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ABSTRACT
Dung’s Abstract Argumentation Framework (AAF) has emerged as
a central formalism in AI for modeling disputes among agents. In
this paper, we introduce an extension of Dung’s framework, called
Epistemic Abstract Argumentation Framework (EAAF), which en-
hances AAF by allowing the representation of some pieces of epis-
temic knowledge. We generalize the concept of attack in AAF, intro-
ducing strong and weak epistemic attacks in EAAF, whose intuitive
meaning is that an attacked argument is epistemically accepted
only if the attacking argument is possibly or certainly rejected,
respectively. We provide an intuitive semantics for EAAF that nat-
urally extends that for AAF, and give an algorithm that enables the
computation of epistemic extensions by using AAF-solvers. Finally,
we analyze the complexity of the following argumentation prob-
lems: verification, i.e. checking whether a set of arguments is an
epistemic extension; existence, i.e. checking whether there is at least
one (non-empty) epistemic extension; and acceptance, i.e. checking
whether an argument is epistemically accepted, under well-known
argumentation semantics (i.e. grounded, complete, and preferred).
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1 INTRODUCTION
In the last decades, Argumentation [17, 22, 57] has become an impor-
tant research field in the area of autonomous agents andmulti-agent
systems [56]. Argumentation has applications in several contexts,
including modeling dialogues, negotiation [13, 32], and persua-
sion [52]. It has been widely used to model agents’ interactions
[14, 28, 49, 51], especially in the context of debates [36, 45, 53].

Dung’s Abstract Argumentation Framework (AAF) is a simple
yet powerful formalism for modeling disputes between two or
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more agents [33]. An AAF consists of a set of arguments and a
binary attack relation over the set of arguments that specifies the
interactions between arguments: intuitively, if argument 𝑎 attacks
argument 𝑏, then 𝑏 is acceptable only if 𝑎 is not. Hence, arguments
are abstract entities whose status is entirely determined by the
attack relation. An AAF can be seen as a directed graph, whose
nodes represent arguments and edges represent attacks. Several ar-
gumentation semantics—e.g. grounded (gr), complete (co), preferred
(pr), and stable (st) [33]—have been defined for AAF, leading to
the characterization of 𝜎-extensions, that intuitively consist of the
sets of arguments that can be collectively accepted under semantics
𝜎 ∈ {gr, co, pr, st}.

Example 1. Consider an AAF Λ=⟨{a, b}, {(a, b), (b, a)}⟩ whose
corresponding graph is shown in Figure 1(left). Λ describes the
following scenario. A party planner invites Alice (a) and Bob (b)
to join a party. Due to their old rivalry (i) Alice replies that she
will not join the party if Bob does, and (ii) Bob replies that he will
not join the party if Alice does. This situation can be modeled by
AAF Λ, where an argument x states that “(the person whose initial

is) x joins the party”. Under the preferred semantics, there are two
extensions 𝐸1 = {a} and 𝐸2 = {b} stating that only Alice or only
Bob will attend the party, respectively. 2

Thus, as prescribed by 𝐸1 and 𝐸2, in the previous example we
have that the participation of Alice and Bob to the party is un-
certain. To deal with uncertain information represented by the
presence of multiple extensions, credulous and skeptical reasoning
has been introduced. Specifically, an argument is credulously true
(or accepted) if there exists an extension containing the argument,
whereas an argument is skeptically true if it occurs in all extensions.
However, uncertain information in AAF under multiple-status se-
mantics proposed so far cannot be exploited to determine the status
of arguments (which in turn influences the status of other argu-
ments) by taking into account the information given by the whole
set of extensions, as in the case of credulous and skeptical accep-
tance. To overcome such a situation, and thus provide a natural and
compact way for expressing such kind of conditions, in this paper
we propose the use of epistemic arguments and attacks. Informally,
epistemic attacks allow considering all extensions and not only
the current one. Thus, an epistemic attack from 𝑎 to 𝑏 is such that
𝑎 defeats 𝑏 if 𝑎 occurs in at least one extension (strong epistemic

attack) or in all extensions and at least one (weak epistemic attack).
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Figure 1: AAF Λ of Example 1 (left) and EAAF Δ of Example 2 (right).

Example 2. Consider the AAF Λ of Example 1 and assume there
are two more people: Carol (c) and David (d). Carol’s answer is that
she will not attend the party if it is sure (i.e. it is skeptically true)
that Alice will, whereas David answers that he will not attend the
party if the participation of Bob is possible (i.e. it is credulously
true). Intuitively, the party planner should conclude that, as the
participation of both Alice and Bob is uncertain, Carol will attend
the party, whereas David will not.

This situation can be modeled by means of the Epistemic AAF
(EAAF) shown in Figure 1(right) where a defeats c with a weak
epistemic attack, whereas b defeats dwith a strong epistemic attack
(we use the two kinds of edges represented in the figure to denote
weak and strong epistemic attacks). Under the preferred semantics,
there are two extensions: 𝐸1 = {a, c} modeling the fact that Alice
and Carol will attend the party, whereas Bob and David will not;
and 𝐸2 = {b, c}modeling the fact that Bob and Carol will attend the
party, whereas Alice and David will not. Observe that the epistemic
arguments c and d (i.e. the arguments defeated by an epistemic
attack) are deterministic [7], that is, they have the same acceptance
status in all extensions (true for c and false for d). 2

Contributions.We introduce the syntax and the semantics of Epis-
temic Abstract Argumentation Framework (EAAF) and investigate
the complexity of several problems (see below). The proposed EAAF
semantics aims to let epistemic arguments be deterministic [7], that
is, they have the same acceptance status in all extensions; the status
of an argument depends on the credulous or skeptical acceptance
of its attackers. Considering the dependence of the status of an
argument on its attackers only is inspired by the well-known di-
rectionality property proposed for AAF [18, 19], which, if satisfied,
then guarantees that the status of each argument depends only on
that of its attackers. As we will show in the paper, this allows for
the existence of an algorithm for computing EAAF semantics.

Specifically, our main contributions are as follows.
• We formally present EAAF relying on a simple yet expressive form
of epistemic attacks, leading to an intuitive epistemic semantics.

• We investigate the complexity of verification, acceptance and ex-

istence problems under three well-known semantics: grounded,
complete and preferred, all satisfying the above-mentioned di-
rectionality property. Our complexity results are summarized in
Table 2 (in Section 5). Interestingly, it turns out that the com-
plexity remains the same as that for AAF i) for the grounded
semantics (irrespective of the considered problem), and ii) for
the existence problem (irrespective of the considered semantics),
while it generally increases w.r.t. that of AAF for the other com-
binations of considered problem and semantics (verification and
acceptance / complete and preferred).

• We propose Algorithm 1 enabling the computation of EAAF se-
mantics at the AAF level. Indeed, the algorithm makes use of an
external function that incrementally computes the extensions
of an AAF Λ, using the extensions of a sub-AAF Λ′ included in

Λ. However, the algorithm also works with any external func-
tion that computes the extensions of an AAF from scratch, that
is, without using previously computed extensions, as done by
readily available state-of-the-art AAF solvers [24, 47].

2 PRELIMINARIES
We first review the Dung’s framework and then discuss and an
extension of AAF with epistemic constraints. Finally, we briefly
recall the complexity classes used in the paper.

2.1 Abstract Argumentation Framework
AnAbstract Argumentation Framework (AAF) is a pair ⟨A,Ω⟩, where
A is a (finite) set of arguments and Ω ⊆ A × A is a set of attacks
(also called defeats). Different argumentation semantics have been
proposed for AAF, leading to the characterization of collectively
acceptable sets of arguments called extensions [33].

