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ABSTRACT
In cooperative multi-agent reinforcement learning (CMARL), it is
critical for agents to achieve a balance between self-exploration
and team collaboration. However, agents can hardly accomplish
the team task without coordination and they would be trapped
in a local optimum where easy cooperation is accessed without
enough individual exploration. Recent works mainly concentrate
on agents’ coordinated exploration, which brings about the ex-
ponentially grown exploration of the state space. To address this
issue, we propose Self-Motivated Multi-Agent Exploration (SMMAE),
which aims to achieve success in team tasks by adaptively finding
a trade-off between self-exploration and team cooperation. In SM-
MAE, we train an independent exploration policy for each agent
to maximize their own visited state space. Each agent learns an
adjustable exploration probability based on the stability of the joint
team policy. The experiments on highly cooperative tasks in Star-
Craft II micromanagement benchmark (SMAC) demonstrate that
SMMAE can explore task-related states more efficiently, accomplish
coordinated behaviours and boost the learning performance.
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1 INTRODUCTION
Cooperativemulti-agent reinforcement learning (CMARL) has achieved
outstanding results [13, 25] and has been applied tomany real-world
applications, such as autonomous driving [54], multi-agent path
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(a) 3s5z_vs_3s6z (b) 6h_vs_8z

Figure 1: Results on two super hard maps need strong ex-
ploration from SMAC, VDN-epsilon and QMIX-epsilon can
promote coordination significantly.

finding [12], natural language processing tasks [42], and dynamic
algorithm configuration [47]. Most of the methods can be divided
into two categories: the value-based methods [34, 36, 43] and oth-
ers based on policy gradient [10, 20, 49]. The value-based methods
and their variants [6, 50, 51] can have better performance in com-
plex tasks like the StarCraft II micromanagement benchmark [35].
However, they usually neglect efficient exploration, which is a par-
ticularly challenging problem in complex scenarios. Agents will be
trapped in a local optimum if they only focus on team collabora-
tion and cannot conduct coordinated behaviours if they only pay
attention to exploration.

To address the problem of MARL exploration, a vanilla tech-
nique that is commonly used in value-based MARL algorithms is
𝜀-greedy [13, 48]. Recently, a variety ofmethods have been proposed
and they focus more on coordinated exploration. EITI & EDTI [45]
use the interactions between the agents to measure the collabora-
tive exploration. CMAE [19] focuses on the low-dimensional space
that indeed affects the team cooperation reward. EMC [53] proposes
that the local Q function is affected by the influence of other agents
and guides the exploration based on this viewpoint. However, these
algorithms ignore individual exploration and consider only joint
exploration objective, which has a very large space and is not as
efficient as individual exploration.

The mentioned methods can facilitate the MARL exploration
ability in someway but are inefficient in complex scenarios, as those
methods seldom consider self-exploration from an individual point
of view. What’s more, they are far away from human coordination.
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If a person is not familiar with the team behaviour in the current sit-
uation, one will first learn how to cooperate with others. Otherwise,
one will explore more unknown situations to cooperate better with
others in more situations [16]. Although those mentioned MARL
exploration approaches can achieve coordination improvements in
some MARL tasks by designing complex modules, we find that we
can achieve competitive results with vanilla MARL methods such
as QMIX [34], by simply focusing on self-exploration.

For example, in the widely-used benchmark SMAC [35] almost
all existing MARL methods fail to succeed in 2 million steps in the
challenging scenarios such as maps 3s5z_vs_3s6z and 6h_vs_8z,
where sufficient exploration is required [34, 36, 43, 44, 53]. However,
in our experiments, by adjusting the degree of self-exploration, we
find that QMIX [34] and VDN [36] can achieve significant improve-
ments in exploration and can succeed in super hard tasks (Figure 1).
Concretely, here the self-exploration is adjusted by changing the 𝜀
end value of 𝜀-greedy (Figure 12 in Appendix C) which starts with
the value 1.0 and decays linearly with time to a fixed end value 𝜀𝑇
in the popular implementation of QMIX [35]. The results show that
the 𝜀 value has a strong association with the degree of exploration,
and the probability that the agent adopts an exploration policy
at one step during training time, should be applied at different
timesteps during training to trade off between self-exploration and
team cooperation to for high coordination. However, to achieve
this, it needs extensive work for hyper-parameter tuning at each
timestep, and it is not tractable to manually decide which 𝜀 value is
suitable at each timestep in complex tasks.

Towards designing a method that can adaptively adjust the de-
gree of exploration at different timesteps, we propose a novel multi-
agent exploration method Self-Motivated Multi-Agent Exploration
(SMMAE). Inspired by the widely used uncertainty measurement
from single agent Reinforcement Learning [18, 31], we posit that
learning a proper uncertainty about the multi-agent system and
employing it to promote individual exploration can facilitate coor-
dination in CMARL. In a multi-agent system, when the uncertainty
between agents’ actions and others’ observations is limited, the
agents should explore individually to jump out of the local optimum.
On the contrary, the agents’ lack of awareness of others makes it
hard to achieve coordinated behaviors when the uncertainty in the
multi-agent system is high, and the agents should explore less and
learn how to cooperate first before exploring more. Specifically, the
uncertainty of the joint policy for the agents can be measured using
the correlation between each agent’s action and observations of
other agents. We then use mutual information [17] to denote the
correlation. The observation of other agents is used to predict the
current agent’s action, and the cross entropy loss is used as a crite-
rion. The smaller the cross entropy loss is, the less the uncertainty
is. Our main contributions are:

• We study the exploration probability inMARL and reveal that
the suitable 𝜀 value at different timestep has a huge valuable
influence on exploration behaviours and final performance,
especially in complex environments.

