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ABSTRACT
Multi-agent reinforcement learning (MARL) is a powerful tool for
training automated systems acting independently in a common
environment. However, it can lead to sub-optimal behavior when
individual incentives and group incentives diverge. Humans are
remarkably capable at solving these social dilemmas. It is an open
problem in MARL to replicate such cooperative behaviors in sel�sh
agents. In this work, we draw upon the idea of formal contracting
from economics to overcome diverging incentives between agents
in MARL. We propose an augmentation to a Markov game where
agents voluntarily agree to binding state-dependent transfers of
reward, under pre-speci�ed conditions. Our contributions are theo-
retical and empirical. First, we show that this augmentation makes
all subgame-perfect equilibria of all fully observed Markov games
exhibit socially optimal behavior, given a su�ciently rich space of
contracts. Next, we complement our game-theoretic analysis with
experiments running deep RL on the contracting augmentation
for various social dilemmas. We discuss some practical issues with
learning in the contracting augmentation, and provide a training
methodology that leads to high-welfare outcomes, Multi-Objective
Contract Augmentation Learning (MOCA). We test our methodol-
ogy in static, single-move games, as well as dynamic domains that
simulate tra�c, pollution management and common pool resource
management.
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1 INTRODUCTION
We study the problem of how to get sel�shly motivated agents to act
pro-socially through the lens of multi-agent Reinforcement Learn-
ing (MARL). Consider the Cleanup domain, depicted in Figure 1.
Agents get reward from eating apples that only grow if a nearby
river is unpolluted. In a pro-social solution to Cleanup, agents need
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Figure 1: We evaluate our method in the Cleanup do-
main [11]. Left: A screenshot of the environment. The di�er-
ent agents correspond to the pink, yellow, and purple tiles.
Agents get reward for eating apples (green) but apples will
only grow if the river (blue) is clean of pollution (brown).
Agents can clean up pollution, but aren’t directly rewarded
for cleaning. This creates a social dilemma where no agents
clean because they don’t expect to bene�t from cleaning di-
rectly. Right: An illustration of the solution that our con-
tracting augmentation facilitates. In the Cleanup domain,
one agent commits to “pay” the other to clean the river. As
a result, the agents are able to coordinate on policies that
maximize the total reward across both agents.

to work together: one cleans while the other eats apples. However,
self-interested agents cannot sustain this solution. Cleaning has no
direct bene�t, so sel�sh agents focus exclusively on eating apples.
A social dilemma ensues.

Prior work has considered modifying MARL domains with the
goal of mitigating such social dilemmas. One idea is to allow agents
to transfer some of their reward to others in exchange for helpful
actions, such as cleaning the river: gifting [19]. Other approaches
allow agents to make commitments that they will take particular
actions in the future [10]. Both approaches have limitations: gifting
cannot change the Nash equilibria of a game, and hence cannot
change the fundamental incentive structure of the game [39, Propo-
sition 1]. Moreover, (binding) contracts in the sense of Hughes et al.
[10] are only ever enacted when all agents are made better o� in
the original reward of the game. No agent will ever consent to a
binding contract cleaning trash in Cleanup. Further, since binding
contracts are action-level contracts, the system designer would
have to manually encode a “clean trash” policy, instead of relying
on a reward signal to incentivise them to clean.

This article studies contracts as zero-sum modi�cations of the
environment reward. More speci�cally, contracts transfer rewards
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⇠ ⇡
⇠ �1,�1 �3,0
⇡ 0,�3 �2,�2

(a) Prisoner’s Dilemma

⇠ ⇡
⇠ �1,�1 �1.5,�1.5
⇡ �1.5,�1.5 �2,�2

(b) After Contract

Figure 2: (a) Prisoner’s Dilemma (b) Prisoner’s Dilemma af-
ter signing a contract in which a defector transfers 1.5 re-
ward to a cooperator. With this contract in force, cooperat-
ing becomes a dominant action for both players.

between agents depending on states and actions. Contracts are pro-
posed by agents, and can be vetoed by any single agent—participation
is voluntary. Even upon acceptance, agents may choose any action,
only their rewards are changed by the contract.

In the Cleanup domain, an agent could propose to pay an amount
A2;40= of reward for each polluted river square that is cleaned.
The proposing agent is ‘charged’ a reward penalty of �A2;40= . The
proposing agent has an incentive to propose this contract because
the expected reward from eating apples will be larger than the
expected payment to others for growing them. Similarly, the other
agent prefers this contract to the competitive outcome, where no
apples grow.

To make this concrete, consider the classic Prisoner’s Dilemma
[36].The tables in Figure 2 show the payo�s for the unmodi�ed
game (Figure 2a) and the modi�ed incentives (Figure 2b) under the
following contract:

Any agent who defects is �ned 1.5 units of reward by
the other agent.