Given an AAF Λ = ⟨A,Ω⟩ and a set 𝑆 ⊆ A of arguments, an
argument 𝑎 ∈ A is said to be i) defeated w.r.t. 𝑆 iff ∃𝑏 ∈ 𝑆 such that
(𝑏, 𝑎) ∈ Ω; ii) acceptable w.r.t. 𝑆 iff ∀𝑏 ∈ A with (𝑏, 𝑎) ∈ Ω, ∃𝑐 ∈ 𝑆
such that (𝑐, 𝑏) ∈ Ω. The sets of defeated and acceptable arguments
w.r.t. 𝑆 are defined as follows (where Λ is understood):
• Def(𝑆) = {𝑎 ∈ A | ∃𝑏 ∈ 𝑆 . (𝑏, 𝑎) ∈ Ω};
• Acc(𝑆)= {𝑎 ∈ A | ∀𝑏 ∈A . (𝑏, 𝑎) ∈ Ω implies 𝑏 ∈ Def(𝑆)}.

To simplify the notation, we will often use 𝑆+ to denote Def(𝑆).
Given an AAF ⟨A,Ω⟩, a set 𝑆 ⊆ A of arguments is said to be:
• conflict-free iff 𝑆 ∩ 𝑆+ = ∅;
• admissible iff it is conflict-free and 𝑆 ⊆ 𝐴𝑐𝑐 (𝑆).

Given an AAF ⟨A,Ω⟩, a set 𝑆 ⊆ A is an extension called:

• complete (co) iff it is conflict-free and 𝑆 = 𝐴𝑐𝑐 (𝑆);
• preferred (pr) iff it is a ⊆-maximal complete extension;
• stable (st) iff it is a total complete extension, i.e. a complete
extension such that 𝑆 ∪ 𝑆+ = A;

• grounded (gr) iff it is the ⊆-smallest complete extension.

The set of complete (resp. preferred, stable, grounded) extensions
of an AAFΛwill be denoted by co(Λ) (resp. pr(Λ), st(Λ), gr(Λ)). It
is well-known that the set of complete extensions forms a complete
semilattice w.r.t. ⊆, where gr(Λ) is the meet element, whereas
the greatest elements are the preferred extensions. All the above-
mentioned semantics except the stable admit at least one extension.
The grounded semantics, that admits exactly one extension, is said
to be a unique-status semantics, while the others are said to be
multiple-status semantics. With a little abuse of notation, in the
following we also use gr(Λ) to denote the grounded extension. For
any AAF Λ, st(Λ) ⊆ pr(Λ) ⊆ co(Λ) and gr(Λ) ∈ co(Λ).

Example 3. Let Λ = ⟨A,Ω⟩ be an AAF where A = {a, b, c} and
Ω = {(a, b), (b, a), (b, c)}, whose graph is show in Figure 2 (left).
The set of complete extensions of Λ is co(Λ) = {𝐸0 = ∅, 𝐸1 =

{a, c}, E2 = {b}}. 𝐸0 is the grounded extension, while 𝐸1 and 𝐸2 are
preferred and stable extensions. 2

Given an AAF Λ = ⟨A,Ω⟩ and a semantics 𝜎 ∈ {gr, co, pr, st},
the verification problem (denoted as 𝑉𝑒𝑟𝜎 ) is deciding whether a
set 𝑆 ⊆ A is a 𝜎-extension of Λ. Moreover, for 𝑔 ∈ A, the credulous
(resp. skeptical) acceptance problem, denoted as 𝐶𝐴𝜎 (resp. 𝑆𝐴𝜎 ) is
deciding whether 𝑔 is credulously (resp. skeptically) accepted, that
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Figure 2: AAF Λ of Example 3 (left) and AAF Λ′ of Example 4 (right).

is deciding whether 𝑔 belongs to any (resp. every) 𝜎-extension of Λ.
Clearly, 𝐶𝐴gr and 𝑆𝐴gr coincide.

Recently, a satisfaction problem for AAF called determinism

(𝐷𝑆𝜎 ) has been introduced [7]. Given a 𝜎-extension 𝐸, an argument
𝑔 ∈ A is said to be: accepted if 𝑔 ∈ 𝐸; rejected if 𝑔 ∈ 𝐸; undecided
otherwise (𝑔 ∉ 𝐸 ∪ 𝐸+). For a semantic 𝜎 , an argument is said to
be deterministic if all 𝜎-extensions assign the same status (either
accepted, rejected, or undecided) to it.

Finally, the existence (resp. non-empty existence) problem denoted
as 𝐸𝑥𝜎 (resp. 𝐸𝑥¬∅𝜎 ) is deciding whether there exists at least one (resp.
at least one non-empty) 𝜎-extension for AAF Λ.

For AAFs, the complexity of the verification, existence and ac-
ceptance problems has been investigated (see [35] for an overview).
The complexity of the determinism problem is investigated in [7].
The complexity results concerning these problems are summarized
in the left-hand side part of Table 2.

Example 4. Consider the AAF Λ of Example 3. Under preferred
and stable semantics, both arguments a and b are credulously ac-
cepted. None of them is skeptically accepted, nor deterministic.

Considering the AAF Λ′ obtained from Λ by adding the self-
attack (c, c) (see Figure 2 (right)), there are three complete exten-
sions 𝐸′0 = ∅, 𝐸′1 = {a} and 𝐸′2 = {b}. Both 𝐸′1 and 𝐸

′
2 are preferred

extensions, but only 𝐸′2 is stable. 2

An interesting property for argumentation semantics is direction-
ality [18, 19]. An argumentation semantics is said to be directional if
the acceptance status of every argument depends only on the status
of its attackers. Thus, the status of an argument is not affected by
changes in the status of the arguments that it does not depend on.
It turns out that grounded, complete, and preferred semantics are
directional, while stable semantics is not [20].

Example 5. Consider the AAFs Λ and Λ′ of Example 4. Under
stable semantics, argument b that in Λ is not skeptically accepted
becomes skeptically accepted in Λ′. In contrast, under preferred
semantics, the acceptance status of both a and b does not change. 2

2.2 AAF with Epistemic Constraints
An Epistemic Argumentation Framework (EAF) has been proposed
in [54]. An EAF is a triple ⟨𝐴,Ω,𝐶⟩, where ⟨𝐴,Ω⟩ is an AAF and 𝐶
is an epistemic constraint, that is, a propositional formula extended
with the modal operators K and M. Here, the constraint is the
belief of an agent which must be satisfied. Intuitively, K𝜙 (resp.
M𝜙) states that the considered agent believes that 𝜙 is always (resp.
possibly) true. EAF semantics is given by sets of feasible extensions
of the underlying AAF, called 𝜔-extension sets (𝜔-labeling sets in
[54]), consisting of maximal sets of arguments that satisfies the
constraint. There could be different 𝜔-extension sets (𝜔-sets) for
the same epistemic formula, as shown in the following example.

Example 6. Consider the AAF Λ = ⟨𝐴 = {a, b, c, d}, Ω = {(a, b),
(b, a), (c, d), (d, c), (b, c)⟩ having 5 complete extensions 𝐸0 = ∅,
𝐸1 = {a}, 𝐸2 = {a, c}, 𝐸3 = {a, d} and 𝐸4 = {b, d}. 𝐸0 is the

grounded extension, while 𝐸2, 𝐸3 and 𝐸4 are preferred and stable
extensions. Under the preferred semantics, considering the epis-
temic constraint 𝐶1 = Kc, there exists a unique 𝜔-set {𝐸2} for EAF
⟨𝐴,Ω,𝐶1⟩, whereas considering 𝐶2 = Kc ∨ Kd there are the two
alternative 𝜔-sets {𝐸2} and {𝐸3, 𝐸4} for EAF ⟨𝐴,Ω,𝐶2⟩. 2

We point out that despite the name Epistemic Argumentation
Framework is used, the role of epistemic formulae is only that of
introducing constraints over the set of feasible extensions, that is it
is similar to that of constraints or preferences in AAF [9, 16, 23, 31].

