
Multi-Agent Consensus-based Bundle Allocation
for Multi-Mode Composite Tasks

Gauthier Picard
ONERA/DTIS, Université de Toulouse

Toulouse, France
gauthier.picard@onera.fr

ABSTRACT
We consider agents having to schedule tasks within time slots they
own on some resources. We focus on composite tasks that require
multiple atomic tasks to be completed, potentially slotted into dif-
ferent private plans, and on disjunctive resources that can only
perform one task at a time. There are multiple ways (or modes)
to fulfill such composite tasks, with more or less atomic tasks to
perform. Some non-owner agents may want to schedule such multi-
mode composite tasks requiring access to one or more private slots.
Slot owners thus have to coordinate as to collectively fulfill the
requests, without disclosing their own plans. This scenario is mo-
tivated by innovative concepts of operations in Earth observation
satellite constellations, where some users own some orbit slots,
and plan any observation task they want by directly communicat-
ing with the satellites flying within their slots. We address this
problem from a multi-agent perspective where agents are slot own-
ers, which make use of a coordination mechanism built upon an
auction-based task allocation technique, MM-CBGA, adapting the
consensus framework to the case of multi-mode composite requests.
The contribution is evaluated and compared to centralized greedy
allocations and sequential auctions, using simulated constellations
and realistic order books for observations over Europe.

KEYWORDS
Task allocation, Composite tasks, Multiple modes, Consensus-Based
Group Allocation, Earth observation satellites
ACM Reference Format:
Gauthier Picard. 2023. Multi-Agent Consensus-based Bundle Allocation for
Multi-Mode Composite Tasks. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
The deployment of larger constellations for Earth observation tasks
requires solving more and more complex planning and schedul-
ing problems. Indeed, while a larger number of satellites linearly
increases the number of opportunities to satisfy complex user re-
quests (e.g. monoscopic, stereoscopic, systematic, periodic) at a
higher frequency, it also exponentially increases the size of the
resulting scheduling and task allocation problems [22]. Even more
constraining, solving such problems should be performed several
times a day, in less than few minutes, as to adapt the plan to meteo-
rological conditions, or last-minute high-priority requests, and so

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

that plans are directly sent to the satellites as soon as they are within
communication range. And to make it even more complex, some
constellations now consider concepts of operations where some
users own some orbit slots for a long period of time [16, 17, 20].
Owners fully manage the plans within their orbit slots and keep
them private. Any non-owner user wishing to perform some ob-
servations requiring access to some private orbit slots needs to
make a request to owners, which have to coordinate without dis-
closing their own plans, and then decide to accept or not these
tasks. Looking at this problem in a more generic way, we consider
a set of agents having their own private slots on some disjunctive
resources, within which they can schedule whatever they want.
Some requests from non-owners, may require access to one or more
such private slots. This problem amounts to finding an allocation of
tasks to private slots, so that requests are fulfilled in the best man-
ner, whilst minimizing their impact on the private plans and their
disclosure; which can be instantiated to other application fields,
such as collective robotics, autonomous cars, or UAVs.

This problem falls into the multi-robot/multi-agent task alloca-
tion frameworks [7, 18]. Among the efficient solution methods for
solving such problems, market-based allocation techniques have
recently received particular attention, and have been used in col-
lective robotics [12] and Space [14, 19] domains. Here, agents (or
robots) implement auction-based algorithms to allocate the tasks
in a distributed cooperative manner. Agents bid on single tasks or
bundle of tasks they want to insert into their plans, and winners
are determined depending on the value of the bids, in a central-
ized (e.g. combinatorial auctions, PSI, SSI [13]) or decentralized (e.g.
CBBA [2]) manner. In the domain of observation task allocation,
We provided models and algorithms for Earth observation-specific
scenarios with private slots [20], where each mode only contained
a single task. In a slightly different direction, Phillips and Parra
investigate the use of consensus-based bundle allocation between
satellite themselves, but without any privacy concern [19]. Finally,
Lee et al. consider several constellations owned by different agents
and propose to use consensus-based protocols to allocate tasks
within these constellations [14]. In all these models and algorithms,
composite requests are not considered. In such approaches tasks
are not interdependent or part of a composite task: agents only
care about their bundle consistency and value, and not about some
constraints over the set of atomic tasks from the same compos-
ite task. To meet such item interdependencies, one may rely on
a centralized winner determination, guaranteeing the constraints
or the criteria over composite tasks are optimized [15]. In more
distributed settings, such as consensus-based task allocation (e.g.
CBAA or CBBA), where the winner determination is distributed,
capturing task interdependencies is not often considered. However,

Session 2B: Planning + Task/Resource Allocation

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

504

Hunt et al. proposed an extension of CBBA, called CBGA, to handle
multi-agent tasks, i.e. tasks requiring several agents to be performed
[10]; but again, only one mode was considered for each such task.

We propose here an extension of CBGA to cope with multi-mode
composite tasks, and apply it to an Earth observation scenario with
multiple orbit slot owners. Our contributions are the following:

(1) We model the multi-agent multi-mode composite task allo-
cation problem (MACTA);

(2) We map MACTA to a mathematical program, and propose a
greedy algorithm to solve it;

(3) We devise a distributed solver for MACTA (MM-CBGA);
(4) We map an extended version of Earth observation satellite

constellation scheduling problem [20] to MACTA, by consid-
ering composite tasks instead of monoscopic tasks;

(5) We assess MM-CBGA performances on realistic order books
and a constellation simulator.

The paper is structured as follows. Section 2 provides the details
of the MACTA problem model. Section 3 defines a mathematical
program to model MACTA, and a greedy algorithm as to scale
up its resolution. Section 4 presents the core contribution of the
paper, MM-CBGA. Section 5 describes the experimental setup and
analyzes the results obtained with MM-CBGA against a centralized
baseline, and a single item sequential auction algorithm. Section 6
concludes the paper with some perspectives.

2 PROBLEM MODEL AND NOTATIONS
This section introduces the multi-agent composite task allocation
problem we address in this work.

Definition 2.1 (Slot). A slot 𝑤 = [𝑠𝑤 , 𝑒𝑤] is a time window, where
𝑠𝑤 ∈ [𝑡min, 𝑡max], 𝑒𝑤 ∈ [𝑡min, 𝑡max], 𝑠𝑤 < 𝑒𝑤 , 𝑡min ∈ R≥0, 𝑡max ∈
R≥0, and 𝑡min < 𝑡max.

Let T be a set of tasks to perform and R a set of disjunctive
resources i.e. that can only be used for a single task at a time. In our
paper, tasks will be observation tasks to perform on satellites, that
can only perform one observation at a time.

Definition 2.2 (Task). A task 𝜏 ∈ T is a tuple ⟨𝑤𝜏 , 𝑑𝜏 , 𝑟𝜏 , 𝜔𝜏 ⟩
where 𝑤𝜏 = [𝑠𝜏 , 𝑒𝜏] is the slot during which the task can be sched-
uled, 𝑑𝜏 ∈ R≥0 is the duration of the task, 𝑟𝜏 ∈ R is a disjunctive
resource on which the task has to be performed, and 𝜔𝜏 ∈ R≥0 is
the reward received for performing the task.

Definition 2.3 (Schedule). A schedule is a set 𝜋 = {(𝜏, 𝑡) | 𝜏 ∈
T , 𝑡 ∈ [𝑡min, 𝑡max]} defining the start time 𝑡 of each task 𝜏 , such
that there is no overlap between any tasks on the same resource:
∀(𝜏, 𝑡), (𝜏 ′, 𝑡 ′), [𝑡, 𝑡 + 𝑑𝜏] ∩ [𝑡 ′, 𝑡 ′ + 𝑑𝜏 ′] = ∅.