• SMMAE can adaptively adjust exploration probability ac-
cording to the uncertainty in the multi-agent system to trade
off between self-exploration and team cooperation.

• The experiments demonstrate the strong ability of SMMAE
to explore task-related state space efficiently.

2 BACKGROUND
2.1 Cooperative Multi-Agent System Model
This paper considers a fully cooperative multi-agent system, where
all the agents need to cooperative with each other to earn a shared
team reward. The system can be modelled by a Dec-POMDP [23]
tuple 𝐺 = ⟨N ,S,A, 𝑃,R,Ω,𝑂, 𝑛,𝛾⟩, where N is a finite set of 𝑛
agents, 𝑠 ∈ S is a global state of the environment in the set of
possible states,A is the finite action set and𝛾 ∈ [0, 1) is the discount
factor. Due to the partially observable settings, agent 𝑖 ∈ N is only
accessible to a local observation 𝑜𝑖 ∈ Ω according to the observation
function 𝑂 (𝑠, 𝑖). Each agent has an observation-action trajectory
history 𝜏𝑖 ∈ T ≡ (Ω × A)∗. At each timestep the joint action of
the team is 𝒂 = ⟨𝑎1, · · · , 𝑎𝑛⟩ ∈ A ≡ A𝑛 where 𝑎𝑖 ∈ 𝜋𝑖 (𝑎 | 𝜏𝑖 ) is an
action selected by each agent 𝑖 . The team joint action will lead to the
next global state 𝑠′ according to the environment transition function
𝑃 (𝑠′ | 𝑠, 𝒂) and the team will earn the shared reward 𝑟 = R(𝑠, 𝒂).
The joint policy 𝝅 ≡ ⟨𝜋1, · · · , 𝜋𝑛⟩ aims to maximize the joint value
function 𝑉 𝝅 (𝑠) = E𝑠0:∞

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 | 𝑠0 = 𝑠, 𝝅
]
, which induces a

joint action-value function 𝑄𝝅 (𝑠, 𝒂) = R(𝑠, 𝒂) + 𝛾E𝑠′ [𝑉 𝝅 (𝑠′)].

2.2 Centralized Training with Decentralized
Execution (CTDE) paradigm

Centralized Training with Decentralized Execution (CTDE) [24] has
been a popular paradigm for cooperative multi-agent reinforcement
learning. In a CTDE paradigm, during training the global states
are available for all the agents by using a centralized controller,
while during test time each agent has to use its local network to
select an action based on its local trajectories. Deep Q Network [22]
and its derivatives [40, 46] have achieved great performance in
reinforcement learning tasks, especially in game tasks. In the multi-
agent system, the tuple in replay buffer D is (𝝉𝑡 , 𝒂𝑡 , 𝑟𝑡 ,𝝉𝑡+1) and
the joint action-value function is 𝑄𝑡𝑜𝑡 (𝝉𝑡 , 𝒂𝑡 ;𝜽 ), where 𝜽 are the
parameters of the Q network and will be learnt by the following
Temporal Difference (TD) error [37]:

L (𝜽 )

= E(𝝉𝑡 ,𝒂𝑡 ,𝑟𝑡 ,𝝉𝑡+1 )∼D

[
𝑟 + 𝛾 max

𝒂𝑡+1
𝑄𝑡𝑜𝑡 (𝝉𝑡+1, 𝒂𝑡+1;𝜽−) −𝑄𝑡𝑜𝑡 (𝝉𝑡 , 𝒂𝑡 ;𝜽 )

]2
,

(1)

where 𝜽− are the parameters of the target network and will be
updated by 𝜽 periodically. Considering the CTDE paradigm, many
works [33, 34, 36, 43] adopt the decomposition structure between
the joint action-value function𝑄𝑡𝑜𝑡 and local action-value function
𝑄𝑖 , and obtain good performance.
3 RELATEDWORK
3.1 Exploration in Reinforcement Learning
Various methods for exploration have been studied in single-agent
reinforcement learning [48]. Some works explore by focusing on
the environment dynamics. ICM [28] adopts both forward and in-
verse models to build a good feature space for curiosity and explore
what is controlled by or affects the agent. Pathak et al. [29] propose
to use an ensemble of dynamics models. They use the variance
over the output of these networks in the ensemble to induce the
exploration. There are some works focused on the environment
novelty to induce exploration. Some works are the generation of
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count-based methods and use density models which can gener-
ate pseudo-counts of visited states to measure the uncertainty of
the agents [3, 26]. Some works use prediction error to reflect the
novelty of the states. RND [5] uses a fixed randomly initialized
network to get the embedding of the state, then uses a learnable
network to reconstruct this embedding, and the reconstruction loss
will be adopted as an intrinsic reward to guide exploration. Based
on this, NovelD [52] proposes to use the difference of RND novelty
between adjacent time step as the intrinsic reward, and adds a re-
striction in an episode so that the agent could earn a reward only
when it visits the states for the first time. Therefore, NovelD prefers
to explore unexplored boundary states, thereby exploring more
valuable state regions. SMM [18] aims to learn a state marginal
distribution that matches the prior distribution and uses this as
the target of exploration. Some works adopt epsilon schedule for
better exploration. Tokic [38] uses the difference between value
functions to adjust the size of epsilon. When the agent’s knowledge
becomes certain about the environment, the degree of exploration
will be reduced. 𝜀𝑧-greedy [8] replaces a single action with a se-
quence of actions (option), choosing an option instead of choosing
a random action with probability 𝜀. Some works focus on noise
for better exploration. NoisyNet [11] replaces the fully connected
value network with a learnable noise network. Plappert et al. [32]
add adaptive-scale noise to the parameters of the policy. There are
also some works that study exploration from some interesting per-
spectives. Eysenbach et al. [9] use diversity-driven exploration to
learn distinguishable and diverse skills, while SMiRL [4] reduces the
entropy of the visited states during exploration to exclude negative
effects of perturbations and acquire complex behaviours and skills
without supervision. C-BET [27] first learns a exploration policy
across environments without extrinsic rewards, then transfers the
learned exploration policy to the target tasks. Pîslar et al. [30] study
the problem when the agent should explore and reveal the results
of the methods with different types of exploring temporal structure.
Agent57 [1] adopts a more engineering approach. The Q network is
divided into an intrinsic part and an extrinsic part. NGU is a policy
that treats different degrees of exploration equally [2]. Based on
NGU, Agent57 uses a meta-controller to select the policy adaptively.