2.3 Complexity Classes
We recall the main complexity classes used in the paper and, in
particular, the definition of the classes 𝑃, Σ𝑝

ℎ
,Π

𝑝

ℎ
and Δ𝑝

ℎ
, with ℎ ≥ 0

(see e.g. [50]). 𝑃 consists of the problems that can be solved in
polynomial-time Moreover, we have that:

• Σ
𝑝

0 = Π
𝑝

0 = Δ
𝑝

0 = 𝑃 ;
• Σ

𝑝

1 = 𝑁𝑃 and Π
𝑝

1 = 𝑐𝑜𝑁𝑃 ;

• Δ
𝑝

ℎ
=𝑃Σ

𝑝

ℎ−1 , Σ𝑝
ℎ
=𝑁𝑃Σ

𝑝

ℎ−1 , and Π
𝑝

ℎ
=𝑐𝑜Σ

𝑝

ℎ
, ∀ℎ > 0.

Thus, 𝑃𝐶 (resp. 𝑁𝑃𝐶 ) denotes the class of problems that can
be solved in polynomial time using an oracle in the class 𝐶 by a
deterministic (resp. non-deterministic) Turing machine. The class
Θ
𝑝

ℎ
= Δ

𝑝

ℎ
[𝑙𝑜𝑔 𝑛] denotes the subclass of Δ𝑝

ℎ
consisting of the prob-

lems that can be solved in polynomial time by a deterministic Turing
machine performing 𝑂 (𝑙𝑜𝑔 𝑛) calls to an oracle in the class Σ𝑝

ℎ−1.
It is known that:
• Σ

𝑝

ℎ
⊂ Δ

𝑝

ℎ+1 [𝑙𝑜𝑔 𝑛] ⊂ Δ
𝑝

ℎ+1 ⊂ Σ
𝑝

ℎ+1 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸 and
• Π

𝑝

ℎ
⊂ Δ

𝑝

ℎ+1 [𝑙𝑜𝑔 𝑛] ⊂ Δ
𝑝

ℎ+1 ⊂ Π
𝑝

ℎ+1 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸.

3 EPISTEMIC ABSTRACT ARGUMENTATION
FRAMEWORK

We augment AAF with epistemic attacks, leading to the concept of
Epistemic Abstract Argumentation Framework (EAAF).

3.1 Syntax
We start by introducing the syntax of EAAF.

Definition 1 (Epistemic AAF). An Epistemic AAF is a quadruple

Δ = ⟨𝐴,Ω,Ψ,Φ⟩ where 𝐴 is a set of arguments, Ω ⊆ 𝐴 × 𝐴 is a

set of (standard) attacks, Ψ ⊆ 𝐴 × 𝐴 is a set of weak (epistemic)

attacks, and Φ ⊆ 𝐴 ×𝐴 is a set of strong (epistemic) attacks such that

Ω ∩ Ψ = Ω ∩ Φ = Ψ ∩ Φ = ∅.

In the following, we represent attacks (𝑎, 𝑏) ∈ Ω by 𝑎 → 𝑏,
(𝑎, 𝑏) ∈ Ψ by 𝑎 ⇒ 𝑏, (𝑎, 𝑏) ∈ Φ by 𝑎 →⇒ 𝑏. An EAAF ⟨𝐴,Ω,Ψ,Φ⟩
can be seen as a directed graph, where 𝐴 denotes the set of nodes
and Ω,Ψ, and Φ denotes three different kinds of edges. Arguments
defeated through epistemic attacks are called epistemic arguments.

We say that there is a path from an argument 𝑎 ∈ 𝐴 to argument
𝑏 ∈ 𝐴 if either (i) there exists an attack (𝑎, 𝑏) in Δ or (ii) there exists
an argument 𝑐 ∈ 𝐴 and two paths, from 𝑎 to 𝑐 and from 𝑐 to 𝑏. We
say that an argument 𝑏 ∈ 𝐴 depends on an argument 𝑎 ∈ 𝐴 if 𝑏 is
reachable from 𝑎 in Δ, that is, if there exists a path from 𝑎 to 𝑏 in
Δ. Moreover, an argument 𝑎 depends on attack 𝛾 ∈ (Ω ∪ Ψ ∪ Φ) if
there exists a path in Δ that contains 𝛾 and reaches 𝑎.

We now introduce well-formed and plain EAAFs.
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Figure 3: (From left to right) EAAFs Δ, Δ′ , Δ′′ and Δ′′′ of Example 10.

Definition 2. An EAAF Δ is said to be:

• well-formed if there are no cycles in Δ with epistemic edges.

• in plain form if every epistemic argument is attacked by a

single (epistemic) attack.

In the following we assume that our EAAFs are well-formed. The
reason for such a restriction is to guarantee that there exists a
unique world view (c.f. Theorem 1). In the following we also assume

that our EAAFs are in plain form. There is no loss of generality in
making such an assumption as we will show that every well-formed
EAAF can be rewritten into an equivalent one in plain form (see
Proposition 4). As it will be clear after introducing EAAF semantics,
for well-formed EAAFs in plain form, epistemic arguments are
deterministic (c.f. Proposition 2).

Example 7. The EAAF of Example 2, Δ = ⟨𝐴 = {a, b, c, d},Ω =

{(a, b), (b, a)}, Ψ = {(a, c)},Φ = {(b, d}⟩, whose graph is shown in
Figure 1 (right), is well-formed and in plain form. 2

The semantics of EAAF is given by relying on the concept of
sub-framework (sub-EAAF), which is defined as follows.

Definition 3. Given two EAAFs Δ and Δ′
, we say that Δ′

is a

sub-EAAF of Δ (denoted as Δ′ ⊑ Δ) if Δ′
is obtained from Δ by

deleting a subset 𝑆 of the set of epistemic arguments of Δ and all

the arguments depending on an argument in 𝑆 w.r.t. Δ. Moreover, we

write Δ′ < Δ if Δ′ ⊑ Δ and Δ′ ≠ Δ.

Clearly, in Definition 3 by deleting arguments we also delete
attacks having as a source or target element a deleted argument.

Example 8. Consider the EAAF Δ = ⟨{a, b, c, d, e, f}, {(a, b),
(b, a), (a, e), (d, f), (e, f), (f, e)}, {(a, c)}, {(b, d)}⟩ shown in Fig-
ure 3 (left). We have four sub-EAAFs Δ∗ ⊑ Δ, as shown in the figure:
the first one (from left to right) coincides with Δ, the others are ob-
tained by deleting all arguments depending on: (𝑖) both arguments
c and d, (𝑖𝑖) only d, and (𝑖𝑖𝑖) only c, respectively. 2

3.2 Semantics
We first introduce the semantics of EAAF and then present some
results concerning properties of the proposed framework.

For any EAAF Δ = ⟨𝐴,Ω,Ψ,Φ⟩, a set𝑊 of sets of arguments in
𝐴 is called world view of Δ. Informally, a world view can be seen
as a set of extensions that are to be used to compute the status of
epistemic arguments. Given EAAF Δ′ = ⟨𝐴′,Ω′,Ψ′,Φ′⟩ ⊑ Δ, we
denote by𝑊↓Δ′ = {𝑆 ∩𝐴′ | 𝑆 ∈𝑊 } the projection of𝑊 over 𝐴′.

With the aim of providing EAAF semantics by extending AF
semantics, we first extend the definitions of defeated and acceptable
arguments for EAAF by taking into account the additional concept
of world view, that is a candidate set of extensions, which is used to
decide if an argument is epistemically defeated/acceptable. Given
an EAAF Δ, a world view𝑊 of Δ, and a set 𝑆 ∈ 𝑊 , the sets of
arguments defeated (resp. accepted) w.r.t. 𝑆 and𝑊 are defined as
follows:

• 𝐷𝑒𝑓 (𝑊,𝑆) = {𝑏 ∈ 𝐴 | (∃𝑎 ∈ 𝑆 . 𝑎 → 𝑏) ∨
(∃𝑇 ∈𝑊 . ∃𝑎 ∈ 𝑇 . 𝑎 →⇒ 𝑏) ∨
(∀𝑇 ∈𝑊 . ∃𝑎 ∈ 𝑇 . 𝑎 ⇒ 𝑏)}.

