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ABSTRACT
Fair division of indivisible goods is a central challenge in artificial

intelligence. For many prominent fairness criteria including envy-

freeness (EF) or proportionality (PROP), no allocations satisfying

these criteria might exist. Two popular remedies to this problem are

randomization or relaxation of fairness concepts. A timely research

direction is to combine the advantages of both, commonly referred

to as Best of Both Worlds (BoBW).

We consider fair division with entitlements, which allows to

adjust notions of fairness to heterogeneous priorities among agents.

This is an important generalization to standard fair division models

and is not well-understood in terms of BoBW results. Our main

result is a lottery for additive valuations and different entitlements

that is ex-anteweighted envy-free (WEF), as well as ex-postweighted
proportional up to one good (WPROP1) and weighted transfer envy-

free up to one good (WEF(1, 1)). It can be computed in strongly

polynomial time. We show that this result is tight – ex-anteWEF
is incompatible with any stronger ex-post WEF relaxation.

In addition, we extend BoBW results on group fairness to entitle-

ments and explore generalizations of our results to instances with

more expressive valuation functions.
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1 INTRODUCTION
Fair division of a set of indivisible goods is a prominent challenge at

the intersection of economics and computer science. It has attracted

a lot of attention over the last decades due to many applications in

both simple and complex real-world scenarios. Formally, we face

an allocation problem with finite sets N of 𝑛 agents and G of𝑚

goods. Each agent 𝑖 ∈ N has a valuation function 𝑣𝑖 : 2
G → R≥0.

The goal is to compute a “fair” allocation A = (𝐴1, . . . , 𝐴𝑛), i.e., a
fair partition of the goods among the agents.

What is fair can certainly be a matter of debate. For this reason,

several fairness criteria have been introduced and studied. Envy-

freeness (EF) is probably one of the most intuitive concepts – it

postulates that once goods are allocated no agent strictly prefers

goods received by any other agent, i.e., 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ) for all
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𝑖, 𝑗 ∈ N . EF is a comparison-based notion. In contrast, there are

also threshold-based ones such as Proportionality (PROP): A is

proportional if every agent receives a bundle whose value is at least

her proportional share, i.e., 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (G)/𝑛 for every 𝑖 ∈ N .

Unfortunately, for indivisible goods, neither PROP- nor EF-alloc-
ations may exist. Two natural conceptual remedies to this non-

existence problem are (1) randomization or (2) relaxation of fairness

concepts. Towards (1), a random allocation that is EF in expectation

always exists (for every set of valuation functions): Select an agent

uniformly at random and give the entire set of goods G to her. Then,

however, every realization in the support is highly unfair – there

is always an agent who receives everything, while all others get

nothing. Moreover, it is easy to see that such an allocation might

not even be Pareto-optimal. Towards (2), a well-known relaxation

of EF is envy-freeness up to one good (EF1) [10, 22]: Every agent shall
value her own bundle at least as much as any other agent’s bundle

after removing some good from the latter, i.e., for every 𝑖, 𝑗 ∈ N
there is 𝑔 ∈ G such that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑔}). Whenever the valu-

ations of the agents are monotone, an EF1 allocation always exists

and can be computed in polynomial time [22]. However, different

EF1 allocations may advantage different agents. Similarly to EF1,
proportionality up to one good (PROP1) has also been studied [16].

A timely research direction is to combine the advantages of both

randomization and relaxation, commonly referred to as Best of Both

Worlds (BoBW) results. An important result was obtained by both

Aziz [2] and Freeman et al. [19] for additive valuations – a lottery

over deterministic allocations that is EF in expectation (ex-ante)

and EF1 for every allocation in the support (ex-post). Moreover, the

lottery can be computed in polynomial time. Both papers generalize

the Probabilistic Serial (PS) rule [9] for the matching case, when

there are𝑛 agents and𝑚 = 𝑛 goods. PS is ex-ante EF. By the Birkhoff-
von Neumann decomposition, it can be represented as a lottery

over polynomially many deterministic allocations. Furthermore,

any allocation in the support assigns to each agent exactly one good.

This implies ex-post EF1. Both [2, 19] generalize the application

of the Birkhoff-von Neumann decomposition to instances with

arbitrarily many goods.

