤 𝑢a

𝑝𝑤′
1

𝑝,𝑞𝑤′
2

𝑢′

a, b

a

a 𝑀 ′

Note how (𝑀,𝑤) ⊮ ⟨{a, b} : ∗!⟩(Ka 𝑝 ∧ ¬Ka Ka 𝑝): making Ka 𝑝 ∧
¬Ka Ka 𝑝 true at𝑤 requires deleting the symmetric a-edge between
𝑤 and 𝑢 (so Ka 𝑝 holds), but this makes 𝑢 inaccessible for a from𝑤

(thus ¬Ka Ka 𝑝 fails). Yet, (𝑀 ′,𝑤 ′
1
) ⊩ ⟨{a, b} : ∗!⟩(Ka 𝑝∧¬Ka Ka 𝑝):

a ‘conversation’ among {a, b} about 𝑝 ↔ 𝑞 produces the desired

result (see Fact 3.4).

To show that (𝑀,𝑤) and (𝑀 ′,𝑤 ′
1
) cannot be distinguished by a𝑞-

less formula𝛼 inL∗
b !
, use structural induction over𝛼 and submodels

of𝑀 and𝑀 ′. Both models are collectively P\{𝑞}-bisimilar (witness:

{(𝑤,𝑤 ′
1
), (𝑤,𝑤 ′

2
), (𝑢,𝑢 ′)}), so the case for atoms is immediate. As

an induction hypothesis, we state that the current submodels of 𝑀

and𝑀 ′ are collectively P \ {𝑞}-bisimilar. Boolean, epistemic, and

public announcement cases follow from Theorem 2.7. Finally, for

[∗!] observe that for each announcement in one submodel we can

always find a corresponding announcement in the other submodel

such that the resulting updated models are collectively P \ {𝑞}-
bisimilar. This is due to the fact that each state in both models is

uniquely defined by a Boolean formula containing only atoms 𝑝

and 𝑞. Moreover, all possible updates of P \ {𝑞}-bisimilar submodels

are given by the aforementioned witness: {(𝑤,𝑤 ′
1
), (𝑤,𝑤 ′

2
), (𝑢,𝑢 ′)}.

E.g. if a submodel of𝑀 ′ contains only states𝑤 ′
1
and𝑤 ′

2
, then the

corresponding submodel of𝑀 would contain only state𝑤 .

To show L∗
b !
$ L∗S:𝜒 !, proceed in a similar fashion: consider

⟨∗!⟩(Kb 𝑝 ∧ ¬Kb Kb 𝑝) in L∗b ! and assume there is an equivalent

𝛽 ∈ L∗S:𝜒 !. Let 𝑞 be an atom not occurring in 𝛽 , and consider the

(reflexive and symmetric) models below.

𝑀

𝑝𝑤1

𝑝,𝑞𝑤2 𝑢

b, ca, b, c

b, c

𝑝𝑤′
1

𝑝,𝑞𝑤′
2

𝑞 𝑢′
1

𝑢′
2

b, c

a, b, c

b, c

𝑀 ′

7
Thus, L∗

b !
extends the language from [6] with the distributed knowledge modality.

8
For space reasons, we do not present the whole argument here.
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Note how (𝑀,𝑤1) ⊮ ⟨∗!⟩(Kb 𝑝 ∧ ¬Kb Kb 𝑝) (an announcement

preserves transitivity). Yet, (𝑀 ′,𝑤 ′
1
) ⊩ ⟨∗!⟩(Kb 𝑝 ∧ ¬Kb Kb 𝑝): the

announcement of 𝑞 → 𝑝 (equivalence classes highlighted) produces

the desired result. To show that (𝑀,𝑤1) and (𝑀 ′,𝑤 ′
1
) cannot be

distinguished by a 𝑞-less formula in L∗S:𝜒 !, use structural induction.
For ⟨S: ∗!⟩, observe that the pointed models are collectively P \ {𝑞}-
bisimilar (witness: {(𝑤1,𝑤

′
1
), (𝑤2,𝑤

′
2
), (𝑢,𝑢 ′

1
), (𝑢,𝑢 ′

2
)}) and that, for

each update in one model, there is an update in the other that

preserves collective P\{𝑞}-bisimilarity. As in the previous case, each

state is uniquely characterised by a Boolean formula containing only

atoms 𝑝 and 𝑞. This allows us to consider all possible bipartitions of

the models, and the witness helps to build a corresponding model.

E.g., if there is a relation between 𝑤 ′
1
and 𝑢 ′

1
, then we need to

preserve the same relation between𝑤1 and 𝑢. □

5 DISCUSSION
This paper studies further the partial communication framework

of [39]. As such, it makes sense to argue, albeit briefly, for the use

of this setting as well as that of its introduced extension.