• 𝐴𝑐𝑐 (𝑊,𝑆) = {𝑏 ∈ 𝐴 | ∀𝑎 ∈ 𝐴 .
((𝑎 → 𝑏) implies 𝑎 ∈ 𝐷𝑒𝑓 (𝑊,𝑆))∧
((𝑎 →⇒ 𝑏) implies ∀𝑇 ∈𝑊 . 𝑎 ∈ 𝐷𝑒𝑓 (𝑊,𝑇 ))∧
((𝑎 ⇒ 𝑏) implies ∃𝑇 ∈𝑊 . 𝑎 ∈ 𝐷𝑒𝑓 (𝑊,𝑇 )).

Example 9. Considering the EAAF Δ of Example 8 and the world
view𝑊 = {𝑆1 = {c}, 𝑆2 = {a, c}, 𝑆3 = {b, c}}, we have that:
• 𝐷𝑒𝑓 (𝑊,𝑆1) = {d} and 𝐴𝑐𝑐 (𝑊,𝑆1) = {c};
• 𝐷𝑒𝑓 (𝑊,𝑆2) = {b, d} and 𝐴𝑐𝑐 (𝑊,𝑆2) = {a, c}; and
• 𝐷𝑒𝑓 (𝑊,𝑆3) = {a, d} and 𝐴𝑐𝑐 (𝑊,𝑆3) = {b, c}. 2

Given an EAAF Δ and a world view𝑊 of Δ, a set 𝑆 ∈𝑊 is:
•𝑊-conflict-free if 𝑆 ∩ 𝐷𝑒𝑓 (𝑊,𝑆) = ∅;
•𝑊-admissible if it is𝑊-conflict-free and 𝑆 ⊆ 𝐴𝑐𝑐 (𝑊,𝑆);
•𝑊-complete (𝑊 -co) if it is𝑊-conflict-free and 𝑆 = 𝐴𝑐𝑐 (𝑊,𝑆).

Moreover, a𝑊-complete set 𝑆 is said to beW-preferred (𝑊 -pr) if
𝑆 is ⊆-maximal, and W-grounded (𝑊 -gr) if 𝑆 is ⊆-minimal.

We are now ready to define EAAF semantics.

Definition 4 (EAAF Semantics). Let 𝜎 ∈ {gr, co, pr} be a

semantics and𝑊 a world view of EAAF Δ. Then,𝑊 is a 𝜎-world view

for Δ if ∀Δ′ ⊑ Δ the following conditions hold:

(𝑖) every 𝑆 ∈𝑊↓Δ′ is a𝑊↓Δ′ -𝜎 set, and

(𝑖𝑖) there is no world view𝑊 ∗
for Δ′

such that𝑊↓Δ′ ⊂ 𝑊 ∗
and

every 𝑆∗ ∈𝑊 ∗
is𝑊 ∗

-𝜎 for Δ′
.

We now explain Definition 4. Given a semantics 𝜎 , a𝑊 -𝜎 set
intuitively represents a candidate set of 𝜎-extensions for an EAAF.
Then, such a set turns out to actually be a set of extensions if the
conditions in Definition 4 hold, whose rationale is as follows. Given
a world view𝑊 of an EAAF Δ, we check that for all sub-frameworks
Δ′, every element 𝑆 ∈𝑊 ′ =𝑊↓Δ′ is a𝑊 ′-𝜎 set (condition 𝑖) and
𝑊 ′ is maximal (condition 𝑖𝑖). Intuitively, the first condition ensures
that the status of an argument is confirmed in all sub-frameworks
considered. This is due to the fact that, focusing on semantics that
are directional, the status of every argument 𝑎 has to be ‘confirmed’
also in all sub-frameworks Δ′ of Δ containing 𝑎. This condition im-
plicitly holds for all AF semantics that are directional (e.g. grounded,
complete, preferred). The second condition of Definition 4 ensures
that, if there is a larger 𝜎-world view for which condition 𝑖) holds,
then we prefer to take it. That is, intuitively, we aim at having
the whole set of extensions. We show that this set is unique in
Theorem 1. Finally, as shown below in Example 10, checking that
the above-mentioned conditions hold for all sub-frameworks is
important to avoid returning wrong conclusions (i.e., world views
that contradict our intuition).

It is worth noting that wheneverΨ = Φ = ∅, we have that the defi-
nitions of defeated and acceptable arguments coincide with the ones
defined for AAF, that is 𝐷𝑒𝑓 ({𝑆}, 𝑆) = 𝐷𝑒𝑓 (𝑆) and 𝐴𝑐𝑐 ({𝑆}, 𝑆) =
𝐴𝑐𝑐 (𝑆). This lead to the following result that states that EAAF
semantics extends that of AAF.

Proposition 1. Let Δ = ⟨𝐴,Ω,Ψ,Φ⟩ be a well-formed EAAF with

Ψ = Φ = ∅, 𝜎 ∈ {gr, co, pr}, and Λ = ⟨𝐴,Ω⟩ the AAF corresponding
to Δ. Then, Δ has a unique 𝜎-world view𝑊 = 𝜎 (Λ).
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Table 1: 𝜎-world view for each EAAF Δ∗ ⊑ Δ in Figure 3.

Δ∗ gr(Δ∗) co(Δ∗) pr(Δ∗)
Δ′ {∅} {∅, {a}, {b}} {{a}, {b}}
Δ′′ {∅} {{c}, {a, c}, {b, c}} {{a, c}, {b, c}}
Δ′′′ {∅} {∅, {f}, {a, f}, {{a, f}, {b, e},

{b}, {b, e}, {b, f}} {b, f}}
Δ {∅} {{c}, {c, f}, {a, c, f}, {{a, c, f}, {b, c, e},

{b, c}, {b, c, e}, {b, c, f}} {b, c, f}}

As stated next, any well-formed EAAF has a unique world view.

Theorem 1. Any well-formed EAAF has a unique 𝜎-world view,

with 𝜎 ∈ {gr, co, pr}.

For any (well-formed) EAAF Δ and semantics 𝜎 ∈ {gr, co, pr}
we use 𝜎 (Δ) to denote the 𝜎-world view of Δ, and will often call
its elements 𝜎-extensions.

Example 10. Continuing with Example 8, Table 1 reports the 𝜎-
world view for each EAAF Δ∗ ⊑ Δ in Figure 3 and 𝜎 ∈ {gr, co, pr}.

Now, consider the EAAF Δ′′ (shown in Figure 3), the world
view𝑊 = {𝑆 = {a}}, and the preferred semantics. If in Defini-
tion 4 we had only focused on the given EAAF Δ′′ without looking
at its sub-frameworks, as 𝑆 is a𝑊 -preferred set and𝑊 is maxi-
mal (i.e., both conditions (𝑖) and (𝑖𝑖) of Definition 4 are satisfied
if focusing on Δ′′ only), we would have concluded that c is de-
feated. However, we had expected that c would have been accepted.
Indeed, according to Definition 4, the only preferred-world view
of Δ′′ is𝑊 ′′ = {{a, c}, {b, c}} (cf. Table 1). In fact, considering
the sub-framework Δ′ (cf. Figure 3) obtained from Δ′′ by deleting
the epistemic argument c, the only preferred world view of Δ′ is
𝑊 ′ = 𝑊 ′′

↓Δ′ = {{a}, {b}}, which using Definition 4 allows us to
discard𝑊 = {{a}} from being a preferred-world view of Δ′′. 2

Although Definition 4 requires to check a (possibly) exponential
number of sub-EAAF Δ′ of a given EAAF Δ, in the next section we
show that only a linear number (w.r.t. | (Ψ ∪ Φ) |) of EAAFs Δ′ ⊑ Δ
needs to be considered.

According to the proposed EAAF semantics, epistemic argu-
ments are deterministic, that is, they have the same “truth assign-
ment” in a world view, that in turn depends on either the credulous
or skeptical acceptance of its attackers.

