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ABSTRACT
This paper investigates multi-agent reinforcement learning (MARL)
communication mechanisms in large-scale scenarios. We propose
a novel framework, Learning Structured Communication (LSC),
that leverages a flexible and efficient communication topology. LSC
enables adaptive agent grouping to create diverse hierarchical for-
mations over episodes generated through an auxiliary task and a
hierarchical routing protocol. We learn a hierarchical graph neural
network with the formed topology that facilitates effective message
generation and propagation between inter- and intra-group commu-
nications. Unlike state-of-the-art communication mechanisms, LSC
possesses a detailed and learnable design for hierarchical commu-
nication. Numerical experiments on challenging tasks demonstrate
that the proposed LSC exhibits high communication efficiency and
global cooperation capability.
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1 INTRODUCTION
The remarkable benefits of cooperation for multi-agent reinforce-
ment learning achieved through learning to communicate arewidely
recognized. Despite the proliferation of numerous approaches [1–
3, 5], the effectiveness of the learned protocol is hindered as the
number of agents increases, leading to inefficiencies in cooperation.

The adeptness of human society in managing communication
among a vast number of participants is well-known. The funda-
mental principle that governs this process is the establishment of a
hierarchical communication topology that enables intra- and inter-
group communication [4]. Despite the prominence of this approach,
the optimal design of a hierarchical communication structure that
maximizes communication efficiency while also fostering large-
scale cooperation remains largely unexplored.

The Learning Structured Communication (LSC) framework is
introduced, which aims to facilitate large-scale cooperation through
the learning of a hierarchical communication structure. LSC con-
sists of two primary stages: structure building and communication-
based policy learning. The former leverages a distributed cluster-
based routing protocol (CBRP [4]) and a learnable weight gen-
erator to establish a hierarchical structure, dividing agents into
groups (high-level and associated low-level agents) based on their
weights. Following the establishment of the hierarchical structure,
communication-based policy learning facilitates learning communi-
cation and action policies. The communication policy incorporates
both inter and intra-group communication strategies. Inter-group
communication aids in capturing global information, while intra-
group communication facilitates fine-grained message exchanges.
The action policy then uses the improved state perception resulting
from communication to learn a more effective cooperation strategy.
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To assess the performance of the proposed LSC, we conducted
experiments on large-scale Battle scenarios. The empirical findings
indicate that LSC consistently outperforms the baselines in terms
of both cooperation performance and communication efficiency.

2 METHOD
This section outlines the LSC approach, which is composed of two
fundamental stages: structure building and communication-based
policy learning.

2.1 Structure Building
The structure building consists of two integral components, the
weight generator and the cluster-based routing protocol, CBRP [4].
Each agent generates a communication weight through its weight
generator. The weight generator determines the communication
importance for each agent and is modeled by a neural network fwд :
oi → wi with parameters θw . The CBRP leverages the weights of
all agents w and considers the local geometry to construct the
hierarchical communication structure in a distributed fashion.

Concretely, the weight wi measures an agent’s confidence in
becoming a high-level agent (HLA). During CBRP execution, each
agent checks whether HLAs exist in its receptive field (RF) for mul-
tiple rounds and elects itself as a HLA if no HLAs are found. If a
HLA detects the presence of other HLAs in its RF, it may opt to
downgrade to a low-level agent (LLA). Following a sufficient num-
ber of rounds, the CBRP generates a sparse structure where HLAs
are not included in the RFs of other HLAs, thereby improving com-
munication efficiency. The hierarchical communication network
is established by connecting HLAs across groups and linking each
LLA to its respective HLA. This process forms a group consisting
of each HLA and the LLAs within its respective RF.

2.2 Communication-Based Policy Learning
Following the establishment of the hierarchical communication
structure, communication-based policy learning enables the acquisi-
tion of messages and cooperation policies through two sub-modules,
namely the hierarchical communicator and the Q-Net-based policy.
The hierarchical communicator is implemented as a graph neural
network (GNN) (fθдnn ) with parameters θдnn , while the Q-Net of
each agent (Qi

θQ
) is parameterized by the shared parameter θQ .

The former is responsible for learning the messages and enhancing
overall state perception through message passing. After efficient
communication, the Q-Net-based policy then learns an updated
policy based on the enhanced state perception.

The hierarchical communicator employs a three-phase commu-
nication strategy: intra-group aggregation, inter-group sharing, and
intra-group sharing. During the intra-group aggregation, each LLA
embeds its local perception (vli ) into a message, which is subse-
quently transmitted to the connected HLAs. The HLAs aggregate
the information from all connected LLAs and obtain the group per-
ception (vhi ). In the inter-group sharing, the HLAs communicate
with each other, leveraging the group perception and aggregating
the received information to obtain the global perception (vдi ). Dur-
ing the intra-group sharing, each HLA then embeds its local, group,
and global perception as the message and sends it to the connected
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Figure 1: Illustration of the forward pass of LSC. The yel-
low and red particles denote the high level agents and the
low level agents respectively. For each decision step, agents
make structure building, hierarchical communication and
communication based decisions.

LLAs. The LLAs update their local perceptions (vli ) based on the re-
ceived information. Subsequent to the three-phase communication,
each agent utilizes theQ-Net-based policy to obtainQ values based
on its local perception and select an optimal cooperative action.

2.3 Training Scheme
This section explains howwe train the proposed LSC. The communication-
based policy can be learned directly byminimizing the loss function:

ℓ(θдnn ) = Eo,a,r, õ

[ n∑
i=1

(
Qi
θQ (fθдnn (o),ai ) − yi

)2]
, (1)

where yi = ri +γ maxãi Q
i
θQ

(fθдnn (õ), ãi ), and ri is the reward for
agent i . We use soft updating schemes with target networks:

θ Q̃ = τθQ + (1 − τ )θ Q̃ , θ ˜дnn = τθдnn + (1 − τ )θ ˜дnn . (2)

The non-differentiability of the CBRP impedes the backpropa-
gation of gradients from the communication-based policy to the
weight generator, presenting a significant challenge. We propose
an auxiliary reinforcement learning task for weight generation to
address this. Each agent’s action corresponds to a weight choice in
this task, with original observations and rewards and the weight
wi is defined in the discrete action space {0, 1, 2}. The proposed
approach enables a task-driven, closed-loop communication weight
generation. For simplicity, we adopt independent deep Q-networks
to implement the weight generator. The loss function for the weight
generator is defined as follows:

ℓ(θw ) = Eo,w,r, õ

[ n∑
i=1

(Qθw (oi ,wi ) − yi )
2
]
. (3)

where yi = ri + γ maxw̃i Qθw (õi , w̃i ).
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