If both defect, both pay, and the payments cancel. In this modi�ed
game, cooperation is dominant, and hence (⇠,⇠) is the only Nash
equilibrium.

Would the agents agree to this contract if proposed? If it is re-
jected, they subsequently play the game in Figure 2a which has
a unique Nash equilibrium of (⇡,⇡), yielding a reward of �2 for
both agents. However, if it is accepted, they subsequently play the
game in Figure 2b which has a Nash equilibrium of (⇠,⇠), yielding
a reward of �1. Thus, agents want to accept the contract and sub-
sequently play the socially optimal outcome. Hence, a possibility
to commit to a state-action dependent reward transfer, to sign a
formal contract for short, mitigates a social dilemma, even among
sel�sh agents.

Contributions. We provide three main contributions.

(1) We formalize Formal Contracting as a generic augmentation
of Markov games (i.e., non-cooperative MARL);

(2) We prove that this augmentation makes socially optimal
behavior an SPE, and that every SPE of the augmented game
is socially optimal;

(3) We provide a multi-objective training procedure (MOCA),
which performs close to, or better than, a joint controller
after a �xed number of time periods in complex dynamic
domains such as Cleanup and Harvest [11]. Using a state-
of-the-art deep reinforcement learning algorithms without
MOCA also yields results close to optimal in several domains.

Outline. We provide preliminaries and de�ne our augmentation
in section 2. In section 3, we provide our main theoretical result
showing that formal contracting mitigates social dilemmas in all
fully observed Markov games, and outline its proof. We describe our
evaluation methodology and introduce MOCA in section 4. Experi-
mental results are in section 5. We outline related work in section 6.
In section 7, we discuss the real-world application and enforcement
of contracts, fairness concerns, and avenues for future work. Ap-
pendices contain proofs, additional statements and experiments, a
formal de�nition of a more general contracting augmentation, and
hyperparameter settings for our experiments.

2 FORMAL CONTRACTING
2.1 De�nitions

Full-Information Markov Games. We de�ne an# -agent (complete-
information) Markov game as a 6-tuple, " = h(, B0,A,) ,R,Wi,
where
• ( is a state space;
• B0 2 ( is the initial state;
• A = �1 ⇥ �2 ⇥ · · · ⇥ �= is the space of action pro�les a =
(01,02, . . . ,0=) for = agents;

• ) : ( ⇥ A! �(() is a transition function;
• R : ( ⇥ A ! [�'max,'max]= is a (bounded) reward function

mapping state-action pro�les to reward vectors for the = agents;
and

• W 2 [0, 1) is a discount factor.
Agents choose policies c8 : ( ! �(�8 ), 8 = 1, 2, . . . ,=. We write
0 B (c1, c2, . . . , c# ) to denote a policy pro�le. For a policy pro�le
0 , we denote by + 0

8 (B0) B E[
Õ1
C=0 W

C'8 (BC , aC )] the value to agent
8 2 [=] B {1, 2, . . . ,=}. In the value expression, the expectation
is with respect to the generating process BC ⇠ ) (BC�1, aC�1) and
0C ,8 ⇠ c8 (BC ), C = 1, 2, . . . . A subscript �8 denotes a partial pro�le
of policies or actions or policies excluding agent 8 , e.g., 0�8 B
(c1, c2, . . . , c8�1, c8+1, . . . , c=).

Optimal Policy Pro�les. Denote the welfare of a policy pro�le
by, 0 (B0) B

Õ=
8=1+

0
8 (B0). We refer to a policy pro�le that maxi-

mizes welfare as jointly optimal: 0⇤ 2 arg max0, 0 (B0). A policy
pro�le 0 is Pareto-optimal if there is no policy pro�le 0 0 such that
+ 0
8 (B0)  + 0 0

8 (B0) for all 8 = 1, 2, . . . ,=, with a strict inequality for
at least one agent. Intuitively, in such pro�les, there are no "win-
wins": no agent can attain higher reward without at least one other
agent losing reward.

Stable Policy Pro�les and Equilibria. In social dilemmas, social and
individual incentives diverge. In our game-theoretic analysis, we use
an equilibrium notion to capture outcomes of sel�sh incentives. One
potential solution concept is Nash equilibrium. A policy pro�le is
Nash equilibrium if unilateral deviation is suboptimal for all agents.
Formally, a policy pro�le 0 is a Nash equilibrium if for any agent
8 2 [=] and any policy c 08 : ( ! �(�8 ), + 0

8 (B0) � + (c 08 ,0�8 )
8 (B0).

While this solution concept is common, it has its drawbacks.
For example, in Cleanup, a policy pro�le in which agents never
clean under some contract even if it is in their best interest, and
another agent not proposing it, might be a Nash equilibrium, as
no agent would bene�t unilaterally from changing their behavior.
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The “threat” of one of the agents to not clean, however, is non-
credible, as, when the contract is enforced, they would rather clean.
Such non-credible threats are well-known in Game Theory [25, Sec-
tion 5.5], and can be expected from RL agents if they approximate
sequentially rational agents.