Proposition 2. LetΔ = ⟨𝐴,Ω,Ψ,Φ⟩ be an EAAF,𝜎 ∈ {gr, co, pr}
a semantics, and𝑊 the 𝜎-world view of Δ. Then, any epistemic ar-

gument 𝑥 ∈ 𝐴 is deterministic, that is, one of the following three

conditions hold:

𝑖) ∀ 𝑆 ∈𝑊 . 𝑥 ∈ 𝐴𝑐𝑐 (𝑊,𝑆); or
𝑖𝑖) ∀ 𝑆 ∈𝑊 . 𝑥 ∈ 𝐷𝑒𝑓 (𝑊,𝑆); or
𝑖𝑖𝑖) ∀ 𝑆 ∈𝑊 . 𝑥 ∉ (𝐴𝑐𝑐 (𝑊,𝑆) ∪ 𝐷𝑒𝑓 (𝑊,𝑆)).

This property is related to the directionality property for AAF [18,
19], that guarantees that the status of each argument depends only
on that of its attackers. As we will see in Section 4, this leads to
the existence of an algorithm for computing EAAF semantics (i.e.,
Algorithm 1). For this reason and the fact that stable semantics
does not guarantee the existence of at least one extension, we will
consider the definition of stable semantics for EAAF in future work.

a b c d

Figure 4: EAAF Δ of Example 11.

An alternative way to define preferred (resp. grounded) exten-
sions for EAAF could be that of choosing among complete exten-
sions those that are maximal (resp. minimal) w.r.t set-inclusion, as it
is done for AAF. More in detail, given an EAAF Δ and its complete-
world view𝑊 = co(Δ), we could have defined the preferred-world
(resp. grounded-world) view for Δ as pr(Δ) = {𝑆 ∈𝑊 | 𝑆 is maxi-
mal w.r.t. ⊆} (resp. gr(Δ) = {𝑆 ∈𝑊 | 𝑆 is minimal w.r.t. ⊆}). This
is different from what is done in Definition 4 where to define a
pr-world view (resp. gr-world view) we start with a world view
𝑊 that is not necessarily co(Δ). However, the above-mentioned
alternative way to define preferred extensions for EAAF may lead
to counter-intuitive solutions, as shown in the following example.

Example 11. Consider the EAAF Δ = ⟨{a, b, c, d}, {(a, b), (b, a),
(a, c), (b, c)}, {(c, d)}, ∅⟩, shown in Figure 4, and the preferred se-
mantics. Intuitively, the strong epistemic attack states that d is
accepted if c is skeptically rejected. The preferred extensions of
Δ, that is, the elements in its pr-world view are {a, d} and {b, d}.
Thus, we obtain that c is skeptically defeated and, consequently, d
is accepted.

However, if we start with the complete-world view co(Δ), we
have that there are three complete extensions 𝑆1 = ∅, 𝑆2 = {a}
(with b and c defeated and d undecided) and 𝑆3 = {b} (with a and c
defeated and d undecided). As the ⊆-maximal sets in co(Δ) are 𝑆2
and 𝑆3, we conclude that under the above-mentioned “alternative”
preferred semantics d is undecided, whereas c is (skeptically) false,
contradicting our intuition. 2

As stated next, differently from AAF, grounded and preferred
extensions are not guaranteed to be complete extensions of EAAF.
Related to this, even in AAF credulous and skeptical acceptance
may give different results under different semantics.

Proposition 3.
• There exists an EAAF Δ s.t. 𝑆 ∈ pr(Δ) ∧ 𝑆 ∉ co(Δ).
• There exists an EAAF Δ s.t. 𝑆 ∈ gr(Δ) ∧ 𝑆 ∉ co(Δ).

Particularly, for the first item, consider the EAAF Δ = ⟨{a, b, c, d,
e, f}, {(a, b), (b, a), (a, c), (b, c), (c, d)}, {(d, e) (e, f)}, ∅⟩. With a
little effort, it ca be checked that pr(Δ) = {𝑆1 = {a, d, f}, S2 =

{b, d, f}} and co(Δ) = {∅, {a, d}, {b, d}}, and thus neither 𝑆1 ∈
co(Δ) nor 𝑆2 ∈ co(Δ). As for the second item, consider the EAAF
Δ of Example 10, it holds that gr(Δ) = ∅ and ∅ ∉ co(Δ).

4 COMPUTATION
We first show that there is no loss of generality in making the
assumption that EAAFs are in plain form. In fact, any EAAF Δ

can be rewritten into an “equivalent” one Δ̂ in plain form such
that complete (resp. grounded, preferred) world view of Δ can be
obtained from that of Δ̂, as stated in the following proposition.

Proposition 4. Let Δ be an EAAF and𝑊 the 𝜎-world view for

Δ, with 𝜎 ∈ {gr, co, pr}. Then, there exists an EAAF Δ̂ in plain form

whose 𝜎-world view𝑊 is such that𝑊 =𝑊↓Δ holds.
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Figure 5: (From left to right) EAFs Δ and its plain version Δ̂ of Example 12.

An example of the application of Proposition 4 is the following.

Example 12. Consider the EAAF Δ = ⟨𝐴 = {a, b, c, d, e}, Ω =

{(a, b), (b, a), (a, d)},Ψ = {(a, c), (a, e), (b, d)},Φ = {(b, c)}, shown
in Figure 5 (left), and its preferred-world view𝑊 = {{a, e}, {b, d, e}}.
Let Δ̂ = ⟨𝐴, Ω̂, Ψ̂, Φ̂⟩, shown in Figure 5 (right), where:

• 𝐴 = {a, b, c, d, e, a′, a′, b′, b′, b′′, b′′};
• Ω̂ = {(a, b), (b, a), (a, d), (a′, a′), (a′, c), (a′, e), (b′, b′),

(b′, d), (b′′, b′′), (b′′, c)};
• Ψ̂ = {(a, a′), (b, b′)}; and
• Φ̂ = {(b, b′′)}.

The preferred-world view for Δ̂ is𝑊 = {{a, e, a′, b′, b′′}, {b, d, e,
a′, b′, b

′′}}. As prescribed by Proposition 4,𝑊 =𝑊↓Δ. 2

Thus, as previously stated in Section 3.1, w.l.o.g. we can assume
that EAFs are in plain form.

For any EAAF Δ = ⟨𝐴,Ω,Ψ,Φ⟩, we use Γ = (Ψ ∪ Φ) = {𝛾1 =

(𝑎1, 𝑏1), . . . , 𝛾𝑛 = (𝑎𝑛, 𝑏𝑛)} to denote the set of epistemic attacks
in Δ. Observe that, given Γ, we can define a partial order PO over
it such that for every 𝛾𝑖 = (𝑎𝑖 , 𝑏𝑖 ) ∈ Γ and 𝛾 𝑗 = (𝑎 𝑗 , 𝑏 𝑗 ) ∈ Γ with
𝑖 < 𝑗 , it holds that 𝑎𝑖 does not depends on 𝑏 𝑗 . Moreover, we use
Γ = ⟨𝛾1, . . . , 𝛾𝑚⟩ to denote a linear ordering over Γ (compatible
with PO). Clearly, we may have different linear orderings over Γ,
as shown in the following example.

Example 13. Consider the EAAF Δ = ⟨{a, b, c, d, e, f}, {(a, b),
(b, a), (d, f), (e, f)}, {𝛾1, 𝛾3}, {𝛾2}⟩ where 𝛾1 = (a, c), 𝛾2 = (c, e),
and 𝛾3 = (b, d). The partial order PO over {𝛾1, 𝛾2, 𝛾3} states that 𝛾1
precedes 𝛾2. We have three linear orderings over Γ, compatible with
PO, that are ⟨𝛾3, 𝛾1, 𝛾2⟩, ⟨𝛾1, 𝛾2, 𝛾3⟩, and ⟨𝛾1, 𝛾3, 𝛾2⟩. 2

AnAlgorithm forComputing EAAF Semantics.Although
Definition 4 requires to check a (possibly) exponential number of
EAFs Δ′ ⊑ Δ, we show that only a linear number of EAAFs needs
to be considered. This is achieved by providing an algorithm (i.e.,
Algorithm 1) that is able to compute the 𝜎-world view of an EAAF
Δ = ⟨𝐴,Ω,Ψ,Φ⟩, with 𝜎 ∈ {gr, co, pr}, by following any of the
linear orderings on Γ = Ψ ∪ Φ. Before presenting Algorithm 1 we
introduce some notation.