In our work, we consider a more general framework to allow

more flexibility in the definition of fairness. Concepts like EF or

PROP imply that all agents are symmetric, i.e., they are ideally

treated as equals. In many scenarios, however, there is an inherent

asymmetry in the agent population. Alternatively, it can be benefi-

cial for an allocation mechanism to have the option to reward cer-

tain agents. We follow the formal framework of entitlements [4, 13]

that enables increased expressiveness. Formally, each agent 𝑖 ∈ N
now has a weight, or priority 𝑤𝑖 > 0. Fairness notions like EF or

PROP are then refined based on these weights (see Section 2 for

formal definitions). Generally, we will use a prefix “W” to refer to a

fairness concept in the context of entitlements.
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1.1 Our Contribution
We study lotteries having both ex-ante and ex-post guarantees for

fair division with additive valuations and different entitlements.

We provide a lottery that is ex-ante weighted stochastic-dominance

envy-free (WSD-EF) and consequently ex-ante WEF. Differently
from [2, 19], we make use of a stronger decomposition theorem

by Budish et al. [11] and show it is possible to achieve ex-post

WPROP1 andWEF(1, 1). The latter implies that in every allocation

A in the support, weighted envy from agent 𝑖 to 𝑗 can be eliminated

by moving entirely one good from 𝐴 𝑗 to 𝐴𝑖 . All our constructions

can be carried out in strongly polynomial time. Perhaps surprisingly,

this result is tight – we show that ex-anteWEF is incompatible with

any stronger ex-postWEF notion. Therefore, a direct extension of [2,
19] to a lottery with ex-ante WEF and ex-post WEF1 is impossible.

Freeman et al. [19] investigate further combinations of ex-ante

and ex-post properties; namely, they provide a lottery that is ex-

ante group fair (GF) as well as ex-post PROP1 and EF1
1
. In an EF1

1
-

allocation A, we can eliminate envy from 𝑖 to 𝑗 when we remove

one good from𝐴 𝑗 and add one good to𝐴𝑖 ; differently from EF(1, 1),
the good added to 𝐴𝑖 is not required to come from 𝐴 𝑗 . We prove

that this result can be adapted to hold also with entitlements.

Finally, we expand the scope of BoBW towards more general

valuations. For equal entitlements, ex-ante EF and ex-post EF1 is
possible in more general cases. For different entitlements, ex-ante

WEF and ex-post WEF(1, 1) or WPROP1 are no longer compatible

(even for two agents, one additive and one unit-demand). For this

reason, we focus on threshold-based guarantees – we show that it

is possible to compute in polynomial time a lottery that is ex-ante

WPROP and ex-post WPROP1, even for XOS valuations.

Due to space limits, all missing proofs and examples are deferred

to [21].

1.2 Related Work
Fair division attracted an enormous amount of attention, and there

is a large number of surveys. We refer to a rather recent one by

Amanatidis et al. [1] and restrict attention to more directly related

works.

Other than envy-freeness [2, 19], the Max-Min-Share (MMS) is
studied by Babaioff et al. [6] in the BoBW framework: The authors

design a lottery simultaneously achieving ex-ante PROP and ex-

post PROP1 + 1

2
-MMS.

When agents are endowed with ordinal preferences rather than

cardinal valuation functions, stochastic-dominance envy-freeness

is the most prominent fairness notion for lotteries. It was first

considered by Bogomolnaia and Moulin [9] and later systematically

studied by Aziz et al. [3].

An orthogonal direction is pursued by Caragiannis et al. [12] by

introducing interim EF, a trade-off between ex-ante and ex-post EF.
For fair division with entitlements, the literature has focused

on characterizing picking sequences guaranteeing fairness proper-

ties [13–15], the problem of maximizing Nash social welfare [20, 23],

and introducing appropriate shares [5, 18].