Let T̊ be a set of requests to fulfill. In our experiments, some re-
quests will arise from client users that can be fulfilled by performing
observations on private orbit slots.

Definition 2.4 (Request). A request (or composite task) 𝜏 ∈ T̊ is
a tuple ⟨𝑀𝜏 , ⊕𝜏 ⟩ where 𝑀𝜏 ∈ 2T is the set of sets of tasks allowed
to fulfill the request (i.e. the set of modes), and ⊕𝜏 : 𝑀𝜏 → R≥0 is
an aggregation function which computes the reward received for
fulfilling each mode, based on its individual task rewards.

The notion of mode is common in resource-constrained project
scheduling (RCPSP) [3], and even used in some Earth observation
scheduling [22]. It is convenient to model the interdependencies
between atomic tasks to fulfill requests. The aggregation function
⊕𝜏 can be any monotonically increasing function such as the sum
(+), or a linear function with some discount factor for any task after
the first one1. A request is fulfilled if one of its mode is scheduled,
i.e. all the tasks of one mode are scheduled.

Definition 2.5 (Mode reward). For a given mode 𝑚 of a request
𝜏 , we call the mode reward the aggregation of the rewards of the
tasks composing the mode: 𝜔𝑚

def
= ⊕𝜏 (𝑚).

For a given task 𝜏 , we note request(𝜏) (resp. mode(𝜏)) the request
(resp. mode) 𝜏 contributes to. We also note modes(𝜏) the set of
all modes for request 𝜏 , and by extension we note modes(𝑇) =⋃

𝜏𝑖 ∈𝑇 modes(𝜏𝑖).
Definition 2.6 (Schedule reward). For a given schedule 𝜋 , we

call the schedule reward, noted 𝜔𝜋 , the sum of the rewards of the
scheduled modes:

𝜔𝜋
def
=

∑︁
𝑚∈mode(𝜏)

𝜏∈𝜋

𝜏⊕
𝜏∈𝜋

𝜔𝜏

LetA be a set of agents able to perform tasks. In our experiments,
agents will be private slot owners, that can receive requests to insert
some observations in their private slots.

Definition 2.7 (Agent). An agent 𝑖 ∈ A is a tuple ⟨O𝑖 , T̊ −𝑖 , T̊ +
𝑖
, 𝜋𝑖 ⟩

where O𝑖 = {(𝑟,𝑤) | 𝑟 ∈ R,𝑤 = [𝑠𝑤 , 𝑒𝑤]} is a set of private slots
on some resources, T̊ −

𝑖
⊂ T̊ is a set of private requests it wants

to schedule within its private slots, T̊ +
𝑖
⊂ T̊ is the set of external

requests that 𝑖 is asked to schedule, and 𝜋𝑖 is the agent’s current
schedule which assigns a start time to some of its private and some
external tasks.

Note that there is no co-ownership of slots, i.e. for the same
resource 𝑟 , there is no overlap between any private slots. Moreover,
we assume that windows for private tasks are fully included in
private slots. We also note that 𝜋𝑖 is divided into two subparts: 𝜋−

𝑖
for private tasks, and 𝜋+

𝑖
= 𝜋𝑖 \𝜋−𝑖 for external tasks from the clients.

We identify the tasks an agent can perform, i.e. whose time windows
are included in some of its private slots, using can : A → 2T . By
extension we also use can for composite tasks, if at least one task
can be scheduled in one of the agent’s private slot.

Definition 2.8 (MACTA). Amulti-agent multi-mode composite task
allocation problem (or MACTA) is a tuple 𝑃 = ⟨A,R, T̊ ⟩, defined
by a set of agents A, a set of disjunctive resources R, and a set of
requests T̊ (private or not), and it amounts to finding the allocation
of atomic tasks to agents, i.e. agent schedules integrating the atomic
tasks, which maximizes the sum of the rewards of the fulfilled
requests, whilst meeting disjunction constraints between resources:

max
∑︁
𝜏∈ T̊

𝜔𝜏

1For readability and simplicity, we will use the simple sum (+ and
∑

), instead of the
request-specific operator (⊕𝜏 and

⊕
𝜏) in the rest of the paper.

Session 2B: Planning + Task/Resource Allocation

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

505

𝑡

sat1

sat2

𝜏1,1

𝜏2,1

𝜏2,2

𝜏3,1

𝜏3,2

𝜏4,1 𝜏4,2

𝜏4,3 𝜏4,4𝜏6,1

𝜏5,1 𝜏5,2 𝜏6,2 𝜏7,1

𝜏7,2

Figure 1: A simple MACTA, as described in Example 2.9. Pri-
vate slots are hatched red (𝑢1) and blue (𝑢2). Currently slotted
tasks are solid colored rectangles, non slotted ones are dashed.
Tasks from the same request are grouped together with solid
lines when tasks belong to the same mode, or dashed lines
when tasks belong to different modes.

𝑡

sat1

sat2

𝜏2,2 𝜏3,2

𝜏4,1 𝜏4,2

𝜏6,1

𝜏5,1 𝜏5,2 𝜏6,2

𝜏7,2

Figure 2: A solution schedule for example in Figure 1.

For a given MACTA 𝑃 , we note T̊ + def
=
⋃

𝑖∈A {T̊ +𝑖 } the set of tasks
which are not private to any slot owners. For a given agent 𝑖 , we note
𝑃−
𝑖

the problem restricted to T̊ −
𝑖

, as to compute its initial schedule
𝜋𝑖 or to revise it, given some additional tasks. As a shortcut, we
note 𝑃−

𝑖
⊎𝑀 the problem consisting in solving the private 𝑃−

𝑖
with

extra modes contained in the set 𝑀 , where each mode is filtered
so that only tasks within 𝑖’s slots are considered. It will be used to
assess the cost of slotting modes into the schedules.

Note that, while agents may have initial private schedules, we
consider these schedules can be revised as to increase the collec-
tive reward. However, if some agents are reluctant to revise their
schedule, they can either always answer "no" to any request over-
lapping their schedule, or increase the reward of their own tasks
and requests to guarantee their presence in the final schedule.

Example 2.9. Figure 1 illustrates a simple MACTA. We consider
the time frame [𝑡min, 𝑡max] = [0, 10], and a constellation with two
satellites, R = {sat1, sat2}. Two agents, A = {𝑢1, 𝑢2}, own two
private slots each, emit two requests into their private slots, and
already have computed some initial schedule to fulfill their own
requests. For instance, 𝑢1 emitted two requests: 𝜏1 with a single
mode {𝜏1,1}, and 𝜏2 with two modes {𝜏2,1} and {𝜏2,2}. 𝑢2 emitted
two requests: 𝜏3 with two modes {𝜏3,1} and {𝜏3,2}, and 𝜏4 with two
modes {𝜏4,1, 𝜏4,2} and {𝜏4,3, 𝜏4,4}. Particularly, the "all-or-nothing"
𝜏4 requires two tasks to be performed, or none.

We consider the following rewards for tasks: 𝜔𝜏1,1 = 𝜔𝜏2,1 =

𝜔𝜏4,3 = 𝜔𝜏4,4 = 10, 𝜔𝜏2,2 = 𝜔𝜏3,1 = 𝜔𝜏3,2 = 𝜔𝜏4,1 = 8, 𝜔𝜏4,2 = 6.
Assuming the aggregation function for requests is +, the best private

schedules for agents are those represented in Figure 1, selecting
the best modes for each request. The resulting reward is 48.