Let Δ = ⟨𝐴,Ω,Ψ,Φ⟩ be EAAF and Γ = ⟨𝛾1, ..., 𝛾𝑛⟩ a linear order-
ing over Γ = Ψ ∪ Φ, and Δ𝑖 ⊑ Δ (with 𝑖 ∈ [0, 𝑛]) the sub-EAAF
containing only the arguments not depending on 𝛾𝑖+1, ..., 𝛾𝑛 . In par-
ticular, Δ0 = ⟨𝐴,Ω, ∅, ∅⟩ is the sub-EAAF containing no epistemic
arguments, Δ1 is the sub-EAAF containing only the epistemic attack
𝛾1, and so on up to Δ𝑛 = Δ.

Definition 5 (Eval Function). Given an AAF Λ = ⟨𝐴,Ω⟩, a
semantics 𝜎 ∈ {gr, co, pr}, the set of 𝜎-extensions of Λ 𝜎 (Λ), and an
epistemic attack (𝑎, 𝑏) s.t. 𝑎 ∈ 𝐴 and 𝑏 ∉ 𝐴, the function eval𝜎 ((𝑎, 𝑏),

Algorithm 1 SolveEAAF
Require:

A (well formed) EAAF Δ = ⟨𝐴,Ω,Ψ,Φ⟩;
A linear ordering Γ = ⟨(𝑎1, 𝑏1), ..., (𝑎𝑛, 𝑏𝑛)⟩ over Γ = (Ψ ∪ Φ);
A semantics 𝜎 ∈ {gr, co, pr}; and
A (sound and complete) function IncrSolve𝜎 (Λ, ·) that incre-
mentally returns the set of 𝜎-extensions of an AAF Λ.

Ensure: The 𝜎-world view𝑊 of Δ
1: Compute Δ𝑖 = ⟨𝐴𝑖 ,Ω𝑖 ,Ψ𝑖 ,Φ𝑖 ⟩ for 𝑖 ∈ [0, 𝑛];
2: Let 𝛿𝑖 = ⟨𝐴𝛿

𝑖
=𝐴𝑖 \𝐴𝑖−1,Ω𝛿

𝑖
=Ω ∩ (𝐴𝛿

𝑖
×𝐴𝛿

𝑖
)⟩ for 𝑖 ∈ [1, 𝑛];

3: Let Λ0 = ⟨𝐴Λ
0 = 𝐴0,ΩΛ

0 = Ω0⟩;
4: 𝑊0 = IncrSolve𝜎 (Λ0, ∅);
5: for 𝑖 ∈ [1, 𝑛] do
6: Let Λ𝑖 = ⟨𝐴Λ

𝑖
,ΩΛ

𝑖
⟩ with

𝐴Λ
𝑖
= 𝐴Λ

𝑖−1 ∪𝐴
𝛿
𝑖
\ {𝑏𝑖 | eval𝜎 ((𝑎𝑖 , 𝑏𝑖 ),Λ𝑖−1) = F},

ΩΛ
𝑖
= ΩΛ

𝑖−1 ∪ (Ω ∩ (𝐴Λ
𝑖
×𝐴𝛿

𝑖
))∪

{(𝑏𝑖 , 𝑏𝑖 ) | eval𝜎 ((𝑎𝑖 , 𝑏𝑖 ),Λ𝑖−1) = U}⟩;
7: 𝑊𝑖 = IncrSolve𝜎 (Λ𝑖 ,𝑊𝑖−1);

return𝑊 =𝑊𝑛 ;

Λ) computes the truth value of 𝑏 over Λ w.r.t. 𝜎 as follows:

eval𝜎 ((𝑎, 𝑏),Λ) =



F if 𝑎 ⇒ 𝑏 ∧ ∀𝐸 ∈ 𝜎 (Λ) . 𝑎 ∈ 𝐸 ∨
𝑎 →⇒ 𝑏 ∧ ∃𝐸 ∈ 𝜎 (Λ) . 𝑎 ∈ 𝐸

T if 𝑎 ⇒ 𝑏 ∧ ∃𝐸 ∈ 𝜎 (Λ) . 𝑎 ∈ 𝐸+ ∨
𝑎 →⇒ 𝑏 ∧ ∀𝐸 ∈ 𝜎 (Λ) . 𝑎 ∈ 𝐸+ ∨

U otherwise.

Intuitively, eval𝜎 ((𝑎, 𝑏),Λ) assigns to the epistemic argument 𝑏 a
truth value w.r.t. the 𝜎-extensions of Λ on the basis of the meaning
of epistemic attack (𝑎, 𝑏).

We are now ready to present Algorithm 1 that computes the
(unique) world view of the input EAAF Δ under semantics 𝜎 .

The algorithm makes use of an external function IncrSolve that
computes the 𝜎-extensions of an AAF Λ, knowing the extensions
of a sub-AAF Λ′ of Λ.

Algorithm 1works as follows. The𝑛+1 EAAFsΔ𝑖 (with 𝑖 ∈ [0, 𝑛])
containing only the arguments not depending on 𝛾𝑖+1, ..., 𝛾𝑛 are
computed at line 1. Then, 𝑛 AAFs 𝛿𝑖 = ⟨𝐴𝛿

𝑖
,Ω𝛿

𝑖
⟩ (with 𝑖 ∈ [1, 𝑛])

are computed at line 2. Intuitively, 𝛿𝑖 contains the arguments and
attacks that are in Δ𝑖 but not in Δ𝑖−1. In other words, 𝛿𝑖 is obtained
from Δ𝑖 after removing 𝛾𝑖 and all arguments of Δ𝑖−1, and repre-
sents the part of Δ𝑖 that depends on 𝛾𝑖 . Then, at line 3 the AAF
Λ0 is computed. It consists of elements of Δ that do not depend
on any epistemic attack, and thus coincides with Δ0. The set of
𝜎-extensions𝑊0 of Λ0 is then computed at line 4 by calling the
function IncrSolve𝜎 (Λ0, ∅), where ∅ means that no information (i.e.
extensions previously computed) is exploited during the compu-
tation. Then, for each step 𝑖 ∈ [1, 𝑛], Algorithm 1 (incrementally)
computes:
(𝑎) the AAF Λ𝑖 that extends the previous one (i.e. Λ𝑖−1) by adding:
– all the non-epistemic arguments of 𝛿𝑖 , plus the epistemic argu-
ment 𝑏𝑖 if it is not evaluated to be false by function eval𝜎 ;

– the (standard) attacks occurring in Δ𝑖 towards arguments in 𝛿𝑖 ;
– a self (standard) attack (𝑏𝑖 , 𝑏𝑖 ) if 𝑏𝑖 is evaluated to be undecided
by function eval𝜎 ;
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Figure 6: (From left to right) AAFs Λ0, Λ1 and Λ2 of Example 14.

(𝑏) the set of 𝜎-extensions 𝑊𝑖 of Λ𝑖 by calling the func-
tion IncrSolve𝜎 (Λ𝑖 ,𝑊𝑖−1) that, given the world view𝑊𝑖−1 =

𝜎 (Δ𝑖−1) for Δ𝑖−1 < Δ𝑖 , computes the 𝜎-extensions of the AAF
Λ𝑖 (derived from Δ𝑖 ), by exploiting the extensions in𝑊𝑖−1, thus
avoiding wasted effort in the computation.1

Function eval𝜎 evaluates at each step 𝑖 the epistemic argument𝑏𝑖
on the basis of AAF Λ𝑖−1 and the set of its 𝜎-extensions previously
computed, which intuitively contain the information needed to
evaluate 𝑏𝑖 . The algorithm ends by returning𝑊 =𝑊𝑛 at line 7.