2 PRELIMINARIES
A fair division instanceI is given by a triple (N ,G, {𝑣𝑖 }𝑖∈N), where
N is a set of 𝑛 agents and G is a set of𝑚 indivisible goods. Every

agent 𝑖 ∈ N has a valuation function 𝑣𝑖 : 2
G → R≥0, where 𝑣𝑖 (𝐴)

represents the value, or utility, of 𝑖 for the bundle 𝐴 ⊆ G. We

assume that valuations are monotone (𝑣 (𝐴) ≤ 𝑣 (𝐵) for 𝐴 ⊆ 𝐵)

and normalized (𝑣 (∅) = 0). For each 𝑖 ∈ N and 𝑔 ∈ G, 𝑣𝑖 (𝑔) ≥ 0

represents the value 𝑖 assigns to the good 𝑔. A valuation function

𝑣𝑖 is said to be additive if 𝑣𝑖 (𝐴) =
∑
𝑔∈𝐴 𝑣𝑖 (𝑔).

In what follows, ties are broken according to a fixed ordering of

G. This serves to avoid technical and tedious tie-breaking issues.

Entitlements. We study fair division with entitlements. Each

agent 𝑖 ∈ N is endowed with an entitlement or weight 𝑤𝑖 > 0.

For convenience, we assume w.l.o.g.

∑
𝑖∈N 𝑤𝑖 = 1. We say that

agents have equal entitlements if𝑤𝑖 =
1

𝑛 , for all 𝑖 ∈ N , and refer to

this as the unweighted setting.

We now provide a simple example of a fair division instance with

entitled agent; this example will be used in the rest of the paper to

explain our approach.

Example 1 (A fair division instance with entitlements).

We outline an instance I∗ given by (N ,G, {𝑣𝑖 }𝑖∈N) and entitlements

𝑤 . The agents are N = {1, 2, 3}, the goods G = {𝑔1, 𝑔2, 𝑔3, 𝑔4}, and
𝑤1 = 1

2
, 𝑤2 = 1

3
and 𝑤3 = 1

6
is the entitlement of agent 1, 2 and 3,

respectively. The valuation functions are additive with values:

𝑔 𝑔1 𝑔2 𝑔3 𝑔4

𝑣1 (𝑔) 8 8 5 2

𝑣2 (𝑔) 3 5 4 1

𝑣3 (𝑔) 4 7 6 2

Throughout the paper, whenever we use I∗, we mean the instance

we just described. ■

2.1 Weighted Fairness Notions
An allocation A = (𝐴1, . . . , 𝐴𝑛) is a partition of G among the

agents, where 𝐴𝑖 ∩ 𝐴 𝑗 = ∅, for each 𝑖 ≠ 𝑗 , and
⋃

𝑖∈N 𝐴𝑖 = G.
An allocation A is weighted proportional (WPROP) if, for each 𝑖 ,

𝑣𝑖 (𝐴𝑖 ) ≥ 𝑤𝑖 · 𝑣𝑖 (G) and weighted envy-free (WEF) if, for each 𝑖, 𝑗 ,

𝑣𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑣𝑖 (𝐴 𝑗 )
𝑤 𝑗

.

Since goods are indivisible such allocations may not always

exist, and relaxed versions have been defined. An allocation A is

weighted proportional up to one good (WPROP1) if for each 𝑖 ∈ N
there exists 𝑔 ∈ G such that 𝑣𝑖 (𝐴𝑖 ∪{𝑔}) ≥ 𝑤𝑖 ·𝑣𝑖 (G). Note that, for
additive valuations, WEF ⇒ WPROP but, differently from equal

entitlements, WEF1 ⇏ WPROP1. Concerning envy-freeness, we

have already discussed EF and EF1 in the introduction. We here

work with a broader definition that generalizes these notions.

Definition 1 (WEF(𝑥,𝑦)). For 𝑥,𝑦 ∈ [0, 1], an allocation A is

called WEF(𝑥,𝑦) if for each 𝑖, 𝑗 ∈ N either 𝐴 𝑗 = ∅ or there exists
𝑔 ∈ 𝐴 𝑗 such that

𝑣𝑖 (𝐴𝑖 ) + 𝑦 · 𝑣𝑖 (𝑔)
𝑤𝑖

≥
𝑣𝑖 (𝐴 𝑗 ) − 𝑥 · 𝑣𝑖 (𝑔)

𝑤 𝑗
.