Now, when some external requests arise, the private schedules
may drastically change as to increase the global reward. We consider
three new requests (in green in the figures) emitted by an external
user, with all the same atomic task reward of 6: 𝜏5 with one mode
{𝜏5,1, 𝜏5,2}, 𝜏6 with one mode {𝜏6,1, 𝜏6,2}, and 𝜏7 with two modes
{𝜏7,1} and {𝜏7,2}. Without revising 𝑢1 and 𝑢2’s initial schedules, the
only fulfilled external request is 𝜏7, by scheduling 𝜏7,2, which results
in a schedule reward of 48 + 6 = 54.

𝑢1 benefits in removing task 𝜏1,1 to schedule 𝜏6,1 and 𝜏6,2, for
a gain of 6 + 6 − 10 = 2, but requires coordination with 𝑢2 who
has to insert 𝜏6,2 in its schedule. 𝑢1 also switches from 𝜏2,1 to 𝜏2,2,
leaving room for 𝜏5,1, and requiring scheduling 𝜏5,2, which obliges
𝑢2 to switch from 𝜏3,1 to 𝜏3,2, which in the end generates a gain
of 6 + 6 − 10 + 8 − 8 = 2. The schedule reward of the solution
illustrated in Figure 2, which is optimal, is 60. However, achieving
such quality requires the agents to coordinate when requests have
different modes concerning several private slots.

Finally, note that for simplicity, we did not consider tasks can be
positioned in flexible time windows: their time windows are single
points. Thus, other schedule revisions and adaptations would have
been possible with larger margins, by sliding some tasks.

3 CENTRALIZED APPROACHES
A classical approach to centrally solve an allocation problem con-
sists in using a mathematical program –ideally a linear program,
as to benefit from efficient off-the-shelves solvers, such as IBM
CPLEX [11] or Gurobi [9]. Alternatively, one may rely on greedy
algorithms, as to scale up. Notice that these solutions are clearly
not respectful of privacy: agents would have to send all their data to
a central authority in charge of computing the schedules. However,
they represent good baselines for assessing quality of the solutions
obtained in a decentralized manner, and they can be used by agents
to compute or assess private schedules, only concerning their own
requests and external requests on their private slots.

Optimal Approach. We formulate our problem as a mixed inte-
ger linear program (MILP). Let’s consider our decision variables:
𝑥𝜏 ∈ {0, 1} a binary variable stating whether task 𝜏 is scheduled;
𝑦𝑚 ∈ {0, 1} a binary variable stating whether mode𝑚 is selected
for fulfilling some request 𝜏 ; 𝑡𝜏 ∈ [𝑠𝑤𝜏

, 𝑒𝑤𝜏
− 𝑑𝜏] a continuous

variable stating the starting time of 𝜏 ; and 𝛽𝜏,𝜏 ′ ∈ {0, 1} a binary
variable stating whether 𝜏 precedes 𝜏 ′. We note (𝜏, 𝜏 ′) ∈ T 2

∩ pairs of
distinct tasks on the same resource with intersecting time windows.

max
𝑦𝑚

∑︁
𝜏∈ T̊

∑︁
𝑚∈𝑀𝜏

𝜔𝑚𝑦𝑚 (1)

s.t.
∑︁
𝜏∈𝑚

𝑥𝜏 ≥ |𝑚 |𝑦𝑚, ∀𝜏 ∈ T̊ ,∀𝑚 ∈ 𝑀𝜏 (2)∑︁
𝑚∈𝑀𝜏

𝑦𝑚 ≤ 1, ∀𝜏 ∈ T̊ (3)

2 − 𝛽𝜏,𝜏 ′ − 𝛽𝜏 ′,𝜏 ≤ 𝑥𝜏 , ∀(𝜏, 𝜏 ′) ∈ T 2
∩ (4)

2 − 𝛽𝜏,𝜏 ′ − 𝛽𝜏 ′,𝜏 ≤ 𝑥𝜏 ′ , ∀(𝜏, 𝜏 ′) ∈ T 2
∩ (5)

𝛽𝜏,𝜏 ′ + 𝛽𝜏 ′,𝜏 ≤ 3 − 𝑥𝜏 − 𝑥𝜏 ′ , ∀(𝜏, 𝜏 ′) ∈ T 2
∩ (6)

Session 2B: Planning + Task/Resource Allocation

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

506

𝑡𝜏 − 𝑡𝜏 ′ ≥ 𝑑𝜏 − Δmax
𝜏,𝜏 ′ 𝛽𝜏,𝜏 ′ , ∀(𝜏, 𝜏 ′) ∈ T 2

∩ (7)

𝑡𝜏 ′ − 𝑡𝜏 ≥ 𝑑′𝜏 − Δmax
𝜏 ′,𝜏 𝛽𝜏 ′,𝜏 , ∀(𝜏, 𝜏 ′) ∈ T 2

∩ (8)

with Δmax
𝜏,𝜏 ′ = 𝑒𝜏 − 𝑠𝜏 ′ +𝑑𝜏 a value serving as a big-M constant [8] to

trigger constraints conditioned by precedence between two tasks.
This MILP aims at maximizing the reward from active modes, as
stated in Equation (1). Constraint (2) links 𝑥 ’s and𝑦’s by stating that
if a mode is selected all its tasks should be scheduled. Constraint (3)
forces to select at most one mode per request. Constraints (4) to (6)
ensure the consistency of precedence variables, while Constraints
(7) and (8) guarantee that distinct tasks on the same resource do
not intersect. Unfortunately, such a program, given the presence of
potentially numerous integer and binary variables, will not scale
up. So, one would have to consider non optimal approach, such as
greedy allocation, which have shown good performance on simi-
lar task allocation problems [1, 23]. We therefore sketches in the
following paragraph a greedy algorithm to fulfill requests.

GreedyApproach. The greedy algorithm, presented in Algorithm 1,
first sorts modes in decreasing reward order (lines 4). For each mode,
it attempts to find slots for all tasks in the mode (lines 5-11). If all
tasks can be scheduled, the mode is selected and all tasks are sched-
uled (lines 12-14). Otherwise, the successful slots are removed from
the resource schedule. To find a slot, the function first simply
searches for the first available slot on the resource schedule, con-
sistent with the time window of the task, without any overlap with
any already slotted task. This greedy algorithm is not optimal, but
provides very fast solutions, since it is polynomial in the number
of modes and tasks. But, as for MILP, it requires sharing all the
constraints and information with a central scheduler authority.
This algorithm will be our baseline for experiments, since greedy
algorithms are largely used in space mission scheduling, by constel-
lation operators, and because the MILP solver did not scale up even
for the smallest problems we consider, while greedy algorithms
provide solutions in less than few minutes on larger problems.

4 MULTI-MODE CONSENSUS-BASED BUNDLE
ALLOCATION FOR COMPOSITE TASKS

This section exposes the core contribution of the paper: MM-CBGA,
a consensus-based algorithm for allocating composite tasks with
multiple modes to a set of agents. Beforehand, we briefly recall
some background on auction-based task allocation.