An example of the execution of Algorithm 1 is as follows.

Example 14. Consider the EAAF Δ = ⟨𝐴,Ω,Ψ,Φ⟩ of Example 8
(see Figure 3 (left)), the semantics 𝜎 = pr, and the linear ordering
Γ = (𝛾1 = (a, c), 𝛾2 = (b, d)) of Γ = Ψ ∪ Φ.

The three EAAFs Δ𝑖 for 𝑖 ∈ [0, 2], computed at line 1, are:
• Δ0 = ⟨𝐴0 = {a, b},Ω0 = {(a, b), (b, a)},Ψ0 = ∅,Φ0 = ∅⟩,
corresponding to EAAF Δ′ in Figure 3;

• Δ1 = ⟨𝐴1 = {a, b, c}, Ω1 = {(a, b), (b, a)}, Ψ1 = {(a, c)},
Φ1 = ∅⟩, corresponding to EAAF Δ′′ in Figure 3;

• Δ2 = ⟨𝐴2 = 𝐴,Ω2 = Ω,Ψ2 = Ψ,Φ2 = Φ⟩, corresponding to
EAAF Δ in Figure 3 (left).

The two AAFs computed at line 2 are:
• 𝛿1 = ⟨𝐴𝛿1 = {c},Ω𝛿

1 = ∅⟩, and
• 𝛿2 = ⟨𝐴𝛿2 = {d, e, f}, Ω𝛿

2 = {(d, f), (e, f), (f, e)}⟩.
Then, Λ0 = ⟨𝐴Λ

0 = 𝐴0,ΩΛ
0 = Ω0⟩ is computed at line 3, and the

set of preferred extension𝑊0 = {{a}, {b}} is computed at line 4 by
calling the external AAF solver IncrSolvepr (Λ0, ∅).

Then, at line 6 the algorithm computes:
• for 𝑖 = 1, the AAF Λ1 = ⟨𝐴Λ

1 ,Ω
Λ
1 ⟩ (shown in Figure 6, center)

with 𝐴Λ
1 = {a, b} ∪ ({c} \ ∅) and ΩΛ

1 = {(a, b), (b, a)}, as
eval𝜎 ((𝑎1 = a, 𝑏1 = c),Λ0) = T; also, the set of its preferred
extensions is𝑊1 = {{a, c}, {b, c}};

• for 𝑖 = 2, the AAF Λ2 = ⟨𝐴Λ
2 ,Ω

Λ
2 ⟩ (shown in Figure 6,

right) with 𝐴Λ
2 = {a, b, c} ∪ ({d, e, f} \ {d}) and ΩΛ

2 =

{(a, b), (b, a)} ∪ {(a, e), (e, f), (f, e)} ∪ ∅, as eval𝜎 ((𝑎2 =

b, 𝑏2 = d),Λ1) = F; the set of its preferred extensions is
𝑊2 = {{a, c, f}, {b, c, e}, {b, c, f}}.

Algorithm 1 ends by returning the set of preferred extensions of
Δ, that is pr(Δ) =𝑊2 = {{a, c, f}, {b, c, e}, {b, c, f}}. 2

As stated next, Algorithm 1 is sound and complete, independently
of the chosen linear ordering over the set of epistemic attacks.

Theorem 2. Let Δ = ⟨𝐴,Ω,Ψ,Φ⟩ be an EAAF, Γ a linear ordering

over Γ = (Ψ∪Φ), and𝜎 ∈ {gr, co, pr} a semantics. Then, Algorithm 1

returns the 𝜎-world view of Δ.

1In SAT-based solvers [24, 47], this can be achieved by introducing additional clauses
encoding the status of arguments of the previous extensions. Approaches for the
incremental computation in argumentation have been investigated in e.g. [2–4].

5 COMPLEXITY
We investigate the complexity of fundamental reasoning problems
for EAAF. In particular, we study the verification, existence, and
credulous/skeptical acceptance problems, that are usually considered
for analyzing the complexity of argumentation frameworks.

Given an EAAFΔ = ⟨𝐴,Ω,Ψ,Φ⟩ and a semantics𝜎 ∈ {gr, co, pr}:
• the verification problem for EAAF, denoted as 𝑉𝐸𝜎 , consists in
deciding whether a given set of arguments 𝑆 ⊆ 𝐴 is a 𝜎-extension
of Δ, that is, deciding whether 𝑆 is in the 𝜎-world view of Δ;

• the existence (resp. non-empty existence) problem for EAAF, de-
noted as 𝐸𝑥𝜎 (resp. 𝐸𝑥¬∅𝜎 ) with 𝜎 ∈ {gr, co, pr} consists in decid-
ing whether there exists at least one (resp. at least one non-empty)
𝜎-extension 𝑆 for Δ;

• the credulous (resp. skeptical) acceptance problem, denoted as
𝐶𝐴𝜎 (resp. 𝑆𝐴𝜎 ), consists in deciding whether a given goal argu-
ment 𝑔 ∈ 𝐴 belongs to any (resp. every) 𝜎-extension of Δ.
Observe that if argument 𝑔 is epistemic, credulous and skeptical

acceptance problems coincide (cf. Proposition 2). Therefore, we call
simply this problem epistemic acceptance and denote it as 𝐸𝐴𝜎 .

The following fact states that the epistemic acceptance problem
captures the credulous and skeptical acceptance problems also for
non-epistemic arguments.

Fact 1. Let Δ = ⟨𝐴,Ω,Ψ,Φ⟩ be an EAAF, 𝑔 ∈ 𝐴 any of its non-

epistemic arguments, and 𝜎 ∈ {gr, co, pr} a semantics. Then:

• 𝐶𝐴𝜎 (Δ, 𝑔) = 𝐸𝐴𝜎 (Δ′, 𝑔′′) with :

Δ′ = ⟨𝐴 ∪ {𝑔′, 𝑔′′},Ω ∪ {(𝑔,𝑔′)},Ψ ∪ {(𝑔′, 𝑔′′)},Φ⟩
• 𝑆𝐴𝜎 (Δ, 𝑔) = 𝐸𝐴𝜎 (Δ′, 𝑔′′) with :

Δ′ = ⟨𝐴 ∪ {𝑔′, 𝑔′′},Ω ∪ {(𝑔,𝑔′)},Ψ,Φ ∪ {(𝑔′, 𝑔′′)}⟩

Thus, asking for the credulous and skeptical acceptance of an
argument 𝑔 w.r.t. an EAAF Δ is equivalent to asking for the epis-
temic acceptance of a fresh epistemic argument 𝑔′′ w.r.t. an EAAF
Δ′, that is obtained from Δ by adding only a pair of attacks.

For this reason and for the fact that epistemic arguments are
deterministic (Proposition 2), w.l.o.g. we study the complexity of
verification, existence, epistemic acceptance problems in EAAFs
(without considering credulous and skeptical acceptance that, as
shown above, can be immediately reduced to epistemic acceptance).

Theorem 3. 𝑉𝐸𝜎 is: 𝑖) in 𝑃 for 𝜎 = gr, 𝑖𝑖) Θ𝑝

2 -hard and in Δ
𝑝

2 for

𝜎 = co, and 𝑖𝑖𝑖) Θ𝑝

2 -hard and in Δ𝑃
3 for 𝜎 = pr.

The next theorem states the complexity of epistemic acceptance.

Theorem 4. 𝐸𝐴𝜎 is: 𝑖) in 𝑃 for 𝜎 = gr, 𝑖𝑖) Θ𝑝

2 -hard and in Δ
𝑝

2 for

𝜎 = co, and 𝑖𝑖𝑖) Π𝑃
2 -h and in Δ𝑃

3 for 𝜎 = pr.