To avoid non-credible threats, we model sel�sh incentives in
MARL with subgame-perfect equilibria (SPE). Subgame perfection
requires that for any state B , there cannot be a pro�table devia-
tion to another policy, for any agent. This is stronger than a Nash
equilibrium, which only requires this to hold at the initial state B0.

De�nition 2.1 (Subgame-Perfect Equilibrium). A policy pro�le 0
is a subgame-perfect Nash equilibrium or subgame-perfect if for all
states B 2 ( , agents 8 = 1, 2, . . . ,= and policies c 08 : ( ! �(�8 ),

+ 0
8 (B) � + (c 08 ,0�8 )

8 (B).

The Economics literature also often refers to SPE in Markov games
as Markov Perfect Equilibria (MPE) [20].

Our game-theoretic analysis shows that a su�ciently rich con-
tracting augmentation of Markov games forces socially optimal
behavior in SPE and our experiments show that such equilibria are
learned in decoupled MARL. The intuition behind our result is that
all SPE for a contracting-augmented game are welfare maximiz-
ing if the contract space is rich enough to penalize all deviations
from some welfare-maximizing policy pro�le. We say that the state
space ( is su�cient to detect deviations from a policy pro�le 0 , or
has detectable deviations from 0 if for any distinct agents 8 < 9 and
any state B 2 ( , the # + 1 sets

supp) (B, 0 (B)) and supp) (B, (008 , 0�8 (B)))

are mutually disjoint. Here, supp) (B, a) denotes the support of the
transition function.

2.2 The Contracting Augmentation
Before we de�ne our contracting augmentation, we �rst de�ne con-
tracts. They are state-action-dependent reward transfers, in addition
to an acceptance transfer.

De�nition 2.2 (Contract). A contract is a function ) : (( ⇥�) [
{acc}! R# whose range consists of zero-sum vectors, i.e.

#’
8=1

\8 = 0

for any (\1, \2, . . . , \=) 2 range(\ ). We denote a generic set of
contracts by ⇥.

A contract will be added to the reward vector that agents get,
in�uencing the incentives in social dilemmas. The central de�nition
of this article is the contract augmentation.

De�nition 2.3 (⇥-Augmented Game). Let " = h(, B0,A,) ,R,Wi be
a full-information Markov game and ⇥ be a set of contracts. The
8-proposing, ⇥-augmented game is "⇥ = h( 0, (8, 0),A0,) 0,R0,Wi,
with the following components.

Figure 3: The Contracting Augmentation. Top: Agents can
propose contracts, state dependent, zero-sum, additive aug-
mentations to their reward functions. Agents can accept or
decline contracts. Left: In case of declination, the interaction
between agents happens as before. Right: In case of accep-
tance of the contract, the reward of the agents is altered ac-
cording to the rules of the contract.

States. The augmented state space is

( 0 = ( [=] [ () ⇥ ({0} [ ⇥) .
States have the following meanings:

• (8, 0): Agent 8 has the opportunity to propose a contract
) 2 ⇥;

• (8, ) ): ) 2 ⇥ awaits acceptance or rejection by all agents;
• (B, 0): The game is in state B 2 ( with a null contract, 0(B,0) =

0, for all B 2 (, a 2 A, in force;
• (B, ) ): The system is in state B with contract ) 2 ⇥ in force.

Actions. The action spaces for the agents are

�08 = �8 [ ⇥ [ {acc}
which corresponds to actions in the game (�8 ), proposal actions (⇥)
and the acceptance action ({acc}).

Transitions. There are deterministic transitions, given by

) 0((8, 0), () , a�8 )) = (8, ) ), for any a�8

) 0((8, ) ), a) =
(
(B0, ) ) if a = acc
(B0, 0) otherwise.

for any contract ) 2 ⇥ and any action pro�le a 2 A. Here, we
denoted acc B (acc, acc, . . . , acc) the pro�le of unanimous accep-
tance of a contract.

Transitions in states (B, 0) and (B, ) ) are as in the underlying
game " ,

) 0((B, ) ), a) = ) (B, a)
for any B 2 ( , ) 2 ⇥ and 0 2 �.
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Rewards.
R0((B, ) ), a) = R(B, a) + ) (B,0),

R0((8, ) ), acc) = ) (acc) .
for ) 2 ⇥ and B 2 ( . All other rewards are zero. The �rst line
means that depending on a state-action pro�le pair, reward is trans-
ferred between the agents. The second line refers to reward being
transferred on signing a contract.

In the contracting augmentation, once enforced, the rewards
of agents are directly changed. Note that agents maximize their
reward as modi�ed under the contract, so there is no concept of
“breaking” a contract. The incentives that align agents’ behavior
with pro-social goals are encoded in the reward function.