3.2 Multi-Agent Exploration
There are also many studies on exploration in multi-agent reinforce-
ment learning. To achieve committed exploration, MAVEN [21]
adopts hierarchical control and the policies of the agents are con-
ditioned on the shared latent variable generated by a hierarchical
policy. Wang et al. [45] propose two exploration methods, EITI
and EDTI, to induce cooperative exploration by capturing the influ-
ence of one agent’s on other agents. EITI quantifies the influences
on the state transition dynamics, while EDTI quantifies both tran-
sition and reward influences. However, they are not scalable as
they need to use a approximation way to measure the influence
of other agents on one agent when there are many agents, which
can cause the method to fail. CMAE [19] proposes that reward
function only depends on a small subset of the large state space.
Therefore, it first explores in the projected low-dimensional space
of the high-dimensional state space, then they select goals from
the low-dimensional space and train the exploration policies to
reach the goal to explore higher-dimensional space continuously.

However, it’s hard to find the effective low-dimensional projection
in complex MARL tasks. EMC [53] proposes that local Q function
of each agent can capture the novelty of states and the influences
between agents. To induce coordinated exploration, EMC proposes
to use prediction errors of individual Q function as the intrinsic
reward. However, EMC is also not scalable, as it has to maintain a
huge episodic memory buffer.

4 METHODOLOGY
In this section, we introduce Self-Motivated Multi-Agent Explo-
ration (SMMAE), a novel method for effective exploration in MARL.
Figure 2 shows the whole SMMAE framework. Part (a) and (b) in
Figure 2 are the common structures in Centralized Training with
Decentralized Execution (CTDE) algorithms using value decom-
position. Each agent 𝑖 uses its observation 𝑜𝑖𝑡 and action 𝑎𝑖

𝑡−1 as
input and outputs local Q-value to select action. The mixing net-
work takes all the outputs of the agents to train the multi-agent
policy during training time. SMMAE mainly changes the structure
of each individual agent in part (b), and the main contribution of
our method is illustrated in part (c).

4.1 Adaptive Exploration
In 𝜀-greedy, the value of 𝜀 will decay linearly to a fixed end value 𝜀𝑇
in a common implementation. However, the experiments prove that
exploration probability with fixed end value is not efficient (Fig-
ure 1). Therefore, we adopt adaptive exploration probability. As the
exploration probability 𝜀 is for all agents, we use 𝜶 = ⟨𝛼1, · · · , 𝛼𝑛⟩
to denote the exploration probabilities of 𝑛 agents, where 𝛼𝑖 repre-
sents the probability of agent 𝑖 to select the exploration policy.

We associate 𝜶 with the uncertainty of the multi-agent sys-
tem (Part (c) in Figure 2). The agents cooperate well when the
uncertainty of the multi-agent system is limited and they should
increase the exploration intensity to jump out of the local opti-
mum by increasing 𝛼𝑖 . When the system uncertainty is high, the
agents lack awareness of others and are hard to achieve coordi-
nated behaviours. Under this condition, agents should take more
exploitation to reduce the uncertainty by decreasing 𝛼𝑖 .

The uncertainty of the multi-agent system can be measured
by the correlation between agents. When the correlation between
agent 𝑖’s action 𝑎𝑖 and the other agents’ observation 𝒐−𝑖 is low, the
uncertainty of the multi-agent system is high because the agents
focus more on their own action selection than the team cooperation.
We propose to use the mutual information I(𝑎𝑖 , 𝒐−𝑖 ) to reflect the
correlation between the agent 𝑖’s action 𝑎𝑖 and the other agents’
observation 𝒐−𝑖 :

𝐹 (𝒐, 𝒂) =
𝑛∑︁
𝑖=1

I (𝑎𝑖 , 𝒐−𝑖 ) =
𝑛∑︁
𝑖=1

H (𝑎𝑖 ) − H (𝑎𝑖 | 𝒐−𝑖 ) , (2)

where H denotes entropy. Then we can derive a lower bound
for the team mutual information term using a variational estimator:

𝐹 (𝒐, 𝒂)