The following corollary states that for EAAF there always exists
at least one extension, as for the case of AAF.

Corollary 1. 𝐸𝑥𝜎 is trivial for any 𝜎 ∈ {gr, co, pr}.

Finally, deciding the existence of a non-empty extension has the
same complexity as that for AAF.

Theorem 5. 𝐸𝑥¬∅𝜎 is: 𝑖) in 𝑃 for 𝜎 = gr, and 𝑖𝑖) NP-complete for

𝜎 ∈ {co, pr}.

The results of this section, along with some related complexity re-
sults for AAF, are summarized in Table 2. Although the complexity
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Table 2: Complexity of the verification (𝑉𝑒𝑟𝜎 ), credulous acceptance (𝐶𝐴𝜎 ), skeptical acceptance (𝑆𝐴𝜎 ), existence (𝐸𝑥𝜎 ), non-empty existence (𝐸𝑥¬∅
𝜎 ), and determinism

problems for AAF, and of the verification (𝑉𝐸𝜎 ), epistemic acceptance (𝐸𝐴𝜎 ), existence (𝐸𝑥𝜎 ), and non-empty existence (𝐸𝑥¬∅
𝜎 ) problems for EAAF. For any complexity

class𝐶 ,𝐶-c (resp.𝐶-h) means𝐶-complete (resp.𝐶-hard); an interval𝐶-h,𝐶′ means𝐶-hard and in𝐶′ .

AAF EAAF
𝜎 𝑉𝑒𝑟𝜎 𝐶𝐴𝜎 𝑆𝐴𝜎 𝐸𝑥𝜎 𝐸𝑥¬∅𝜎 𝐷𝑆𝜎 𝑉𝐸𝜎 𝐸𝐴𝜎 𝐸𝑥𝜎 𝐸𝑥¬∅𝜎

gr P P P trivial P trivial P P trivial P
co P NP-c P trivial NP-c coNP-c Θ

𝑝

2 -h, Δ
𝑃
2 Θ

𝑝

2 -h, Δ
𝑃
2 trivial NP-c

pr coNP-c NP-c Π𝑃
2 -c trivial NP-c Π𝑃

2 -c Θ
𝑝

2 -h, Δ
𝑃
3 Π𝑃

2 -h, Δ
𝑃
3 trivial NP-c

remains the same as that for AAF if we focus on the grounded se-
mantics or on the (non-empty) existence problem, we found that the
complexity generally increases w.r.t. that of AAF in the other cases,
that is for the verification and acceptance problems under complete
or preferred semantics. This particularly hold if we compare the
complexity of 𝑉𝐸𝜎 and 𝐸𝐴𝜎 for EAAF with that of 𝑉𝑒𝑟𝜎 and 𝐶𝐴𝜎
for AAF with 𝜎 ∈ {co, pr}, as well as comparing the complexity
of 𝐸𝐴co with 𝑆𝐴co. Finally, deciding acceptance in EAAF is harder
than (resp. at least hard as) checking determinism in AAF, which
in turn is harder than (resp. at least hard as) deciding skeptical
acceptance in AAF for complete (resp. preferred) semantics.

6 RELATEDWORK
Several proposals have been made to extend Dung’s framework
with the aim of better modeling the knowledge to be represented.
The extensions include Bipolar AAF [48, 60], AAF with recursive
attacks and supports [29, 30, 40], Dialectical framework [25], Ab-
stract Reasoning Framework [11], AAF with preferences [10, 12, 46]
and constraints [16, 31], as well extensions for representing un-
certain information, e.g. incomplete AAF [21] and probabilistic
AAF [1, 34, 42, 44].

Work on epistemic logic dates back to the early 1860s. Since
then epistemic logic has played an important role also in computer
science. This field is very active and important results are reported
in a recent book surveying state-of-the-art research [58].

Epistemic Logic extends propositional logic by allowing to also
express knowledge of the agents, also called subjective knowledge.
In particular, it allows writing formule of the form 𝐾𝑎𝜑 stating that
agent 𝑎 knows that formula 𝜑 is true. Thus, while a formula 𝑝 ∨ 𝑞
expresses the (objective) knowledge that 𝑝 or 𝑞 are true (i.e. the
formula is satisfied if 𝑎 is true or 𝑏 is true), a formula 𝐾𝑎 (𝑝 ∨ 𝑞)
expresses the (subjective) knowledge that agent 𝑎 knows that 𝑝 is
true or 𝑞 is true. On the other side, the formula 𝐾𝑎𝐾𝑏𝑝 states that
agent 𝑎 knows that agent 𝑏 knows that 𝑝 holds, i.e. it is satisfied if
agent 𝑎 knows that agent 𝑏 knows that 𝑝 holds [59].

The idea of extending logic with epistemic constructs has been
investigated also in the field of Answer Set Programming (ASP)
[37–39]. Epistemic logic programs, firstly proposed in [38], extend
disjunctive logic programs under the stable model semantics with
modal constructs called subjective literals [26, 27, 37, 39]. The in-
troduction of this extension was originally motivated to correctly
represent incomplete information in programs that have several sta-
ble models. Using subjective literals, it is possible to check whether
a literal is true in every or some stable model of the program. These
models in this context are also called belief sets, being collected in a
set called world view. The main idea was to expand the syntax and

semantics of Answer Set Programming by modal operators K and
M where K𝜑 holds if 𝜑 is true in all answer sets of a program and
M𝜑 holds if 𝜑 is true in at least one answer set. Using this notation,
𝑛𝑜𝑡 K𝑝 ∧ 𝑛𝑜𝑡 K −𝑝 would correspond to “the truth value of p is
unknown” even in the presence of multiple answer sets. In such a
context, several problems are still open and they regard the support
required by stable models, as well as splitting properties that are
satisfied by classical ASP semantics, but not satisfied by epistemic
ASP-based semantics [27, 41, 55].

As discussed in Section 2.2, in Epistemic Argumentation Frame-
work (EAF) [54] the epistemic constraint plays a role similar to
the one played by constraints in Constrained AAF (CAF) [6, 16,
31] or to the one played by preferences in Preference-based AAF
(PAF) [8, 12, 15, 43], that is, restrict the set of feasible extensions.
But, while in CAF and PAF the subset obtained is unique, in EAF
we can have alternative subsets. It is worth noting that, according
to our complexity analysis, EAAF cannot be fully captured in EAF.
Indeed, the verification problem, that is, given an EAF and a set
of arguments 𝑆 , checking whether there is a complete epistemic
labelling set containing 𝑆 is in 𝑃 for EAF. In contrast, as shown ear-
lier, the verification problem for complete semantics is Θ𝑝

2 -hard for
EAAF. Similar differences arise for preferred semantics, entailing a
different expressive power of the considered frameworks.

Although our focus is on argumentation, we believe that our
results could be of interest to the logic community. In fact, by exploit-
ing the correspondence betweenAF and Logic Programming [5], the
proposed EAAF semantics could be seen as an alternative semantics
for a special class of epistemic logic programs whose complexity
and computation can be characterized by using our results.

7 CONCLUSION AND FUTUREWORK
We have presented the Epistemic Abstract Argumentation Frame-
work, a generalization of Dung’s framework where epistemic at-
tacks and arguments can be expressed. We provided clear semantics
for well-formed EAAF and an algorithm for its computation. We
also provided complexity bounds for the verification, existence, and
acceptance problems in EAAF under three well-known argumenta-
tion semantics. Our complexity analysis shows that the epistemic
elements (i.e., epistemic attacks/arguments) impact on the complex-
ity of most of the problems considered, and thus, it turns out that
EAAF generally increases the expressivity of AAFs.

Future work will be devoted to considering other argumentation
semantics such as the stable semantics. However, it is worth noting
that the stable semantics for EAAF is intrinsically defined in the
paper for odd-cycle free EAAF as, in this case, it collapses to the
preferred semantics.
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