The definition of WEF(𝑥,𝑦), introduced in [15], is meaningful

mostly for additive valuations. For general valuations, the idea of
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WEF(1, 1) can be expressed by𝑤 𝑗 · 𝑣𝑖 (𝐴𝑖 ∪ {𝑔}) ≥ 𝑤𝑖 · 𝑣𝑖 (𝐴 𝑗 \ {𝑔});
analogously forWEF(0, 1) andWEF(1, 0). Conceptually,WEF(1, 0)
coincides with a notion of weighted envy-freeness up to one good

(WEF1). WEF(1, 1) has also been called weighted transfer envy-

freeness up to one good [13]. In WEF(1, 1) the good 𝑔 added to 𝐴𝑖

must come from 𝐴 𝑗 : Assuming that 𝑔 may come from any other

bundle leads to the following (weaker) notion introduced in [7].

Definition 2 (WEF1
1
). An allocation A is called weighted envy-

free up to one good more and less (WEF1
1
) if for each 𝑖, 𝑗 ∈ N either

𝐴 𝑗 = ∅ or there exist 𝑔𝑖 , 𝑔 𝑗 ∈ G such that 𝑤 𝑗 · 𝑣𝑖 (𝐴𝑖 ∪ {𝑔𝑖 }) ≥
𝑤𝑖 · 𝑣𝑖 (𝐴 𝑗 \ {𝑔 𝑗 }).

We move on to fairness concepts for fractional allocations. A

fractional allocation 𝑋 = (𝑥𝑖𝑔)𝑖∈N,𝑔∈G ∈ [0, 1]𝑛×𝑚 specifies the

fraction of good 𝑔 that agent 𝑖 receives. We assume fractional allo-

cations are complete, i.e.,

∑
𝑖∈N 𝑥𝑖𝑔 = 1 for every 𝑔 ∈ G.

Group fairness was first introduced in [17] and extended to

fractional allocations by [19]. Towards extending group fairness

for fractional allocations to weighted agents, consider a subset of

agents 𝑆 ⊆ N . We define 𝑤𝑆 =
∑
𝑖∈𝑆 𝑤𝑖 as the weight of the set,

and ∪𝑗 ∈𝑆𝑋 𝑗 B
(∑

𝑗 ∈𝑆 𝑥 𝑗𝑔
)
𝑔∈G

as the total fractions of each good

𝑔 ∈ G assigned to the agents of 𝑆 .

Definition 3 (WGF). A fractional allocation𝑋 isweighted group

fair (WGF) if for all non-empty subsets of agents 𝑆,𝑇 ⊆ N , there is

no fractional allocation 𝑋 ′ of ∪𝑗 ∈𝑇𝑋 𝑗 to the agents in 𝑆 such that

𝑤𝑆 · 𝑣𝑖 (𝑋 ′𝑖 ) ≥ 𝑤𝑇 · 𝑣𝑖 (𝑋𝑖 ), for all 𝑖 ∈ 𝑆 and at least one inequality is

strict.

Similarly to the unweighted setting, weighted group fairness

implies other (weighted) envy and efficiency notions, for example,

WEF (if |𝑆 | = |𝑇 | = 1), WPROP (if |𝑆 | = 1,𝑇 = N ), and Pareto-

optimality (if 𝑆 = 𝑇 = N ).

We finally focus on stochastic dominance, a standard fairness

notion for random allocations. For convenience, we here define it

using fractional allocations. Given any 𝑖 ∈ N , let us denote by 𝑋𝑖
and 𝑋 ′

𝑖
the fractional bundles of agent 𝑖 in the allocations 𝑋 and

𝑋 ′, respectively. Agent 𝑖 SD prefers 𝑋𝑖 to 𝑋
′
𝑖
, written 𝑋𝑖 ⪰SD

𝑖
𝑋 ′
𝑖
, if

for any 𝑔∗ ∈ G ∑
𝑔 : 𝑣𝑖 (𝑔) ≥𝑣𝑖 (𝑔∗)

𝑥𝑖𝑔 ≥
∑

𝑔 : 𝑣𝑖 (𝑔) ≥𝑣𝑖 (𝑔∗)
𝑥 ′𝑖𝑔 ,

where 𝑥𝑖𝑔 and 𝑥 ′
𝑖𝑔

represents the fraction of 𝑔 that 𝑖 owns in the

two fractional bundles.