=

𝑛∑︁
𝑖=1
E𝑎𝑖∼𝑝 (𝑎𝑖 |𝒐−𝑖 ) [log𝑝 (𝑎𝑖 | 𝒐−𝑖 )] − E𝑎𝑖∼𝑝 (𝑎𝑖 ) [log 𝑝 (𝑎𝑖 )]

≥
𝑛∑︁
𝑖=1
E𝑎𝑖∼𝑝 (𝑎𝑖 |𝒐−𝑖 )

[
log𝑞𝜉𝑖 (𝑎𝑖 | 𝒐−𝑖 )

]
− E𝑎𝑖∼𝑝 (𝑎𝑖 ) [log𝑝 (𝑎𝑖 )] ,

(3)
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Figure 2: SMMAE framework. (a) Overall structure. (b) Agent network structure using 𝛼𝑖 as the exploration probability and 𝜇𝑖𝑒𝑥𝑝
as the exploration policy. (c) Network structure to compute adaptive exploration probability 𝜶 .

where𝑞𝜉𝑖 (𝑎𝑖 | 𝒐−𝑖 ) is a variational posterior estimator of 𝑝 (𝑎𝑖 | 𝒐−𝑖 )
with parameter 𝜉𝑖 . As 𝑝 (𝑎𝑖 ) is the prior of actions, the last term
is a constant and can be ignored. Therefore, we only need to con-
sider the first term. We use a network to represent 𝑞𝜉𝑖 (𝑎𝑖 | 𝒐−𝑖 ),
where the input is 𝒐−𝑖 and the output is 𝑎𝑖 . Then the first term
E𝑎𝑖∼𝑝 (𝑎𝑖 |𝒐−𝑖 )

[
log𝑞𝜉𝑖 (𝑎𝑖 | 𝒐−𝑖 )

]
is the network’s negative cross en-

tropy loss L𝑐𝑒 (𝑎𝑖 , 𝑎𝑖 | 𝒐−𝑖 ).
Based on this, we use a two-level heuristic method to adjust 𝛼𝑖 :

𝛼𝑛𝑒𝑤𝑖 =


𝛼𝑙𝑜𝑤 , L𝑐𝑒 (𝑎𝑖 , 𝑎𝑖 | 𝒐−𝑖 ) ≥ L𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
min

(
𝛼𝑜𝑙𝑑
𝑖

+
𝛼ℎ𝑖𝑔ℎ − 𝛼𝑙𝑜𝑤

𝜆𝛼
, 𝛼ℎ𝑖𝑔ℎ

)
, 𝑒𝑙𝑠𝑒,

(4)

where 𝛼𝑙𝑜𝑤 and 𝛼ℎ𝑖𝑔ℎ are the lower bound value and upper bound
value, respectively. 𝜆𝛼 is the scaling parameter for 𝜶 increasing
steps and it takes 𝜆𝛼 steps to increase from the lower bound to the
upper bound, and L𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑢𝑙𝑑 is the loss threshold. For the policy
convergence, 𝛼ℎ𝑖𝑔ℎ will decrease linearly to 𝛼𝑙𝑜𝑤 at the end of the
training. For stability, we update 𝜶 every 𝐸𝛼 episodes.

We need to mask agent 𝑖’s observation as we use other observa-
tion 𝒐−𝑖 of agent 𝑖 to predict agent 𝑖’s action. It means computing
L𝑐𝑒 (𝑎𝑖 , 𝑎𝑖 | 𝒐−𝑖 ) for each agent 𝑖 requires optimizing 𝑛 networks
simultaneously and will consume large amounts of computing re-
sources. Instead, we utilize the structure of the attention mecha-
nism [41] to estimate all the 𝑛 losses within one network:

𝑔𝑎𝑡𝑡 (𝒐𝑡 ) = SoftMax
©­­«
Mask

(
𝑄𝑎𝑡𝑡𝑡 (𝐾𝑎𝑡𝑡𝑡 )𝑇

)
√︁
𝑑𝑘

ª®®¬𝑉𝑎𝑡𝑡𝑡 , (5)

where𝑄𝑎𝑡𝑡𝑡 = 𝒐𝑡𝑊𝑄 ,𝐾𝑎𝑡𝑡𝑡 = 𝒐𝑡𝑊𝐾 ,𝑉𝑎𝑡𝑡𝑡 = 𝒐𝑡𝑊𝑉 and𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉

denote the parameter matrix for the attention mechanism. Here 𝑑𝑘
is the attention key size. As we use other observation 𝒐−𝑖 of agent

𝑖 to predict, the function Mask(𝑋 ) will mask the correlation matrix
and set the diagonal of the matrix to 0 (Figure 2). And the action
prediction is: 𝒂𝑡 = 𝑓𝑎 (𝑔𝑎𝑡𝑡 (𝒐𝑡 )), where 𝑓𝑎 is an action prediction
network with three fully-connected layers.