3 GAME-THEORETIC ANALYSIS
The following is our main theoretical result: formal contracting
with a su�ciently rich sets of contracts mitigates social dilemmas.
Formally, we show that any subgame-perfect equilibrium of any
fully-observed Markov game is jointly optimal.

T������ 3.1. Let " = h(, B0,A,) ,R,Wi be a full-information
Markov game. For any su�ciently rich contracting space

⇥ ◆ {(( ⇥ A) [ {acc}! [�'max/(1 � W),'max/(1 � W)]},
all subgame-perfect equilibria 0 of "⇥ are jointly optimal and there
is a jointly optimal policy pro�le c⇤ of " such that 0 (B, ) ) = 0⇤ (B)
for the contract ) that agent 8 chooses in 0 .

If there is a socially optimal policy pro�le c⇤ of " that has de-
tectable deviators, there is a contract space ⇥ of dimension at most
|( |2 such that the above conclusion holds.

The theorem shows that, under the assumption of richness, so-
cial dilemmas are mitigated in equilibrium. Under detectability, a
contract space of much small dimensionality (smaller by a factor
of |�1 | ⇥ |�2 | ⇥ · · · ⇥ |�= | compared to the contract space needed
in general games) is rich enough to mitigate dilemmas. For a full
proof of the theorem, consult Appendix A.

P���� S�����. Consider any subgame-perfect equilibrium 0
of "⇥. We call the values + 0

9 (B0, 0) the non-acceptance value for

agent 8 , and , 0⇤ (B0) the jointly optimal welfare in the game " .
We prove this statement in four steps:

First, we show an upper bound on the value for the proposing
agent, + 0

8 (8, ) ). The proposing agent cannot get more value than
the optimal welfare in" minus the aggregate non-acceptance value
for agents 9 2 [=] \{8}, since otherwise at least one agent will reject
the proposed contract

+ 0
8 (8, ) ) , 0⇤ (B0) �

’
9 2 [=]\{8 }

+ 0
9 (B0, 0) .

Next, show that there is a contract ) ⇤ such that this bound is
attained,

+ 0
8 (8, ) ⇤) =, 0⇤ (B0) �

’
9 2 [=]\{8 }

+ 0
9 (B0, 0) . (1)

This step involves two observations: First, if agents 9 2 [=] \ {8}
accept any contract ) ⇤ for which (1) holds, agent 8 will choose one
such contract, as it yields the highest payo� among all contracts.

One can observe that agents 9 2 [=] \ {8} are indi�erent between
accepting and rejecting ) ⇤ (i.e.+ 0

9 (B0, ) ) = + 0
9 (B0, 0)). Hence, there

could be an equilibrium where all contracts ) ⇤ are rejected. This
case, where (1) holds, requires more care, but we show in the full
proof in Appendix A that such subgame-perfect equilibria do not
exist, as agent 8’s best response is unde�ned in this case.

Moreover, the proposer needs to be able to infer which agents
deviated from socially optimal play, in order to accurately punish
deviation. Without any further assumption, this requires knowledge
of the current state and the actions of all players. However, under
detectability, the state reached after actions are taken by players is
su�cient for deciding punishment, and therefore the contract can
be represented in |( |2 dimensions.

Finally, we observe that any contract ) ⇤ that is accepted and for
which (1) holds, is played only in a subgame-perfect equilibrium
that is jointly optimal. Hence, the subgame-perfect equilibrium 0
is jointly optimal. ⇤

Fairness. One striking observation in the proof of Theorem 3.1
is that agents 9 2 [=] \ {8} are indi�erent between accepting the
contract ) ⇤ and not accepting it. Hence, the contract leads to an
improvement in welfare, but no agents but agent 8 gets any bene�t
from this improvement. In many decentralized learning tasks, this
is not of concern, for example if a robot �eet needs to coordinate
on locations. In others, this property is clearly unfair. We discuss
ways to compensate this unfairness in section 7.

4 EXPERIMENTAL METHODOLOGY
We now evaluate the performance of the contracting augmentation.
First, we introduce the baseline methods that we use to evaluate
our approach. Then, we introduce our experimental domains. Fi-
nally, we provide details on MOCA, our training procedure for
contracting.