4.1 Auction-based Task Allocation
The classical task allocation framework consists in a set of resources
and a set of tasks to be performed on some resources. The objective
is to assign tasks to resources so that this optimizes some criteria
(e.g. the number of assigned tasks, the sum of the rewards of the
slotted tasks, the makespan of the overall schedule, etc.). This is a
classical allocation problem that can be modeled as a MILP (similar
to the one in the previous section). The idea is that the tasks to
be scheduled are open for bidding by an auctioneer. The bidder
agents evaluate the tasks depending on their current plan, and send
their bids for some of these tasks. Then the auctioneer determines
the winners depending on their bids and on constraints on the re-
sources. Here, the most computationally expensive operations are

Algorithm 1: Greedy MACTA Solver
Data: A MACTA 𝑃 = ⟨A, R, T̊ ⟩
Result: A schedule 𝜋

1 𝜋 ← {} // the schedule to build

2 𝑅 ← {(𝑟, []) } | 𝑟 ∈ R} // the resource schedules

3 𝑆 ← {} // the fulfilled requests

4 𝑀 ← sort(modes(T̊)) // the sorted modes

5 for𝑚 ∈ 𝑀 do
6 if request(𝑚) ∉ 𝑆 then // request not fulfilled

7 𝑇 ← {} // the slots found so far

8 for 𝜏 ∈ 𝑚 do
9 𝑡 ← first(𝜏, 𝑃, 𝑅)

10 if 𝑡 ≠ ∅ then // slot found for task

11 𝑇 ← 𝑇 ∪ {𝑡 }

12 if |𝑇 | = |𝑚 | then // all slots found for mode

13 𝜋 ← 𝜋 ∪ { (𝜏, 𝑡) | 𝑡 ∈ 𝑇 }
14 𝑆 ← 𝑆 ∪ {request(𝑚) }
15 else // no room for all tasks

16 remove(𝑇, 𝑅) // remove explored slots

17 return 𝜋

the bidding step performed by each bidder, which can have an expo-
nential number of bundles to valuate, and the winner determination
problem (WDP) performed by the auctioneer, which amounts to
solving an Integer Linear Program with a potentially exponential
size, and falls into the combinatorial auction (CA) framework [4].

Looking at the literature on multi-robot task allocation [5, 12]
and multi-satellite observation allocation [14, 19, 20], these com-
putational limits can be overcome using the classical relaxation
consisting in only allowing bidding on single items (and not on
bundles). When bidders bid on the whole set of items in parallel,
we fall into Parallel Single Item (PSI) framework [13]. When the
auctioneer announces items one by one, and bidders build their bid
knowing the previous item allocations, we fall into the Sequential
Single Item (SSI) framework [13]. In general SSI has very good
performances with very limited computation time, while PSI solu-
tion quality is often limited, since bidders cannot easily reason on
bundles. More recently, consensus-based bundle algorithm (CBBA)
combines ideas from auctions and consensus to converge faster (in
rounds) than SSI while yielding similar solutions and having the
benefits of traditional consensus algorithms [2]. CBBA is a fully
distributed solution to implement a computationally cheap variant
of combinatorial auctions. It follows a repeated 2-phase sequence.
First, during the bidding phase, each agent constructs a unique bun-
dle of items it wishes to be assigned to, with respect to the marginal
cost associated with the inclusion of the considered item into its
current plan. Then during the consensus phase, the agents compare
their bids with their teammates’ bids. If an agent is outbid on an
item 𝑡 , it drops the item and all the items added after it, as the ex-
clusion of 𝑡 made the valuation of their marginal cost obsolete. This
algorithm has been extensively studied and modified to improve its
performances and adapt it to specific scenarios, like multi-satellite
observation allocation [14, 19, 20]. The very extension we focus on
in this paper is CBGA, Consensus-based Group Auction [10]. Here,
some multi-agent tasks require the participation of several agents

Session 2B: Planning + Task/Resource Allocation

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

507

Algorithm 2: MM-CBGA solver
Data: A MACTA 𝑃 = ⟨A, R, T̊ ⟩
Result: A schedule 𝜋+ for external requests, and a private schedule

𝜋−
𝑖

for each agent 𝑖 ∈ A
1 concurrent for each 𝑖 ∈ A do
2 𝜋−

𝑖
← solve(𝑃𝑖)

3 N𝑖 ← { 𝑗 ∈ A | 𝑗 ≠ 𝑖, can(𝑗) ∩ can(𝑖) ≠ ∅}
4 while conflict do
5 concurrent for each 𝑖 ∈ A do // Bidding Phase

6 𝑏𝑖 , 𝑐𝑖 ← bid(𝑖) // see Alg. 3

7 for each 𝑗 ∈ N𝑖 do send(⟨𝑏𝑖 , 𝑐𝑖 , 𝑠𝑖 ⟩, 𝑗)
8 concurrent for each 𝑖 ∈ A do // Consensus Phase

9 for each received 𝑏 𝑗 do
10 consensus(𝑏𝑖 , 𝑐𝑖 , 𝑏 𝑗 , 𝑐 𝑗) // see Alg. 4

11 concurrent for each 𝑖 ∈ A do send(𝜋+
𝑖
, client)

12 return
⋃

𝑖∈A 𝜋+
𝑖

to be completed. When a sufficient number of agents bid for a task,
it can be added to bundles. To do so, CBGA differs from CBBA
in two main points: (i) bid data structures store which agents bid
for each task, instead of only storing the best bid value so far, and
(ii) during the consensus, task rewards are computed on the basis
of the sum the best agent bids to perform the task, discarding the
worst ones when more agents then necessary have bid. However,
neither CBBA nor CBGA can cope with our very problem, because
MACTA requires some composite tasks to be performed in different
manners (modes). We thus extend CBGA to multi-mode composite
tasks setting, in the following section.

4.2 MM-CBGA
MM-CBGA follows the same rationale than CBBA and CBGA, as
sketched in Algorithm 2. First, agents solve their private problems,
using any scheduler (line 2) and connect to agents that can slot
tasks from the same requests (line 3). Then, each agent concurrently
bids over the set of modes, according to previously received bids,
and sends the results to neighbors (lines 5-7). Next, each agent
solves the conflicts it may have with bids from its neighbors (lines
8-10). When there is no more conflict between agents, allocations
for external tasks are sent back to the client (line 11).

4.2.1 Data Structures. The main data structures used by each agent
𝑖 are bids and contributions. A bid is a 3-dimensional structure where
each cell contains the reward for a given request 𝜏 , a given mode𝑚
and a given agent 𝑗 inN𝑖 , noted 𝑏𝑖 [𝜏] [𝑚] [𝑗]. The value of a bid cell
can be either (i) a finite positive or negative value, when the agent
knows or assesses how much it gains or it looses in scheduling
the tasks of the mode in its slots; (ii) the negative infinity, if it
cannot insert the tasks of the mode in its schedule, due to resource
limitation (no more room in its slots); (iii) or empty, if it has not bid
yet on the mode. The bids are updated at each bidding phase, as
explained later on. Complementary to a bid, a contribution is the set
of tasks agent 𝑗 is ready to schedule for given request 𝜏 , and mode
𝑚, noted 𝑐𝑖 [𝜏] [𝑚] [𝑗]. To each bid corresponds a contribution, i.e.
the set of tasks whose insertion results in the proposed bid. As to
avoid deadlocks due to obsolete information, each agent 𝑖 stores

the date of the last message it has received from each other agent 𝑗 ,
noted 𝑠𝑖 [𝑗]. These timestamps will also be exchanged as to avoid
making decisions based on obsolete information. Finally, each agent
𝑖 keeps track of its bundle, 𝛽𝑖 , i.e. the set of external modes currently
slotted in its schedule.

4.2.2 Bidding Phase. Differently from CBBA and CBGA, where
agents bid for tasks, the idea in MM-CBGA is that agents bid on
modes for each request they are aware of. Algorithm 2 presents how
each agent implements this phase. The agent attempts to integrate
modes in its bundle while its slots are not full (line 4). For each
mode of each non fulfilled request (lines 6-7), the agent computes
two schedules –with and without the mode–, to assess the marginal
gain (or cost) of integrating the given mode into its current slots,
according to its current bundle 𝛽𝑖 . The resulting gain and respective
slotted tasks will constitute the bid and the contribution of the agent
(lines 11-12). The two schedules are computed using any scheduler,
noted solve, that can be the previously presented MILP or greedy
algorithm. Of course, the agent does not have to compute again
the solution for the very same subproblem, by storing the already
computed solution of each subproblem. The best mode for each
request must be chosen, but when an agent has no knowledge about
the bids of other agents required for a mode, it will assess an upper
bound for the mode integration (line 13). This upper bound consists
in the aggregation of the effective rewards of the existing bids, as
in Equation (9) and the maximum hypothetical rewards for the
missing bids on some tasks of the mode, as in Equation (10). As
soon as an agent disagrees to select the mode (−∞ bid), the mode
is discarded for integration.