4.2 Explore by Maximizing State Entropy
Existing algorithms only focus on the global exploration policy,
which will face the curse of dimensionality. Instead, we propose
to use individual exploration and each agent can maximize its
own exploration space, which is more efficient. SMMAE learns
𝑛 independent exploration policies 𝝁𝑒𝑥𝑝 ≡ ⟨𝜇1𝑒𝑥𝑝 , · · · , 𝜇𝑛𝑒𝑥𝑝 ⟩ for
agents. Inspired by SMM [18], we use state marginal matching
to maximize individual exploration space. In MARL, each agent
only has access to local observation, so we use a local observation
to approximate a local state and match the visited observation
distribution 𝜌𝜋𝑖 (𝑜𝑖 ) with a target distribution 𝑝∗ (𝑜𝑖 ), where

𝜌𝜋𝑖 (𝑜𝑖 )

= E𝑎𝑖𝑡∼𝜋𝑖 (𝑎𝑖𝑡 |𝑜𝑖𝑡 ),𝑜𝑖𝑡+1∼𝑂 (𝑃 (𝑠𝑡+1 |𝑠𝑡 ,𝒂𝑡 ) )

[
1
𝑇

𝑇∑︁
𝑡=1

1(𝑜𝑖𝑡 = 𝑜𝑖 )
]
,

(6)

and 𝑝∗ (𝑜𝑖 ) is obtained using prior information. As there is not
any prior information in our experiments, the target distribution of
the exploration policy is uniform. To match the two distributions,
for each policy we aim to optimize the following objective:

min
𝜇𝑖𝑒𝑥𝑝

𝐷KL

(
𝜌𝜇𝑖𝑒𝑥𝑝

(𝑜𝑖 )∥𝑝∗ (𝑜𝑖 )
)

= max
𝜇𝑖𝑒𝑥𝑝

E𝑜𝑖∼𝜌
𝜇𝑖𝑒𝑥𝑝

[
log𝑝∗ (𝑜𝑖 )

]
+ H𝜇𝑖𝑒𝑥𝑝

(𝑜𝑖 ) .
(7)

As 𝑝∗ (𝑜𝑖 ) is uniform, to optimize the objective, each exploration
policy only needs to maximize the last term H𝜇𝑖𝑒𝑥𝑝

(𝑜𝑖 ) and uses
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Algorithm 1: SMMAE
Init: exploration probability 𝜶 , exploration policy 𝝁𝑒𝑥𝑝 ,

multi-agent Q-learning cooperation policy 𝝅𝑐𝑜𝑜𝑝 ,
exploration replay buffer D𝑒𝑥𝑝 , cooperation replay
buffer D𝑐𝑜𝑜𝑝

1 for episode = 1, · · · , 𝐸 do
2 Update 𝜶 every 𝐸𝜶 episodes according to Eq. 4
3 Reset the environment. Get state 𝑠1 and observations

𝒐1 =
(
𝑜11, · · · , 𝑜

𝑛
1

)
4 for 𝑡 = 1, · · · ,𝑇 do
5 for 𝑖 = 1, · · · , 𝑛 do
6 if 𝑥 ∼ U(0, 1) < 𝛼𝑖 then
7 Use exploration policy to select action

𝑎𝑖𝑡 ∼ 𝜇𝑖𝑒𝑥𝑝
(
𝜏𝑖𝑡
)

8 else
9 Use cooperation policy to select action

𝑎𝑖𝑡 ∼ 𝜋𝑖𝑐𝑜𝑜𝑝
(
𝜏𝑖𝑡
)

10 end
11 end
12 Set joint action 𝒂𝑡 =

(
𝑎1𝑡 , · · · , 𝑎𝑛𝑡

)
13 The environment takes a step. Get 𝑟𝑒𝑛𝑣, 𝑠𝑡+1, 𝒐𝑡+1
14 Compute 𝒓𝑒𝑥𝑝 according to Eq. 8
15 Add transition tuples{(

𝑠𝑡 , 𝑜
𝑖
𝑡 , 𝑎

𝑖
𝑡 , 𝑠𝑡+1, 𝑜

𝑖
𝑡+1, 𝑟

𝑖
𝑒𝑥𝑝

)
| 𝑖 = 1, · · · , 𝑛

}
to Dexp

16 Add transition tuple {(𝑠𝑡 , 𝒐𝑡 , 𝒂𝑡 , 𝑠𝑡+1, 𝒐𝑡+1, 𝑟𝑒𝑛𝑣)} to
Dcoop

17 end
18 Update density models 𝑞1

𝜉𝑒𝑥𝑝
, · · · , 𝑞𝑛

𝜉𝑒𝑥𝑝
using

(𝒐1, · · · , 𝒐𝑇 )
19 Train exploration policy 𝝁𝑒𝑥𝑝 using D𝑒𝑥𝑝

20 Train cooperation policy 𝝅𝑐𝑜𝑜𝑝 using Dcoop
21 end

the following reward

𝒓𝑒𝑥𝑝 (𝒐𝑡 , 𝒂𝑡 ) ≜ 𝜆𝑒𝑥𝑝 𝒓𝑒𝑛𝑣 − log𝑞𝜉𝑒𝑥𝑝 (𝒐𝑡+1) (8)

to learn the exploration policy, where 𝒓𝑒𝑛𝑣 ≡ ⟨𝑟𝑒𝑛𝑣, · · · , 𝑟𝑒𝑛𝑣⟩ and
𝜆𝑒𝑥𝑝 is the scaling parameter for environment reward. We use envi-
ronment reward here to assist the exploration. Here 𝒓𝑒𝑥𝑝 (𝒐𝑡 , 𝒂𝑡 ) ≡
⟨𝑟1𝑒𝑥𝑝 (𝑜1𝑡 , 𝑎1𝑡 ), · · · , 𝑟𝑛𝑒𝑥𝑝 (𝑜𝑛𝑡 , 𝑎𝑛𝑡 )⟩, and the reward for the exploration
policy of agent 𝑖 is