We say 𝑋𝑖 ≻SD
𝑖

𝑋 ′
𝑖
, if 𝑋𝑖 ⪰SD

𝑖
𝑋 ′
𝑖
and not 𝑋 ′

𝑖
⪰SD
𝑖

𝑋𝑖 . Notice that

{𝑔 | 𝑣𝑖 (𝑔) ≥ 𝑣𝑖 (𝑔∗)} is the set of goods that 𝑖 likes at least as much

as 𝑔∗. Although we defined it by means of 𝑣𝑖 , this set only depends

on the relative ordering of the goods and not on the valuation 𝑣𝑖 .

Definition 4 (SD-EF andWSD-EF). A random allocation 𝑋 is

SD-envy-free (SD-EF) if for all 𝑖, 𝑗 ∈ N ,𝑋𝑖 ⪰SD
𝑖

𝑋 𝑗 . Similarly, we say

𝑋 isWSD-envy-free (WSD-EF) if for all 𝑖, 𝑗 ∈ N ,𝑤 𝑗 ·𝑋𝑖 ⪰SD
𝑖

𝑤𝑖 ·𝑋 𝑗 .

2.2 Deterministic Algorithms and Picking
Sequences

For additive valuations, a straightforward round-robin algorithm

yields an EF1 allocation. Clearly, when agents have different en-

titlements, the round-robin algorithm might no longer provide a

WEF1 allocation. Different entitlements impose different priorities

among agents, which has resulted in the consideration of picking

sequences.

A picking sequence for 𝑛 agents and𝑚 goods is a sequence 𝜋 =

(𝑖1, . . . , 𝑖𝑚), where 𝑖ℎ ∈ N , for ℎ = 1, . . . ,𝑚. An allocation A is the

result of the picking sequence 𝜋 if it is the output of the following

procedure: Initially every bundle is empty; then, at time step ℎ, 𝑖ℎ
inserts in her bundle her most preferred good among the available

ones. Once a good is selected, it is removed from the set of available

goods.

For our purposes, we will rely on the following characterization

for WEF(𝑥,𝑦) (in the context of additive valuations).

Proposition 1. Let 𝑡𝑖 , 𝑡 𝑗 be the number of picks of agents 𝑖 , 𝑗 ,

respectively, in a prefix of 𝜋 . A picking sequence 𝜋 is WEF(𝑥,𝑦) if
and only if for every prefix of 𝜋 and every pair of agents 𝑖, 𝑗 , we have
𝑡𝑖+𝑦
𝑤𝑖
≥ 𝑡 𝑗−𝑥

𝑤𝑗
.

Chakraborty et al. [15] prove this proposition using the assump-

tion 𝑥 + 𝑦 = 1, since WEF(𝑥,𝑦) allocations might not exist for

𝑥 + 𝑦 < 1. The proof can be easily extended to show the statement

for all 𝑥,𝑦 ∈ [0, 1]. Note further that round-robin is not the only

picking sequence achieving EF1 for equal entitlements. Any picking

sequence that is recursively balanced (RB), i.e., |𝑡𝑖 − 𝑡 𝑗 | ≤ 1 in any

prefix of 𝜋 , results in an EF1 allocation [2].

2.3 Random Allocations
A random allocation is a probability distribution L over determin-

istic allocations. We mostly focus on additive valuations, so we

conveniently use a representation as matrix 𝑋 of marginal assign-

ment probabilities for each good to each agent (i.e., a complete

fractional allocation as defined above). We denote by 𝑋 L the frac-

tional allocation corresponding to a lottery L. Notice that different
lotteries might produce the very same fractional allocation.

Throughout the paper, we denote by 𝑋 (resp. 𝑌 ) fractional (resp.

integral) allocations in matrix form. Further, 𝑋𝑖 (resp. 𝑌𝑖 ) denotes a

fractional (resp. integral) bundle of 𝑖 in 𝑋 (resp. 𝑌 ). We will write

𝑣𝑖 (𝑋𝑖 ) to denote the expected utility of an agent. Clearly, in case of

additive valuations we have 𝑣𝑖 (𝑋𝑖 ) =
∑
𝑔∈G 𝑣𝑖 (𝑔) · 𝑥𝑖𝑔 .