UB(𝑏𝑖 [𝜏] [𝑚]) def
=

∑︁
𝑏𝑖 [𝜏] [𝑚] [𝑗]≠∅

𝑏𝑖 [𝜏] [𝑚] [𝑗] (9)

+
∑︁

𝜏∉
⋃

𝑗 𝑐𝑖 [𝜏] [𝑚] [𝑗]
𝜔𝜏 (10)

The reason for using hypothetical rewards and not only effective
ones is to allow modes with negative effective reward to be con-
sidered, if they have the potential to bring some gain thank to not
already discovered rewards, as illustrated in Example 2.9. In case
this upper bound is over confident, it will be refined during the
consensus phase, by updating the reward with effective bids. In case
multiple agents can perform the very same task for a mode, and
thus there is more bids on𝑚 for 𝜏 , only the best ones, sufficient to
fulfill 𝜏 , are used in the definition of UB (the worst ones are ignored).

This upper bound is used to determine the next best mode can-
didate for integration to the bundle (lines 14-15). Once all the re-
maining requests and modes have been processed, if a best mode
have been found –i.e. there is still room in the slots– and if this
mode is valid, it is inserted into the bundle (lines 20-22). A mode
is valid when all the tasks have been effectively chosen (line 20),
and its overall reward is positive (line 21). At the end of the bidding
phase, each agents will have built its bundle, bids and contributions.
The two latter are then sent to the neighboring agents with the
timestamps, to reach a consensus.

4.2.3 Consensus Phase. Algorithm 4 sketches how agents solve
conflicts to align their bids. When agents’ bids disagree on the
best mode for a given request (lines 4-6), they solve the conflict as

Session 2B: Planning + Task/Resource Allocation

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

508

Algorithm 3: The bid function
1 Function bid(𝑖)
2 𝑀 ← ∅ // already analyzed modes

3 𝑅 ← ∅ // already analyzed requests

4 while true do
5 𝜔∗ ← −∞, 𝜏∗ ← ∅,𝑚∗ ← ∅
6 for each 𝜏 ∈ T̊+

𝑖
\ 𝑅 do // requests

7 for each𝑚 ∈ 𝑀𝜏 \ 𝛽𝑖 do // modes

8 𝜋𝑖 ← solve(𝑃−
𝑖
⊎ 𝛽𝑖)

9 𝜋𝑚
𝑖
← solve(𝑃−

𝑖
⊎ (𝛽𝑖 ∪ {𝑚}))

10 if𝑚 ∈ {mode(𝜏) | (𝜏, 𝑡) ∈ 𝜋𝑚
𝑖
} then

// 𝑚’s tasks in 𝑖’s slots

11 𝑐𝑖 [𝜏] [𝑚] [𝑖] ← {𝜏 | (𝜏, 𝑡) ∈ 𝜋𝑚
𝑖
}

// assess marginal gain

12 𝑏𝑖 [𝜏] [𝑚] [𝑖] ← 𝜔𝜋𝑚
𝑖
− 𝜔𝜋𝑖

13 𝜔 ← UB(𝑏𝑖 [𝜏] [𝑚])
14 if 𝜔 > 𝜔∗ then // best mode so far

15 𝜔∗ ← 𝜔 , 𝜏∗ ← 𝜏 ,𝑚∗ ←𝑚

16 else // 𝑚 cannot be scheduled

17 𝑏𝑖 [𝜏] [𝑚] [𝑖] ← −∞
18 𝑐𝑖 [𝜏] [𝑚] [𝑖] ← ∅

19 if 𝜔∗ ≠ −∞ then // a mode has been found

20 if𝑚∗ ⊆ ⋃
𝑗 𝑐𝑖 [𝜏∗] [𝑚∗] [𝑗] then // the mode is full

21 if
∑

𝑗 𝑏𝑖 [𝜏∗] [𝑚∗] [𝑗] > 0 then
22 𝛽𝑖 ← 𝛽𝑖 ∪ {𝑚∗} // integrate to bundle

23 𝑀 ← 𝑀 ∪ {𝑚∗} // do not consider 𝑚∗ again

24 𝑅 ← {𝜏 | 𝑀𝜏 ⊆ 𝑀 } // do not consider full 𝜏

25 else break
26 return 𝑏𝑖 , 𝑐𝑖

in CBGA, i.e. an agent updates its bids when receiving bids from
neighbors with fresher information (lines 8-13). Depending on these
updated bids and the possible change of mind about the best mode,
an agent may suppress modes from its bundle (lines 14-16). The
function discard removes from the bundle a mode and all the
modes inserted after this mode, as to reconsider the task allocation.

4.2.4 Convergence. In order to converge, consensus-based algo-
rithms such as CBBA and CBGA require that the reward of insert-
ing a task into a schedule can’t increase if other tasks are inserted
before it. Here this condition translate into : solve(𝑃−

𝑖
⊎ 𝛽𝑖) ≤

solve(𝑃−
𝑖
⊎ (𝛽𝑖 ∪{𝑚})). This condition, called as diminishing mar-

ginal gain [2], is satisfied in MM-CBGA since we always schedule
each task of each bundled mode at the time that yields the maxi-
mum score increase. So, if we tried inserting the same tasks into a
fuller schedule, then there would be fewer time windows available
and the task would either need to be placed at a less optimal time
or at the same time as in the original schedule if that time window
still does not overlap any other task, as described in [19].

4.3 Main Differences with CBGA
MM-CBGA differs from CBGA in several ways. (i) MM-CBGA does
not specifically focus on agents having path to follow to perform
tasks. In CBGA, it has a great impact on the way rewards are as-
sessed, using distance and time to fulfill tasks. MM-CBGA adopts a

Algorithm 4: The consensus function
1 Function consensus(𝑏𝑖 , 𝑐𝑖 , 𝑏 𝑗 , 𝑐 𝑗)
2 conflict← false
3 for each 𝜏 ∈ T̊+

𝑖
∩ T̊+

𝑗
do // shared requests

4 𝑚𝑖 ← arg max(𝑏𝑖 [𝜏])
5 𝑚 𝑗 ← arg max(𝑏 𝑗 [𝜏])
6 if 𝑏𝑖 [𝜏] [𝑚𝑖] ≠ 𝑏 𝑗 [𝜏] [𝑚 𝑗] then // conflict

7 conflict← true
8 for each𝑚 ∈ 𝑀𝜏 do // update with up-to-date bids

9 for each 𝑘 ∈ 𝑏𝑖 [𝜏] [𝑚] [·] do
10 if 𝑏 𝑗 [𝜏] [𝑚] [𝑘] ≠ ∅ then
11 if 𝑘 ≠ 𝑖 and 𝑠 𝑗 [𝑘] > 𝑠𝑖 [𝑘] then
12 𝑏𝑖 [𝜏] [𝑚] [𝑘] ← 𝑏 𝑗 [𝜏] [𝑚] [𝑘]
13 𝑐𝑖 [𝜏] [𝑚] [𝑘] ← 𝑐 𝑗 [𝜏] [𝑚] [𝑘]

14 𝑚∗
𝑖
← arg max𝑚∈𝑀𝜏

{UB(𝑏𝑖 [𝜏] [𝑚])}
15 if𝑚∗

𝑖
≠𝑚𝑖 and𝑚𝑖 ∈ 𝛽𝑖 then // new best mode

16 discard(𝛽𝑖 ,𝑚𝑖) // remove 𝑚𝑖 and followers

more abstract vision and makes use of an upper bound calculation
to discard unfeasible modes, and to keep still promising modes.
(ii) In MM-CBGA agents own several finite slots where they can
schedule tasks, while in CBGA agent have an infinite task queue.
(iii) In MM-CBGA agents bid on modes for multi-mode compos-
ite tasks, while CBGA agents bid on composite tasks with unique
mode. Data structures have been extended in MM-CBGA as to
keep track of the tasks performed by each agent to detect mode
completion, using so-called contributions. As a result, the bidding
phase is slightly more complex than CBGA. But let’s note that on
mono-mode settings MM-CBGA is equivalent to CBGA. (iv) In re-
turn the consensus phase is simpler, since mode completion is fully
integrated to mode reward assessment with UB. In the mono-mode
case, MM-CBGA is equivalent to CBGA, but instead of determining
which agents win a request in the consensus phase, this information
is derived from the bids themselves by computing UB.