𝑟 𝑖𝑒𝑥𝑝 (𝑜𝑖𝑡 , 𝑎𝑖𝑡 ) ≜ 𝜆𝑒𝑥𝑝𝑟𝑒𝑛𝑣 − log𝑞𝑖
𝜉𝑒𝑥𝑝

(
𝑜𝑖𝑡+1

)
, (9)

where 𝑞𝑖
𝜉𝑒𝑥𝑝

(𝑜𝑖
𝑡+1) is the variational estimator for the visiting prob-

ability of agent 𝑖’s observation 𝑜𝑖 w.r.t 𝜌𝜇𝑖𝑒𝑥𝑝 (𝑜
𝑖 ). In practice, each

𝑞𝑖
𝜉𝑒𝑥𝑝

(𝑜𝑖
𝑡+1) is estimated by a Variational Auto-Encoder (VAE) [15]

model, where the input and the reconstruction objective are both
𝑜𝑖 . The reconstruction loss of the VAE model is used as the last
term − log𝑞𝑖

𝜉𝑒𝑥𝑝

(
𝑜𝑖
𝑡+1

)
.

We use the bufferD𝑐𝑜𝑜𝑝 for multi-agent Q-learning and an extra
buffer D𝑒𝑥𝑝 for exploration policy learning to record the tuple{(
𝑠𝑡 , 𝑜

𝑖
𝑡 , 𝑎

𝑖
𝑡 , 𝑠𝑡+1, 𝑜

𝑖
𝑡+1, 𝑟

𝑖
𝑒𝑥𝑝

)
| 𝑖 = 1, · · · , 𝑛

}
, where the trajectories in

D𝑒𝑥𝑝 are the same as that inD𝑐𝑜𝑜𝑝 . The TD loss for all exploration
policies 𝝁𝑒𝑥𝑝 is:

L𝑒𝑥𝑝 =
1
𝑛

𝑛∑︁
𝑖=1

L𝑖𝑒𝑥𝑝 (𝜽 𝑖𝑒𝑥𝑝 )

=
1
𝑛

𝑛∑︁
𝑖=1
E(𝜏𝑖𝑡 ,𝑎𝑖𝑡 ,𝑟 𝑖𝑡 ,𝜏𝑖𝑡+1 )∼D𝑒𝑥𝑝

[(
𝑟 𝑖𝑡

+ 𝛾𝑒𝑥𝑝 max
𝑎
𝑄𝑒𝑥𝑝 (𝜏𝑖𝑡+1, 𝑎;𝜽

𝑖−
𝑒𝑥𝑝 ) −𝑄𝑒𝑥𝑝 (𝜏𝑖𝑡 , 𝑎𝑖𝑡 ;𝜽 𝑖𝑒𝑥𝑝 )

)2]
,

(10)

where 𝜇𝑖𝑒𝑥𝑝 is the exploration policy of agent 𝑖 , 𝜽 𝑖−𝑒𝑥𝑝 are the param-
eters of the target network and will be updated by 𝜽 𝑖𝑒𝑥𝑝 periodically.
All the exploration policy 𝝁𝑒𝑥𝑝 will be trained after the multi-agent
Q-learning policy 𝝅𝑐𝑜𝑜𝑝 is trained.

The whole algorithm is summarized by Algorithm 1. We induce
the adaptive exploration probability based on the uncertainty of the
multi-agent system, and then adopt a new individual exploration
policy. We first describe the adaptive way to control the exploration
probability, which uses the correlation between action and obser-
vation of the agents as the criterion (lines 2 and 4-11). Then we
introduce the individual exploration policy, which is optimized by
state marginal matching [18] (lines 14-15 and 18-19).

5 EXPERIMENTS
We conduct experiments in this section to validate the efficiency of
SMMAE, and we benchmark it on QMIX [34] for it’s widely proved
coordination ability in MARL1. Implementation details of SMMAE
are shown in Appendix B. We first select a training process of SM-
MAE and study the effects of adaptive exploration probability on the
observation areas of the agents during this training process. Then,
we choose the benchmark SMAC [35] as the testbed to study the effi-
cient exploration of SMMAE in complex MARL tasks.2 We compare
SMMAE with several methods, including EMC [53] that focuses on
multi-agent exploration and some other baselines [21, 34, 36, 43, 44].
After that, we conduct ablation experiments to elaborate the effec-
tiveness of each module. We also show the efficient exploration
ability of SMMAE in a visual way. Finally, we show SMMAE is a
general framework for MARL algorithms, and it can be applied
for other environments like Level Based Foraging (LBF) [7] . More
experimental results can be found in the appendix part.

5.1 Study on Adaptive Exploration
In this section, we analyze the effectiveness of adaptive exploration
probability. To study the impact of adaptive exploration probability
on one agent and the whole team, we experiment on the super hard
map 6h_vs_8z in SMAC, and a training process is shown in Figure 3.

The left figure of Figure 3 shows the adaptive exploration proba-
bility of one agent and the team test win rate changing over time.
We find that the exploration probability of this agent shows a fluc-
tuating decrease (the blue curve) as the training proceeds, which

1The experiments are based on PyMARL framework.
2The SMAC version in our experiments is SC2.4.6.2.69232.
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240k 510k 960k 2M

Figure 3: Influence of adaptive exploration probability on 6h_vs_8z. The left part shows the correlation between the performance
curve of self team and the adaptive 𝛼 curve of one agent during 2 million training steps. The right part visualizes the agent’s
observations (t-SNE projection on 2-D) during the training process, which illustrates the dynamic exploration preference and
its impact on the performance.