4.1 Evaluation
We evaluate MOCA by comparing to the following baselines.
• Joint Training: a centralized algorithm with joint action space

A = ⇥#8=1�8 chooses actions to maximize welfare;
• Separate Training: Agents sel�shly maximize their reward;
• Gifting: Agents can “gift” [19] another agent at every timestep

by directly transferring some of their reward;
• Vanilla Contracting: Run an o�-the-shelf deep RL on the contract-

augmented versions of the respective domains.
We train all domains with 2, 4, and 8 agents, using Proximal Policy
Optimization [32] with continuous state and action spaces with
Gaussian sampling in ray rllib’s [18] implementation (hyperparam-
eter choices can be found in Appendix C). In each domain, we
train gifting agents with a lower bound of 0 and an upper bound
on transfer value in contracts. This allows the same magnitude of
transfers in gifting and contracts, for fair comparison. In one of the
games, Emergency Merge, we reduced the gifting values to 10 per
timestep, as this improved gifting’s performance. On the Prisoner’s
Dilemma and the Public Goods game, we trained agents for 1M
environment steps, and the complex dynamic games are trained for
10M environment steps.
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4.2 Games
We test on several classes of games. We use Prisoner’s Dilemma
and a Public Goods game as static, simultaneous-move games, and
Harvest, Cleanup, and Emergency Merge as dynamic domains.

Prisoner’s Dilemma. First, we study the Prisoner’s Dilemma, men-
tioned earlier. To scale this to multiple agents, we follow the follow-
ing scheme for payo�s: in the =-agent game, if all agents cooperate,
they each get reward =, and if all defect, they all get reward 1. How-
ever, if some defect and some cooperate, the ones that cooperate
get reward 0 and the ones that defect get reward = + 1. Again, the
socially optimal outcome is the one where all agents cooperate, but
only Nash equilibrium is where all agents defect. We run an addi-
tional timestep after the matrix game is played for gifting actions
to take place.

Public Goods. We study the following public goods game [13].
Agents choose an investment 08 2 [0, 1], and get reward '8 (a) =
1.2
#

Õ#
9=1 0 9 �08 , i.e. they are given their share of the public returns,

the investment returning 20%, minus their own investment level.
At social optimum, all agents choose 08 = 1 to get optimal joint
reward. However, sel�sh agents are not incentivized to invest at
this high level, as they would like to free-ride on the other agents’
e�orts.

Harvest. In Harvest, from Hughes et al. [11], agents move along
a square grid to consume apples, gaining a unit of reward. Apples
grow faster if more apples are close by, which leads to incentives
to overconsume now, leading to an intertemporal dilemma. We
choose engineered features to limit the amount of computational
resources needed. In particular, agents receive their position and
orientation, the coordinates and orientation of the closest other
agent, the position of the nearest apple, the number of apples close
to the agent, the number of total apples, and the number of apples
eaten by each agent in the last timestep. We don’t allow agents
to use a punishment beam following Lupu and Precup [19]. The
environment runs for 1,000 timesteps per episode.

Cleanup. In Cleanup, also from [11], agents similarly move along
a square grid to consume apples and gain one unit of reward. Apples
only spawn if a nearby river contains a number of waste objects
lower than a threshold. Removing a waste object is a costless, but
also rewardless, task. Apple-eating agents can free-ride on other
agents, which leads to degraded performance. The observation
space used for agents is simpli�ed to limit computational require-
ments, and agents are passed their position and orientation, the
position and orientation of the closest agent, the positions of the
closest apple and waste object, and the number of current apples
and waste objects. The environment runs for 1,000 timesteps per
episode.

Emergency Merge. A set of = � 1 cars approaches a merge, an
ambulance behind them, compare Figure 4. The ambulance incurs
a penalty of 100 per timestep that it has not reached the end of a
road segment past the merge. The cars in front also want to get
to the end of the road segment, but incur a penalty of only 1 per
timestep. They are limited to one-fourth of the velocity that the
ambulance can go. We assume access to controllers preventing
cars from colliding (stopping cars short of crashing into another

Figure 4: A depiction of the emergency merge domain.

car) and managing merging, and so the actions 08 2 [�0.1, 0.1]
only control the forward acceleration of each vehicle. A dilemma
arises as cars prefer to drive to the merge fast, not internalizing the
strong negative e�ect this has on the ambulance. The environment
resets after 200 rounds or when cars crash, whichever is earlier.
Note that here, due to the asymmetry of agent capabilities and
rewards, attaining optimal social welfare cannot be done via Pareto
improvement within the original game.

4.3 Contract Spaces
We consider low-dimensional contract spaces for di�erent domains.

• Prisoner’s Dilemma. Contracts are parameterized by a transfer
\ 2 [0,=] for defecting, which is distributed to the other agents
in equal proportions.

• Public Goods. Contracts are parameterized by a transfer \ 2
[0, 1.2], agents transfer \ (1 � 08 ), which is distributed to the
other agents in equal proportions.

• Harvest. Contracts are parameterized by \ 2 [0, 10]. When an
agent takes a consumption action of an apple in a low-density
region, de�ned as an apple having less than 4 neighboring
apples within a radius of 5, they transfer \ to the other agents,
which is equally distributed to the other agents.

• Cleanup. Contracts are parameterized by \ 2 [0, 0.2], which
correspond to a payment per garbage piece cleaned, paid for
evenly by the other agents.