5 EXPERIMENTAL EVALUATION
This section presents the experiments we conducted to evaluate the
performances of MM-CBGA. They are coded in Java 11.0.15 and
executed on 20-core Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz,
62GB RAM, Ubuntu 18.04.5 LTS. We evaluate the performances
of MM-CBGA compared to two baselines: a centralized solver
(centralized, which is greedy in our case) that provides good quality
(close to optimal) solutions in very limited time, and a sequential
single item auction (ssi) which provides solutions with quality
equivalent to CBGA in mono-mode settings. The solve procedure
used in MM-CBGA, and ssi is also the greedy algorithm presented
in Section 3. The computation time reported latter is a mono-CPU
computation time (no distributed execution).

5.1 Earth Observation Scenario
The scenario we use to evaluate MM-CBGA is strongly inspired by
EOSCSP (Earth Observation Satellite Constellation Scheduling Prob-
lems) [20], which initially consists in a multi-mode non-composite

Session 2B: Planning + Task/Resource Allocation

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

509

2500 5000 7500 10000 12500 15000 17500 20000
time

sat1

sat2

sat3

sat4

sat5

sat6

sat7

sat8

u0

u1

u2

u3

u4

Figure 3: The private workload schedules for a constellation
with 8 satellites and 4 slot owners (𝑢1 to 𝑢4) and a client (𝑢0)
having 83 requests fulfilled with 275 tasks in the private slots
to observe 10 European cities, over 6 hours.

MACTA (each request is fulfilled by exactly one tasks among several
possible ones). Thus, we generated MACTA instances representing
observation task scheduling over a set of satellites with several
orbit slot ownerships.

We consider a Low-Earth Orbit constellation (500km altitude).
The constellation is composed of 4 orbital planes with a 45 degrees
inclination. Each orbital plan contains two satellites in phase oppo-
sition, for a total of 8 satellites. This constellation setting is used for
determining the orbit slot ownerships and the task time windows
according to some points of interest (POI) on Earth, using a dedi-
cated spatial mechanics library. The scenario we simulate spreads
over 6 hours (21600 seconds).

4 users (our agents, 𝑢1 to 𝑢4) own up to 10 orbit slots each, and
will attempt to slot requests emitted by a fifth user (𝑢0). Orbit slot
ownerships are visibility windows to some randomly chosen POIs
(10 amongst 27 European cities). Orbit slots are assigned using
a round-robin procedure: each user chooses the best remaining
visibility window to observe one of its POIs, and let the next user
choose its next orbit slot, until there is no more window, or the
limit of 10 ownerships per user is reached. On average, on the
all instances we considered, according to the maximum incidence
angle (\max = 𝜋

6) for performing good quality observations, the
orbit slot ownership duration is approximately 10 minutes (595.03
seconds). Figure 3 presents one such scenario.

All users emit some requests. This number will vary over the
experiments to evaluate how it impacts the performances of MM-
CBGA. Orbit slot owners emit 2 to 20 requests in their own slots,
whilst the non-owner user emits 4 to 80 requests (as many as all
the other users) in exclusive slots, to stress the system. A request
is defined by a POI, and thus all the existing visibility windows to
acquire this POI are potential time windows for observation tasks.
We studied two configurations. The first one consider only one
mode per request, which consists in making 5 distinct observations
of the same POIs, in the 5 best visibility windows, according to the
observation angle. Thus, we fall in the mono-mode composite-task
settings, where MM-CBGA is equivalent to CBGA. In the second
configuration, we consider 5 modes per request, which consists in
degrading the previously defined mode (5 observations) by remov-
ing 1 to 4 windows. This results in 5 modes with respectively 5, 4,
3, 2 and 1 task per mode. Task time windows are the same than the

visibility windows: agent can position observations anywhere in
the orbit slots. The duration of the tasks is randomly determined
in [20, 40] seconds. The scheduler has also to respect an inter-task
satellite reconfiguration time of 10 seconds, since the satellites can
only perform one observation at a time, and have to rotate to point
to next POI. The incidence angle (\), which impacts the quality
of observations, is used to determine the reward of each the task
𝜏 , the closer to 0° the better: 𝜔𝜏 = 𝜌 (1 − |\ |

\max
), with 𝜌 a random

number in [1, 2]. This results in average rewards of approximately
1.41 (min ≈ 0.89, max ≈ 1.99).

We ran 100 instances of randomly generated MACTA instances
with seed in [0:99] for each setting, and plot the average, with
[0.05, 0.95] confidence. Random values are uniformly chosen within
provided intervals. This results in 3000 instances in total, available
online [21].

5.2 Performance Analysis
To assess MM-CBGA performances, we analyze the metrics from
Figure 4, for two configurations: 1 mode per request (top row) and
5 modes per request (bottom row). On each row, we plot the quality
ratio compared to the centralized greedy solver, the percentage
of fulfilled requests, the number of slotted tasks, the number of
exchanged messages, the communication load (in MB), and the total
computation time (in s), with an increasing number of requests.

Mono-mode Requests. We first look at the results on MACTA with
a single mode per request (top row of Figure 4). In this situation,
the problems to solve are equivalent to those solved using CBGA.
As expected the quality of MM-CBGA’s solutions are equivalent
to a sequential single item approach (ssi). Since there is only one
mode per request, consisting in five observation tasks, centralized
cannot find solutions fulfilling all the requests. Moreover, with nu-
merous requests (more than 160), on this limited resource system,
centralized is even outperformed by MM-CBGA in terms of re-
quests (and thus of tasks), because this latter allows requests with
non immediate reward to be scheduled. Looking at the operational
metrics concerning communication and computation, because the
network between agents is stable, MM-CBGA only requires a small
constant number of messages, while ssi requires a number of mes-
sages linear in the number of modes. However, the data structures
exchanged in MM-CBGA are quadratic, which results in similar
communication load between MM-CBGA and ssi. The quantity of
information is also tracked for centralized: indeed, slot owners need
to send all their data to the solver. Computation-wise, MM-CBGA,
which requires building and aggregating larger data (modes times
agents), is two orders of magnitude slower than centralized. Thus,
in this mono-mode setting, MM-CBGA behaves very similarly to
ssi in terms of quality, communication and computation. Indeed,
it is equivalent to CBGA. But, contrary to ssi, MM-CBGA is fully
decentralized: the WDP is distributed among all the agents.