2.4 Decomposing Fractional Matrices
A decomposition of a fractional allocation 𝑋 is a convex combina-

tion of integral (deterministic) allocations, i.e.,𝑋 = 𝜆1𝑌
1+· · ·+𝜆𝑘𝑌𝑘

,

where

∑𝑘
ℎ=1

𝜆ℎ = 1, 𝑦ℎ
𝑖𝑔
∈ {0, 1}, and ∑

𝑖∈N 𝑦ℎ
𝑖𝑔

= 1, for each 𝑖 ∈ N ,

𝑔 ∈ G and ℎ ∈ [𝑘] = {1, . . . , 𝑘}.
A constraint structureH consists of a collection of subsets 𝑆 ⊆

N × G. Every 𝑆 ∈ H comes with a lower and upper quota denoted

by 𝑞
𝑆
and 𝑞𝑆 , respectively. Quotas are integer numbers stored in

q = {(𝑞
𝑆
, 𝑞𝑆 ) |𝑆 ∈ H}.

An 𝑛 ×𝑚 matrix 𝑌 is feasible under q if for each 𝑆 ∈ H

𝑞
𝑆
≤

∑
(𝑖,𝑔) ∈𝑆

𝑦𝑖𝑔 ≤ 𝑞𝑆 .

A constraint structureH is a hierarchy if, for every 𝑆, 𝑆 ′ ∈ H ,

either 𝑆 ∩𝑆 ′ = ∅ or one is contained in the other.H is a bihierarchy

if it can be partitioned intoH = H1 ∪H2, such thatH1 ∩H2 = ∅
and bothH1 andH2 are hierarchies.
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Budish et al. [11] generalize the well-known decomposition the-

orem by Birkhoff and von Neumann:

Theorem 1. Given any fractional allocation 𝑋 , a bihierarchyH
and corresponding quotas q, if 𝑋 is feasible under q, then, there exists
a polynomial decomposition into integral matrices. Every matrix in

the decomposition is feasible under q. Further, the decomposition can

be obtained in strongly polynomial time.

In the rest of this paper, given a fractional allocation 𝑋 and

a bihierarchy H , we define the quotas in q as follows: for every

𝑆 ∈ H we set 𝑞
𝑆
= ⌊𝑥𝑆 ⌋ and 𝑞𝑆 = ⌈𝑥𝑆 ⌉, where 𝑥𝑆 =

∑
(𝑖,𝑔) ∈𝑆 𝑥𝑖𝑔 .

The decomposition obtained with these quotas and bihierarchyH
will be called theH -decomposition.

Utility Guarantee Bihierarchy. We next define an extremely use-

ful bihierarchy. For a deeper understanding, we refer the reader

to [11, 19].

We setH1 = {𝐶𝑔 | 𝑔 ∈ G}, where𝐶𝑔 = {(𝑖, 𝑔) | 𝑖 ∈ N} represents
the column corresponding to good 𝑔 ∈ G.

Roughly speaking, the hierarchyH1 ensures that, in any alloca-

tion of the decomposition, every good is integrally assigned (and

therefore the allocation is complete).

For agent 𝑖 ∈ N , we consider the goods in non-increasing

order of 𝑖’s valuation, i.e., 𝑣𝑖 (𝑔1) ≥ . . . ≥ 𝑣𝑖 (𝑔𝑚). Recall that
ties are broken according to a predefined ordering of G. We set

S𝑖 = {{𝑔1}, {𝑔1, 𝑔2}, . . . , {𝑔1, . . . , 𝑔𝑚}}. In other words, for every

ℎ ∈ [𝑚], S𝑖 contains a set of the ℎ most preferred goods of 𝑖 . We

write (𝑖, 𝑆) to denote {(𝑖, 𝑔) | 𝑔 ∈ 𝑆}, and set

H2 = {(𝑖, 𝑆) | 𝑖 ∈ N , 𝑆 ∈ S𝑖 } ∪ {(𝑖, 𝑔) |𝑖 ∈ N , 𝑔 ∈ G} . (1)

The second set of constraints implies that if 𝑥𝑖𝑔 = 0 (resp. 𝑥𝑖𝑔 = 1)

then 𝑦𝑖𝑔 = 0 (resp. 𝑦𝑖𝑔 = 1), for any 𝑌 in the decomposition. Note

that (for convenience later on) we slightly abuse notation forH2

as it is not a set of sets of (row, col)-pairs.

Finally, the utility guarantee bihierarchy is given byHUG = H1 ∪
H2. Clearly, bothH1 andH2 are hierarchies.