Figure 4: Results on three super hard maps in the SMAC.

SMMAE

SMMAE w/o μexp

SMMAE w/o adaptive α

QMIX

Figure 5: Ablation study.

is adaptive compared with the vanilla 𝜀-greedy. At the beginning
of training, the agent explores with a high probability most of the
time, while in the middle of training, the exploration probability of
the agent varies continuously between high and low values. At the
end of the training, the exploration probability tends to converge
and gradually stabilizes at a low value.

To analyse the effect of exploration probability on observation
areas, we select 4 timesteps, 240𝑘 , 510𝑘 , 960𝑘 , and 2𝑀 , where the ex-
ploration probability at 240𝑘 and 510𝑘 timesteps are the two peaks,
while the exploration probability at 510𝑘 and 2𝑀 timesteps are the
two valleys. All observations of this agent in the 10 episodes near
these 4 timesteps are sampled (four shadow areas in the left figure
of Figure 3), and 100 points were randomly selected from them. The
right figure in Figure 3 shows the visualization of these points after
we apply t-SNE [39] for dimensionality reduction. We find that for
the two timesteps with higher exploration probability, there are
more scattered clusters (240 and 960𝑘 , red and orange for each),
while for the two timesteps with lower exploration probability,
there are fewer clusters (510𝑘 and 2𝑀 , green and violet).

In addition, we can find some correlation between the brown test
win rate curve and the blue exploration probability curve in the left

figure of Figure 3. The red shadow area in the figure is in the early
stages of training, where the test win rate remains 0% and the agent
focuses on exploring and experiencing more state areas. The green
shadow area in the figure has a low probability of exploration. At
these timesteps, the correlation between the agents is low, so the
agents are more focused on learning how to cooperate with other
agents than exploring. Then, some improvement in the brown test
win curve can be noticed in this region. The orange shadow area
in the figure is a peak of exploration. At this time, the correlation
between the agents is already high, so the agent learns to explore
more areas, thus jumping out of the local optimum. Therefore, there
is a significant drop in the test win rate near this area. In the violet
region, the probability of exploration is close to convergence and
the agent focuses on better cooperation. The test win rate reaches
the peak of the entire training process, validating the effectiveness
of our design of adaptive exploring probability.

5.2 Performance on SMAC Super Hard Maps
In order to test the effectiveness of SMMAE, we use the bench-
mark SMAC [35] as the testbed. We compare SMMAE with some
baselines, where VDN [36] and QMIX [34] are popular baselines,
RODE [44] and QPLEX [43] are the state-of-the-art baselines, and
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Figure 6: The t-SNE projection on global state.

MAVEN [21] and EMC [53] are the latest methods on MARL explo-
ration. For evaluation, we carry out each experiment with 5 random
seeds, and the results are shown with a 95% confidence interval.

Figure 4 shows the training curves of SMMAE and other methods
on several super hard tasks of SMAC. It can be seen that SMMAE
achieves competitive results on tasks such as 6h_vs_8z and corridor
that require sufficient individual exploration and team cooperation.
It shows that adaptive exploration can also achieve the results of
other methods using complex modules. This also illustrates the
effectiveness of SMMAE because it performs individual exploration
and task-related exploration (Section 5.5 gives a visual explanation).

The final test win rate of SMMAE and that of baseline EMC on
corridor are almost the same, but it should be noted that EMC needs
to use 15GB of GPU when training corridor, while our SMMAE only
needs about 4GB.

5.3 Ablation Study
As our method includes multiple modules, we compare SMMAE
with three ablated methods for ablation study:

• SMMAE w/o 𝝁𝑒𝑥𝑝 : SMMAE using random exploration in-
stead of the exploration policy 𝝁𝑒𝑥𝑝 .

• SMMAE w/o adaptive 𝜶 : SMMAE using fixed ending 𝜶
instead of the adaptive 𝜶 .

• QMIX: the QMIX baseline [34].
Figure 5 shows the average test win rate of these four approaches

on the 6h_vs_8z scenario of SMAC. Compared with the original
QMIX, SMMAE w/o adaptive 𝛼 is slightly better, while SMMAE
w/o 𝝁𝑒𝑥𝑝 has greatly improves performance. It illustrates the effec-
tiveness of the two modules. Among these four methods, SMMAE
achieves the best results, which indicates the effectiveness of us-
ing two modules simultaneously. However, it is also observed that
the variance of SMMAE becomes larger compared to SMMAE w/o
𝝁𝑒𝑥𝑝 , which indicates that increasing the exploration capability of
the individual exploration policy may introduce some instability to
the training process. Compared with SMMAE w/o 𝝁𝑒𝑥𝑝 , SMMAE
has similar convergence win rate. Therefore, We conducted experi-
ments on two additional maps 2c_vs_64zg and corridor in SMAC
to further investigate the effect of the exploration policies 𝝁𝑒𝑥𝑝 in
SMMAE (Figure 7). All of these results demonstrate that although
random exploration can sometimes perform well, 𝝁𝑒𝑥𝑝 can explore
more efficiently and speed up training .