Multi-mode Requests. In this setting (bottom row of Figure 4),
each request can be fulfilled by 5 modes with degradation from
5 tasks to 1 task. Thus, there is room for relaxation to fulfill re-
quests. This is illustrated by the percentage of fulfilled requests,
which does not drop as fast as in the mono-mode setting. More

Session 2B: Planning + Task/Resource Allocation

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

510

centralized mm-cbga ssi

0 50 100 150 200
number of requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

qu
al

it
y

0 50 100 150 200
number of requests

0.0

0.2

0.4

0.6

0.8

1.0

fu
lfi

lle
d

re
qu

es
t

(%
)

0 50 100 150 200
number of requests

0

100

200

300

400

sl
o�

ed
ta

sk
s

0 50 100 150 200
number of requests

0

100

200

300

400

500

nu
m

be
r

of
m

es
sa

ge
s

0 50 100 150 200
number of requests

0.0

0.1

0.2

0.3

0.4

to
ta

lm
es

sa
ge

si
ze

(M
B

)

0 50 100 150 200
number of requests

10−3

10−2

10−1

100

co
m

pu
ta

ti
on

ti
m

e
(s

)

1 mode per request

0 50 100 150 200
number of requests

0.0

0.2

0.4

0.6

0.8

1.0

qu
al

it
y

0 50 100 150 200
number of requests

0.0

0.2

0.4

0.6

0.8

1.0

fu
lfi

lle
d

re
qu

es
t

(%
)

0 50 100 150 200
number of requests

0

100

200

300

400

sl
o�

ed
ta

sk
s

0 50 100 150 200
number of requests

0

200

400

600

800

nu
m

be
r

of
m

es
sa

ge
s

0 50 100 150 200
number of requests

0.00

0.25

0.50

0.75

1.00

1.25

1.50

to
ta

lm
es

sa
ge

si
ze

(M
B

)

0 50 100 150 200
number of requests

10−2

10−1

100

101

102

103

co
m

pu
ta

ti
on

ti
m

e
(s

)

5 modes per request

Figure 4: Performances for two configurations: 1 mode per request (top row) and 5 modes per request (bottom row).

interestingly, MM-CBGA and ssi fulfill more requests than cen-
tralized, for a lower quality on smaller problems (< 150 requests).
Indeed, both auction-based approaches slot more modes with fewer
tasks to fulfill more requests. On larger instances (> 150 requests),
the quality and fulfillment curves of ssi and centralized converge,
to reach equivalent performances, while MM-CBGA still serves
more requests for an equivalent overall reward, by the use of UB.
Communication-wise, the message size increases compared to the
mono-mode setting for MM-CBGA, due to the presence of multiple
modes in bids. For the same reason, MM-CBGA requires more time
to compute bids and to solve conflicts, resulting in a higher compu-
tation time (3 orders of magnitude higher than centralized, and 1
order of magnitude than ssi). Once again, recall that MM-CBGA is
fully decentralized and that we report mono-CPU time. To sum up,
in multi-mode setting, MM-CBGA tends to fulfill more requests
with smaller modes than centralized, which even provide results
with reward equivalent to centralized on larger instances. The cost
of decentralization, incremental bundle building and privacy is a
lower quality on easier/smaller instances, and higher communica-
tion and computation load, in general.

6 CONCLUSIONS
In this paper we have addressed the problem of allocating composite
tasks (or requests) requiring several atomic tasks to be fulfilled and
having several alternatives (or modes) to be performed on private
slots owned by cooperative agents. We first modeled this allocation
problem (MACTA) and proposed centralized approaches to find
optimal (MILP) or suboptimal (greedy) solutions. But, both suffer
from their centralization and the disclosure of agents’ schedules in
private slots. We thus proposed a novel algorithm (MM-CBGA) to
solve MACTA in a decentralized fashion, where agents coordinate
to reach a consensus on bids, to decide which mode to choose for
each request, while maximizing the overall reward.

We evaluated the performance of MM-CBGA on randomly gen-
erated Earth observation scheduling problems (EOSCSP), using a
simulation with realistic constellation settings to determine the
private slots, the modes and the tasks to observe some cities over
Europe. MM-CBGA displays performances equivalent to Sequential
Single Item Auction (SSI) on both single and multi-mode settings,
and reaches the same quality than a centralized greedy solver on
larger and harder instances. Computation-wise, MM-CBGA re-
quires less steps to converge but more time than SSI on larger
instances. This computation time remains reasonable (below 5 min-
utes), while there is still room for improvement by parallelizing
agent operations. Communication-wise, MM-CBGA requires less,
but larger messages, due to the extra information required to solve
conflicts between bids. All in all, MM-CBGA turns out to be a inter-
esting addition to the family of consensus-based algorithms, filling
the gap in terms of multi-mode and multi-agent tasks.

Yet, we identify potential performance improvements, notably
by devising better heuristics and upper bounds to consider requests
and modes, that could be devised for specific kind of tasks (as in
CBGA) or modes (e.g. modes included in others). Moreover, there
exist other techniques to coordinate agent actions, e.g. DCOPs [6].
We used such algorithms, with equivalent performances to CBBA
on multi-mode atomic tasks settings [20]. It could be relevant to
evaluate their performances on MACTA. Finally, we evaluate MM-
CBGA on static problem settings, while consensus-based algorithms
are fitted for dynamic settings, where requests and agents can
appear or disappear. We will investigate MM-CBGA performances
with online dynamic order books, with unpredictable events due
to weather conditions than can discard some tasks due to cloud
coverage.

Session 2B: Planning + Task/Resource Allocation

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

511

REFERENCES
[1] Doo-Hyun Cho, Jun-Hong Kim, Han-Lim Choi, and Jaemyung Ahn. 2018.

Optimization-Based Scheduling Method for Agile Earth-Observing Satellite Con-
stellation. Journal of Aerospace Information Systems 15, 11 (2018), 611–626.
https://doi.org/10.2514/1.I010620 arXiv:https://doi.org/10.2514/1.I010620

[2] Han-Lim Choi, Luc Brunet, and Jonathan P. How. 2009. Consensus-Based Decen-
tralized Auctions for Robust Task Allocation. IEEE Trans. Robotics 25, 4 (2009),
912–926. https://doi.org/10.1109/TRO.2009.2022423

[3] José Coelho and Mario Vanhoucke. 2011. Multi-mode resource-constrained
project scheduling using RCPSP and SAT solvers. European Journal of Operational
Research 213, 1 (2011), 73–82. https://doi.org/10.1016/j.ejor.2011.03.019

[4] Peter Cramton, Yoav Shoham, and Richard Steinberg (Eds.). 2010. "Combinatorial
Auctions". MIT Press, Boston.

[5] M.B. Dias, R. Zlot, N. Kalra, and A. Stentz. 2006. Market-Based Multirobot
Coordination: A Survey and Analysis. Proc. IEEE 94, 7 (2006), 1257–1270. https:
//doi.org/10.1109/JPROC.2006.876939

[6] F. Fioretto, E. Pontelli, and W. Yeoh. 2018. Distributed Constraint Optimization
Problems and Applications: A Survey. Journal of Artificial Intelligence Research
61 (2018), 623–698.

[7] Brian P. Gerkey and Maja J. Matarić. 2004. A Formal Analysis and Taxonomy of
Task Allocation in Multi-Robot Systems. The International Journal of Robotics
Research 23, 9 (2004), 939–954. https://doi.org/10.1177/0278364904045564

[8] Igor Griva, Stephen G. Nash, and Ariela Sofer. 2008. Linear and Nonlinear Opti-
mization. SIAM, Philadelphia.