A first concern might be that, although communication between
agents is a crucial form of interaction, the public announcement

logic (PAL) framework has been already used for modelling it (e.g.,

[2, 34]). Here we argue that this strategy might not be fully suited.

A PAL announcement actually requires two parameters: the an-

nouncement’s precondition and the information the agents receive.

When this announcement is understood as information coming

from an external source, it is clear what these two parameters are,

and it is clear they are the same: in order to be ‘announced’, b must

be true, and after the announcement the agents learn that b is the

case.
9
But when this setting is used for communication between

agents, precondition and information content are not straightfor-

ward, and they might differ. When an agent i announces b , what is

the precondition? It cannot be only b ; is it enough that the agent

knows b (i.e., Ki b), or should she be introspective about it (i.e.,

Ki Ki b)? Analogously, what is what the other agents learn? They

learn not only that b is true; do they learn that the agent knows b

(i.e., Ki b), or even that she knows that she knows b (i.e., Ki Ki b)?

These questions naturally extend to situations of group commu-

nication. In group announcement logic [2], an announcement from

a group S is represented by the public announcement of

∧
i∈S Ki bi:

each agent i ∈ S announces, in parallel with the others, a formula

she knows. However, other readings may be more appropriate:

the group might announce something that is common knowledge

among its members, or even announce something they all know

distributively. These alternative readings are more naturally rep-

resented by the actions introduced in [3, 8, 10], of which partial

communication is a novel variation.

Then, in the partial communication setting, although only some

of the agents share, this information is received by every agent

in the system. One might be interested in more complex ‘private

communication’ scenarios, as those in which only some agents

receive the shared information (cf., e.g., [10]). Still, this ‘everybody

hears’ setting is useful for modelling classroom or meeting-like

scenarios in which everybody ‘hears’ but only some get to ‘talk’, or

for situations in which the communication channel is insecure, and

9
More precisely, they learn b was the case immediately before its announcement.

thus privacy cannot be assumed. Instead of looking at extensions

for modelling private communication, this paper has rather focused

on the strategic aspects that arise in competitive situations. In such

cases, one wonders whether there is a form of partial communica-

tion that can achieve a given goal (e.g., [33]). The arbitrary partial

communication of Section 4 can help to answer such questions.

6 SUMMARY AND FURTHERWORK
The focus of this paper is the action of partial communication.
Through it, a group of agents S share, with every agent in the

model, all the information they have about the truth-value of a for-

mula 𝜒 . Semantically, this is represented by an operation through

which the uncertainty of each agent is reduced by removing the

uncertainty about 𝜒 some agent in S has already ruled out. After

recalling the basics of this framework, we proved that its language

LS:𝜒 ! is invariant under collective bisimulation, showing also that

the complexity of its model checking problem remains in P, as
standard epistemic logic [20]. It has been also shown that, while the

expressivity of LS:𝜒 ! is exactly that of the language for public an-

nouncements (both reducible to L), their ‘update expressive power’
are incomparable. The focus has then shifted to a modal operator

that quantifies over the topic of the communication: a setting for

arbitrary partial communication. We have provided the operator’s

semantic interpretation as well as an axiom system and invariance

results for the resulting language L∗S:𝜒 !. We have also proved that

the model checking problem for the new language L∗S:𝜒 ! is PSPACE-
complete, similar to DELs with action models [5, 13] and logics

with quantification over information change [2, 4, 6, 38]. Finally,

we showed that L∗S:𝜒 ! is, expressivity-wise, incomparable to the

language of arbitrary public announcements.

The framework for partial communication provides, arguably, a

natural representation of communication between agents. Indeed,

it works directly with the information (i.e., uncertainty) the agents

have, instead of looking for formulas that are known by the agents,

and then using them as announcements (as done, e.g., when dealing

with group announcements [2]). Additionally, the results show that

this action is a truly novel epistemic action, different from others

as public announcements.

There is still further work to do. In the current version of the

setting, some questions still need an answer. An important one

is that collective bisimulation is not ‘well-behaved’: a model and

its collective bisimulation contraction are not collectively bisim-

ilar [29]. One then wonders whether there is a more adequate

notion of structural equivalence for the basic language L and its

extensions. Then, with the partial communication setting already

compared with that for public announcements (in both their basic

and their ‘arbitrary‘ versions), one would like to compare it also

with the setting for group announcements [2], and even with those

for more general edge-removing operations (e.g., the arrow update

setting [24]). Finally, one can expand the presented framework.

For example, one can extend the languages used here by adding a

common knowledge operator, a step that requires technical further

tools [3, 10, 15]. Equally interesting is a generalisation in which the

topic of conversation is rather a set of formulas, together with its

connection with other forms of communication (e.g., one in which

some agents share all they know with everybody).
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