• Emergency Merge. The ambulance can propose a per-unit sub-
sidy of \ 2 [0, 100] to the cars at the time of ambulance crossing.
Each car is transferred \ times its distance behind the ambu-
lance at time of merge by the ambulance. If a car is ahead of the
ambulance at time of reward, it pays the ambulance \ times its
distance ahead of the ambulance.

4.4 Training
The contracting augmentation yields a Markov game, for which
one could directly train agents with deep reinforcement learning
(we will call this vanilla contracting). However, as can be observed
from Figure 5, and Figure 6, this implementation of contracting
does not outperform joint training in problems with more complex
dynamics, or higher-dimensional state and action spaces. To �x this,
we propose an algorithm inspired by multi-objective reinforcement
learning, compare [1], Multi-Objective Contract Augmentation Learn-
ing (MOCA). We present it in algorithm 1. MOCA consists of two
phases: �rst, the algorithm draws random contracts (which, in the
language of multi-objective reinforcement learning can be viewed
as di�erent “objectives”). This can be used to estimate + 0

8 (B0, ) ),
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8 = 1, 2, . . . ,= for the initial state B0 and any contract ) , i.e. the
values for agents when contract ) 2 ⇥ is in force. This allows it
to learn estimates of the utility agents will get under a particular
contract. Due to random sampling, these estimates are not biased
by contract exploration, which may be an issue when using deep
reinforcement learning directly.

In a second phase, we freeze play following (B0, ) ) for any con-
tract ) and the policy at states (8, 0) and (8, ) ). We do so by choosing
a contract repeatedly from the policy c8 (8, 0), and use as a proxy for
acceptance the expected probability of acceptance,

Œ=
9=1 c 9 (8, ) ).

In order to help exploration of the contract space in this stage,
we sample . agents from the space of non-proposing agents, and
only use these agent’s accept-reject probabilities in determining
contract acceptance. Here, the introduced . becomes a tunable hy-
perparameter, for which . = 2 obtained strong performance across
all domains, which we report in section 5. We update the weights
for the actions of all agents at c8 (8, 0) and c 9 (8, ) ), for 9 = 1, 2, . . . ,=.
Finally, the algorithm returns the so-obtained policy pro�le.

Algorithm 1: Multi-Objective Contract-Augmentation
Learning (MOCA)

Data: Contract Space ⇥ including the null contract 0,
Markov Game " , probability distribution % (⇥)

Result: Policy Pro�le 0
0  initialize_policies();
for C = 1 to 9

10 num_episodes do
) ⇠ % (⇥);
train_subgame_episode(0 (B0, ) ))

Freeze c |(⇥⇥;
for 8 = 1 to 1

10 num_episodes do
) ⇠ c8 (8, 0);
if rand() < Œ=

9=1 c 9 (8, ) ) then contract ) ;
else contract 0;
R sample_episode_reward(0 , contract);
train_with_rewards(0 ,R);

return 0 ;

We evaluate the performance of the �nal trained algorithm on
rollouts. The choice of length of the two periods (e.g. the 9

10 th for
the �rst phase) is arbitrary.

5 RESULTS
We �rst present a sample of our experiments with our baselines,
which motivate the need for MOCA (algorithm 1), in Figure 5. Then,
we discuss overall trends from all conducted experiments, Figure 6.

Vanilla Contracting. Consider �rst Figure 5. we observe that, in
Prisoner’s Dilemma and Cleanup, the baseline implementation of
contracting is su�cient to achieve optimal or near-optimal perfor-
mance, as can be seen by contracting either matching or surpassing
the social welfare of training all agents jointly, and vastly surpassing
the welfare of both gifting and separate training (both of which con-
verge to socially suboptimal Nash equilibrium welfare). However, in
more complex domains, such as Cleanup, this ceases to be the case.
One potential reason for this is that, in these domains, learning the
best responses to contracts becomes much more challenging, and so

estimates of value for given contracts are less reliable early in train-
ing. Therefore, the proposing agent may bene�t from additional
exploration of the space of contracts, the main feature of MOCA.
As seen in Figure 6, MOCA again attains higher social welfare
than joint training, separate training, and gifting. However, since
intermediate levels of reward are not directly comparable with the
baselines (since contracts are randomly sampled in the �rst stage
of training, and are not run for the same number of timesteps in
the second stage), MOCA is omitted from Figure 5. For this, results
are presented in Figure 6 with bar plots summarizing welfare at the
end of training, for all evaluated methods.