[9] Gurobi Optimization. 2022. Gurobi Optimizer. https://www.gurobi.com/lp/or/
gurobi-optimizer/

[10] Simon Hunt, Qinggang Meng, Chris J. Hinde, and Tingwen Huang. 2014. A
Consensus-Based Grouping Algorithm for Multi-agent Cooperative Task Al-
location with Complex Requirements. Cogn. Comput. 6, 3 (2014), 338–350.
https://doi.org/10.1007/s12559-014-9265-0

[11] IBM Corporation. 2022. IBM ILOG CPLEX Optimization Studio. https://www.
ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

[12] Alaa M. Khamis, Ahmed Hussein, and Ahmed M. Elmogy. 2015. Multi-robot
Task Allocation: A Review of the State-of-the-Art. In Cooperative Robots and
Sensor Networks 2015, Anis Koubâa and J. Ramiro Martinez de Dios (Eds.). Studies
in Computational Intelligence, Vol. 604. Springer, Cham, CH, 31–51. https:
//doi.org/10.1007/978-3-319-18299-5_2

[13] Sven Koenig, Craig A. Tovey, Michail G. Lagoudakis, Evangelos Markakis, David
Kempe, Pinar Keskinocak, Anton J. Kleywegt, Adam Meyerson, and Sonal Jain.
2006. The Power of Sequential Single-Item Auctions for Agent Coordination. In
Proceedings, The Twenty-First National Conference on Artificial Intelligence and
the Eighteenth Innovative Applications of Artificial Intelligence Conference, July
16-20, 2006, Boston, Massachusetts, USA. AAAI Press, Washington, WA, 1625–1629.
http://www.aaai.org/Library/AAAI/2006/aaai06-266.php

[14] Minjoon Lee, Sung Jun Kim, Ho-Yeon Kim, and Han-Lim Choi. 2021. Consensus-
based Task Scheduling Algorithm for Agile Earth Observation Satellites with
Different Authorities. In ASCEND 2021. AIAA, Reston, VA. https://doi.org/10.
2514/6.2021-4122

[15] Efrat Manisterski, Esther David, Sarit Kraus, and Nicholas R. Jennings. 2006.
Forming Efficient Agent Groups for Completing Complex Tasks. In Proceedings

of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (Hakodate, Japan) (AAMAS ’06). Association for Computing Machinery,
New York, NY, USA, 834–841. https://doi.org/10.1145/1160633.1160784

[16] Sara Maqrot, Stéphanie Roussel, Gauthier Picard, and Cédric Pralet. 2022. Bun-
dle Allocation with Conflicting Preferences Represented as Weighted Directed
Acyclic Graphs – Application to Orbit Slot Ownership. In Advances in Practi-
cal Applications of Agents, Multi-Agent Systems, and Complex Systems Simula-
tion, The PAAMS Collection (LNAI, Vol. 13616), Frank Dignum, Philippe Mathieu,
Juan Manuel Corchado, and Fernando De la Prieta (Eds.). Springer, Cham, 280–293.
https://doi.org/10.1007/978-3-031-18192-4_23

[17] Sara Maqrot, Stéphanie Roussel, Gauthier Picard, and Cédric Pralet. 2022. Or-
bit Slot Allocation in Earth Observation Constellations. In 11th Conference on
Prestigious Applications of Artificial Intelligence (PAIS’22), 25 July 2022, Vienna,
Austria (co-located with IJCAI-ECAI 2022) (Frontiers in Artificial Intelligence and
Applications, Vol. 351), A. Passerini and T. Schiex (Eds.). IOS Press, Amsterdam,
NL, 3–16. https://doi.org/10.3233/FAIA220061

[18] Nathan Michael, Michael M. Zavlanos, Vijay Kumar, and George J. Pappas. 2008.
Distributed multi-robot task assignment and formation control. In 2008 IEEE
International Conference on Robotics and Automation. IEEE, New York, NY, 128–
133. https://doi.org/10.1109/ROBOT.2008.4543197

[19] Sean Phillips and Fernando Parra. 2021. A Case Study on Auction-Based Task
Allocation Algorithms in Multi-Satellite Systems. In AIAA Scitech 2021 Forum.
AIAA, Reston, VA, 16 pages. https://doi.org/10.2514/6.2021-0185

[20] Gauthier Picard. 2022. Auction-based and Distributed Optimization Approaches
for Scheduling Observations in Satellite Constellations with Exclusive Orbit
Portions. In 21st International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2022, Auckland, New Zealand, May 9-13, 2022, Piotr Faliszewski,
Viviana Mascardi, Catherine Pelachaud, and Matthew E. Taylor (Eds.). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS),
Richland, SC, 1056–1064. https://doi.org/10.5555/3535850.3535968

[21] Gauthier Picard. 2023. Multi-agent multi-mode composite task allocation problem
(MACTA) instances. Zenodo. https://doi.org/10.5281/zenodo.7550677 [Dataset].

[22] Samuel Squillaci, Stéphanie Roussel, and Cédric Pralet. 2022. Parallel Scheduling
of Complex Requests for a Constellation of Earth Observing Satellites. In PAIS
2022 - 11th Conference on Prestigious Applications of Artificial Intelligence, 25 July
2022, Vienna, Austria (co-located with IJCAI-ECAI 2022) (Frontiers in Artificial
Intelligence and Applications, Vol. 351), Andrea Passerini and Thomas Schiex (Eds.).
IOS Press, Amsterdam, NL, 100–113. https://doi.org/10.3233/FAIA220068

[23] Xinwei Wang, Guohua Wu, Lining Xing, and Witold Pedrycz. 2020. Agile Earth
observation satellite scheduling over 20 years: formulations, methods and future
directions. CoRR abs/2003.06169 (2020), 36. arXiv:2003.06169 https://arxiv.org/
abs/2003.06169

ACKNOWLEDGMENTS
This work has been performed with the support of the French
government in the context of the “Programme d’Invertissements
d’Avenir”, namely by the BPI PSPC LiChIE project (Lion Chaine
Image Elargie), coordinated by Airbus Defence and Space.

Session 2B: Planning + Task/Resource Allocation

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

512

https://doi.org/10.2514/1.I010620
https://arxiv.org/abs/https://doi.org/10.2514/1.I010620
https://doi.org/10.1109/TRO.2009.2022423
https://doi.org/10.1016/j.ejor.2011.03.019
https://doi.org/10.1109/JPROC.2006.876939
https://doi.org/10.1109/JPROC.2006.876939
https://doi.org/10.1177/0278364904045564
https://www.gurobi.com/lp/or/gurobi-optimizer/
https://www.gurobi.com/lp/or/gurobi-optimizer/
https://doi.org/10.1007/s12559-014-9265-0
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://doi.org/10.1007/978-3-319-18299-5_2
https://doi.org/10.1007/978-3-319-18299-5_2
http://www.aaai.org/Library/AAAI/2006/aaai06-266.php
https://doi.org/10.2514/6.2021-4122
https://doi.org/10.2514/6.2021-4122
https://doi.org/10.1145/1160633.1160784
https://doi.org/10.1007/978-3-031-18192-4_23
https://doi.org/10.3233/FAIA220061
https://doi.org/10.1109/ROBOT.2008.4543197
https://doi.org/10.2514/6.2021-0185
https://doi.org/10.5555/3535850.3535968
https://doi.org/10.5281/zenodo.7550677
https://doi.org/10.3233/FAIA220068
https://arxiv.org/abs/2003.06169
https://arxiv.org/abs/2003.06169
https://arxiv.org/abs/2003.06169

	Abstract
	1 Introduction
	2 Problem Model and Notations
	3 Centralized Approaches
	4 Multi-Mode Consensus-Based Bundle Allocation for Composite Tasks
	4.1 Auction-based Task Allocation
	4.2 MM-CBGA
	4.3 Main Differences with CBGA

	5 Experimental Evaluation
	5.1 Earth Observation Scenario
	5.2 Performance Analysis

	6 Conclusions
	References
	Acknowledgments