To qualitatively analyze the exploration ability of the exploration
policy, in the ablation experiment, we sample the episodes experi-
enced by SMMAE and SMMAE w/o 𝝁𝑒𝑥𝑝 . Then we sample global

SMMAE

SMMAE w/o μexp

(a) 2c_vs_64zg

SMMAE

SMMAE w/o μexp

(b) corridor

Figure 7: More exploration policy ablation in SMAC.

state points randomly from them, and visualize the points after di-
mensionality reduction using t-SNE [39]. Figure 6 shows the results.
It can be found that SMMAE has more dispersed clusters in the two-
dimensional t-SNE embedding space (Figure 6(a)), and SMMAE has
more uniform density and wider range in one-dimensional t-SNE
embedding space (Figure 6(b)). It shows that SMMAE, which uses
the exploration policy 𝝁𝑒𝑥𝑝 that maximizes the state entropy of
local visited observations, has a stronger exploration ability. Then
we try to express the visualization results quantitatively. Because
the state space is continuous, we retain two decimal places for each
dimension of each global state and calculate an approximate en-
tropy of the visited state based on state counting. The entropy of
SMMAE is 15.238, and the entropy of SMMAE w/o 𝝁𝑒𝑥𝑝 is 14.982.
The quantitative results are consistent with the visualization re-
sults (Figure 6).

5.4 Comparation with Finetuned-QMIX
Hu et al. [14] finetune QMIX [34] by adding a variety of implemen-
tation tricks and achieve good performance on SMAC. To show the
necessity of the designs in SMMAE, we compare SMMAE with it,
denoted as Hu-QMIX, on the four super hard maps in SMAC. The
results show that our SMMAE, which is based on the vanilla QMIX
outperforms the finetuned QMIX Hu-QMIX on all the maps (Fig-
ure 9). Compared with Hu-QMIX, SMMAE is able to achieve higher
test win rate faster and converge to higher win rate on all maps. It
demonstrates the effectiveness of SMMAE.

5.5 Efficient Exploration in Task-Related Space
In this section, we qualitatively compare the exploration efficiency
of SMMAE with that of baseline EMC on 6h_vs_8z by visualization.
Figure 8 shows the visual results. The left picture and the right
figure are the coordination patterns of the two algorithms during
test time. Same as the operation in Figure 6(a), we sample the global
state points from their training processes and use t-SNE [39] to
visualize the points after dimensionality reduction (middle figure
of Figure 8). The middle figure of Figure 8 shows that SMMAE
has a similar number of clusters as that of EMC, which means
SMMAE and EMC have similar sizes of exploration areas. Same as
the calculation method of visiting state entropy in Section 5.3, the
entropy of SMMAE is 13.574, and the entropy of EMC is 13.428.
The replays of SMMAE during test time show that the agents have
learned how to cooperate in different ways to attack the enemies,
where the agents have learned how to surround the enemies and
how to increase the distance to the enemies to take advantage
of range (left figure of Figure 8). However, the replays of EMC
during test time show that the agents only have learned how to
escape (right figure of Figure 8). The different results demonstrate
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Figure 8: Exploration experiments on 6h_vs_8z. Left: SMMAE replay during test, where the red ones are controlled by SMMAE
and the orange ones are the enemies.Middle: Two-dimensional global state t-SNE embeddings during training. Right: EMC
replay during test, where the blue ones are controlled by EMC and the orange ones are the enemies.

(a) 3s5z_vs_3s6z (b) 6h_vs_8z

(c) corridor (d) MMM2

Figure 9: Comparation with the finetuned QMIX on four
super hard maps of SMAC.

that although SMMAE and EMC have similar sizes of exploration
areas, SMMAE can explore more efficiently because the space it
explores is more task-related. In fact, our method itself does not
explicitly aim to explore the task-related space. In SMMAE, each
agent uses its own exploration policy to maximize the entropy of
the states it visits, so the method can more efficiently cover a wider
exploration space, thus covering task-related states.

5.6 Performance on Level Based Foraging and
Application on VDN

Besides SMAC, we also use Level Based Foraging (LBF) [7] to test
the ability of SMMAE (Figure 10). The results show that SMMAE
can outperform QMIX on the simple task (Figure 10(a)). Because
VDN performs better than QMIX on LBF using PyMARL, we also
apply SMMAE to another baseline VDN, denoted as SMMAE-VDN,
to test the ability of SMMAE. The results show that SMMAE-VDN
can also outperform VDN on the task in LBF (Figure 10(b)). It

(a) lbforaging-8x8-2p-2f (b) lbforaging-10x10-2p-2f

Figure 10: Results on two scenarios in LBF.

demonstrates that SMMAE is a effective general framework, which
can be applied on other value-based MARL methods, and the faster
convergence speed means the baselines using SMMAE can explore
more effectively.

6 CONCLUSION
With appropriate hyper-parameters, we empirically find that vanilla
MARL algorithms using self-exploration can also achieve competi-
tive performance. Consequently, in this paper we propose SMMAE,
a novel algorithm that adaptively adjusts the individual exploration
probability according to the uncertainty of the multi-agent system
at different timesteps. SMMAE focuses on each agent’s individ-
ual exploration ability by learning an individual exploration pol-
icy, which is optimized by target state distribution matching. We
study SMMAE on a variety of tasks in the SMAC benchmark, and
empirically reveal that SMMAE can explore more efficiently on
task-related states and generate better cooperation policies. We
take a step towards achieving a trade-off between individual ex-
ploration and team cooperation, and we think it is promising for
SMMAE to solve complex tasks in multi-agent systems combined
with other methods like communication in future work. It should be
pointed out that directly matching the explored states to a uniform
distribution may cause unexpected exploration, and the adaptive
exploration probability is necessary for stabilizing training. It de-
serves further research on the target distribution of the exploration
policy and the adaptive exploration probability.
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