MOCA. Now, we take a closer look at the full results in Figure 6.
In the simpler domains (left two columns), MOCA, like vanilla
contracting, attained social welfare is vastly higher than for sepa-
rately trained agents and agents trained with gifting. In Prisoner’s
Dilemma, contracting reaches joint optimality for 2, 4, and 8 agents.
A smaller action space (and hence easier exploration) is a potential
reason reason for why contracting can perform even better than
joint training, since the action space for joint training grows expo-
nentially in the number of agents. In Public Goods, especially for
higher number of agents, joint training interestingly outperforms
MOCA, but not vanilla contracting. One possible reason for this is
that, uniquely in our suite of environments, learning best responses
to each contract is challenging, while the socially optimal policy
is itself trivial to execute. Therefore, early in training, it is likely
that socially optimal play is learned as a response to some of the
contracts, particularly for those \ which are near-optimal. There-
fore, biasing contract exploration early on is good for performance.
In complex environments, since the socially optimal contracts are
harder to execute, early biasing of contract exploration is unlikely to
be well-informed, and so converging onto a poor contract proposal
algorithm is likely in vanilla contracting at scale.

In the more complex domains (right three columns of Figure 6),
MOCA in almost all cases attains at least the level of social welfare
as joint training, and often far exceeds it. The exceptions to this
trend are 2-agent Harvest and 2-agent Cleanup - in both cases,
joint training and separate training exhibit strong performance
(the former performing comparably to MOCA in both cases, the
latter only for Harvest). The reason for this is that the two-agent
settings for this problem are not strong social dilemmas, since the
grid is wide enough that agents will not directly interact. Notably,
this trend even applies in cases where the vanilla contracting fails
(particularly in Harvest and Cleanup), motivating MOCA. In the
merge domain, MOCA, contracting with a standard PPO training,
and joint training, all perform similarly, given the fact that this is
a substantially lower-dimensional, and simpler in terms of best-
response policies, than Harvest or Cleanup.

6 RELATED WORK
We review related work in Computer Science and Economics.

Social Dilemmas. Our work intends to mitigate social dilemmas
in games. In addition to classical static social dilemmas such as
Prisoner’s Dilemma (compare [36]), a public goods game (compare
[13]) and Stag Hunt [28], we also consider more complex social
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# agents Pris. Dilemma Public Goods Harvest Cleanup Merge

Figure 5: Welfare throughout training the benchmark algorithms (including a vanilla implementation of contracting using
o�-the-shelf deep reinforcement learning algorithms). In simple static domains, contracting achieves welfare that is close
to joint optimality, but more complex domains (i.e. Harvest and Cleanup), biased policy exploration due to the di�culty of
learning best-responses has a greater e�ect. Therefore, vanilla contracting su�ers in performance. For each �gure, the G-axis
plots number of environment steps (e.g. all agents taking an action is one step), and error is one standard deviation over 5
independent runs.

# agents Pris. Dilemma Public Goods Harvest Cleanup Merge

Figure 6: Experimental results including MOCA. Every plot is the mean social reward per episode at the end of training (1M
plays of the static domains, 5M timesteps for the dynamic domains) for each of the 5 algorithmic setups tested. Cells vary
across number of agents present (2, 4, 8), environments (Prisoner’s Dilemma, Public Goods, Harvest, Cleanup, Emergency
Merge) with each cell comparing di�erent algorithms (joint, gifting, separate, vanilla contracting, MOCA). Error bars denote
one standard deviation over �ve independent runs. For simpler games in the left two columns, MOCA attains higher social
reward than both gifting and separate training. However, it fails to match joint training in Public Goods, since this is a domain
with simple environment dynamics where learning to respond to contracts is di�cult, so early best responses are more likely
to be informative, and biasing towards these early on is likely to help performance. For all of the more complex domains in
the right 3 columns, contracting leads to higher social reward than gifting and separate training, and always at least matches
that of joint training, except for 2-agent Harvest and Cleanup, where su�cient resources are available to make these very mild
social dilemmas, as the higher welfare resulting from separate training compared to joint training shows. In Emergency Merge,
both vanilla contracting and MOCA contracting signi�cantly outperforms separate training. In several domains, contracting
outperforms joint training, which is a result of the large action space of the joint problem.
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dilemmas such as the Harvest and Cleanup domains of [11]. Coop-
eration and prosociality in complex domains are of keen interest
to MARL researchers, with related challenges including dilemmas
like Gathering and Wolfpack [17], the StarCraft challenge [30], or
more recently with MARL results in Diplomacy [16].

Augmentations of Markov Games. We relate to the study of aug-
mentations of Markov games to enhance pro-social behavior. Gift-
ing [19, 39] is as augmentation expanding agents’ action spaces to
allow for reward transfers to other agents. [39] prove that gifting is
unable to change the set of Nash equilibria of the underlying game.
Our approach di�ers from gifting in that contracting forces com-
mitment to a given modi�cation of reward before taking an action
in the original game, and that this commitment is binding for the
length of time the contract is in force. This improves total welfare
by allowing to support play that is not a Nash equilibrium in the
original game, as we demonstrate theoretically and experimentally.

Commitment Mechanisms. A large class of prior work has con-
sidered di�erent forms of agent commitments. [33] proposes the
contract net protocol, which allocates tasks among agents and com-
mits them to complete a particular task. [10] is a recent study in
this line of work. The paper considers multi-agent zero-sum games
in which agents may give other agents the option to commit to
taking a particular action. As we discuss in the introduction, [10]’s
contracts—which we will call binding contracts as opposed to our
concept of formal contracts—might be insu�cient to induce the
desired joint behavior, as agents will only commit to actions which
improve their own individual welfare over the basic game, leading
to Pareto optima, which may not be jointly optimal. [27] considers
the idea of commitments, without transfers, in evolutionary game
theory. The paper [21] lets an auxiliary agent propose a Pareto-
optimal equilibrium in a game. [31] proposes to allow agents to
be able to decommit from a task and paying a side payment. Our
approach can be seen as “soft commitment” in which agents always
only incur a cost in terms of reward when taking di�erent actions,
but are not forced to take a particular action. [34] considers in
2-player games the proposal of commitment and side payments,
and reaches social cooperation. We provide a general approach
that only considers reward transfer without the need to commit
to actions. The idea of negotiations between rounds to arrive to a
commitment to an actions, was considered in [3]. Formal contract-
ing does not have the dynamic structure of a negotiation and lets a
proposing agent make a take-it-or-leave-it o�er. Also related is a
literature on the emergence and learning of social norms [14, 38]
and conventions [15], which do not require an explicit consent by
agents, in contrast to the present paper.

Stackelberg Learning. Another related paradigm to ours is Stack-
elberg Learning. In such models, typically, a special agent, the
principal, optimizes incentives for other agents in a bi-level opti-
mization problem. Stackelberg learning has received a lot of atten-
tion in strategic Machine Learning [8, 22, 41] and has been used to
learn large scale mechanisms such as auctions [2, 5]. Also, [40]’s ap-
proach to learning to incentivize other learning agents may be seen
as a Stackelberg Learning. In contrast to Stackelberg Learning, the
focus of formal contracts is that no additional agents—Stackelberg

leaders—are introduced into an environment, but proposing agents
are part of the environment.

Organizational and Contract Economics. Formal contracts have
been considered as an alternative to relational contracts in the �elds
of organizational Economics, see [7] and [6, 5.2.3]. The setting of
an agent proposing state-dependent reward transfers has received
considerable attention in contract economics, compare the literature
following [23], and mechanism design, compare [12, 24, 37]. In our
proof of Theorem 3.1, we use a forcing contract, compare [9].

7 DISCUSSION
We discuss that the assumption that a single agent proposes a
contract is crucial for our results, and its fairness implications, in
subsection 7.1. Finally, we discuss approaches to scaling formal
contracting to more complex domains in subsection 7.2.

7.1 Limitations for Formal Contracting
One crucial assumption in our analysis is that a single agent pro-
poses contracts. Game-theoretic analysis, given in Appendix A
shows that if two or more agents may propose in a game, SPEs may
be socially suboptimal. The intuition is that an agent 8 may choose
a contract to a�ect the state distribution in a way that gives them
a rejection reward when 9 proposes a contract, hence increasing
their reward when contracting. Our game-theoretic analysis also
showed that unfair outcomes might result from contracts. As hence
proposal by di�erent agents and joint optimal behavior are incom-
patible, system designers that would like to ensure fairness need to
design contracts in a way that limit the number of transfers that
can be made, potentially at the expense of welfare.

7.2 Scaling Formal Contracting
The clearest avenue for future work is in scaling contracts to more
realistic domains. Here, we outline three ways to do that.

First, contracts in this work were hand-engineered with relevant
internal logic, in order to make the transfers a useful signal. For this
approach to scale, a complexity tradeo� must be managed: Con-
tracts need �exible enough to extract enough relevant information
to incentivize welfare-optimal play, while being simple enough for
MARL agents to allow fast learning of which contracts to choose
resp. accept. General techniques allowing to choose contracts would
greatly improve the scalability of the method.

Manually managing this tradeo� is undesirable. In particular, not
all domains might have social ine�ciencies that are as transparent,
or have features that make it hard for a system designer to design
good contract spaces. Therefore, learning which aspects of a state
are useful for contracting will allow us to scale the approach to
more realistic scenarios while keeping contract space sizes low.

Even with a �xed contract space, sample e�ciency may be im-
proved. MOCA took a �rst step into improving contract learning,
by decreasing the bias in estimated+ 0

8 (B0, ) ) values. MOCE outper-
formed benchmarks in all, even complex, dynamic, environments
that exhibited a social dilemma. Increasing sample e�ciency will
allow using formal contracting to mitigate social dilemmas in even
more complex domains. One potential way to increase the sample
e�ciency of the �rst phase of MOCA is to leverage more of the liter-
ature on multi-task reinforcement learning methods [4, 26, 29, 35].
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