This bihierarchy was fundamental in [11] to prove a main result.

We here state it in a slightly stronger version (see [19] for the proof).

Corollary 1 (Utility Guarantee ± one Good). Suppose we
are given a fractional allocation𝑋 , and additive valuation functions 𝑣𝑖 .

Then for any matrix 𝑌 in theHUG
-decomposition of 𝑋 the following

hold:

(1) if 𝑣𝑖 (𝑌𝑖 ) < 𝑣𝑖 (𝑋𝑖 ), then ∃ 𝑔 ∉ 𝑌𝑖 with 𝑥𝑖𝑔 > 0 such that

𝑣𝑖 (𝑌𝑖 ) + 𝑣𝑖 (𝑔) > 𝑣𝑖 (𝑋𝑖 );
(2) if 𝑣𝑖 (𝑌𝑖 ) > 𝑣𝑖 (𝑋𝑖 ), then ∃ 𝑔 ∈ 𝑌𝑖 with 𝑥𝑖𝑔 < 1 such that

𝑣𝑖 (𝑌𝑖 ) − 𝑣𝑖 (𝑔) < 𝑣𝑖 (𝑋𝑖 ).

In other words, Corollary 1 ensures that, in any deterministic

allocation in theHUG
-decomposition, the valuation of any agent

𝑖 differs from 𝑣𝑖 (𝑋𝑖 ) by at most the value of one good. Moreover,

such a good must have a positive probability of occurring in 𝑖’s

bundle.

3 ADDITIVE VALUATIONS WITH
ENTITLEMENTS

In this section, we present a lottery for additive valuations simulta-

neously achieving ex-anteWSD-EF (and hence ex-anteWEF) and

ex-postWEF(1, 1) +WPROP1. In contrast to equal entitlements, we

show a weaker ex-post guarantee. However, we prove this is neces-

sary as no stronger envy notion is compatible with ex-ante WEF.
We also generalize a result of Freeman et al. [19] to entitlements:

Similarly to the unweighted setting, we design a lottery that is

ex-ante WGF and ex-post WEF1
1
+WPROP1.

3.1 Ex-ante WSD-EF and Ex-postWEF(1, 1) +
WPROP1

The main contribution of this subsection is to prove the following:

Theorem 2. For entitlements and additive valuations, we can

compute in strongly polynomial time a lottery that is ex-ante WSD-
EF and ex-post WPROP1 +WEF(1, 1).

Let us start by introducing our main algorithm DifferentSpeed-

sEating (DSE), which is inspired by Eating for equal entitlements

in [2]. Agents continuously eat their most preferred available good

at speed equal to their entitlement. Every agent starts eating her

most preferred good; as soon as a good has been completely eaten

it is removed from the set of available goods. Each agent that was

eating this good continues eating her most preferred remaining one.

The procedure terminates when no good remains. See Algorithm 1

for a formal description. Observe that by precomputing the times

at which goods are removed, we can implement the algorithm in

strongly polynomial time.

Algorithm 1: DifferentSpeedsEating
Input: An instance I = (N ,G, {𝑣𝑖 }𝑖∈N) and the

entitlements𝑤1, . . . ,𝑤𝑛

Output: A fractional allocation 𝑋

1 𝑋 ← 0𝑛×𝑚 // current fractional allocation

2 z← 1𝑚 // remaining supply of each good

3 while G ≠ ∅ do
4 s← 0𝑚 // eating speed on each item

5 for 𝑖 ∈ N do
6 𝑔𝑖 ← argmax𝑔∈G 𝑣𝑖 (𝑔) // most favored item

7 s(𝑔𝑖 ) ← s(𝑔𝑖 ) +𝑤𝑖 // sum speeds on item

8 for 𝑔 ∈ G do
9 t(𝑔) ← z(𝑔)

s(𝑔) // compute finishing times

10 𝑡 ← min𝑔∈G t(𝑔) // time when first item finished

11 for 𝑖 ∈ N do
12 𝑥 ← 𝑡 ·𝑤𝑖 // amount of item eaten by 𝑖

13 𝑥𝑖𝑔𝑖 ← 𝑥𝑖𝑔𝑖 + 𝑥 // eat fraction of 𝑔𝑖

14 z(𝑔𝑖 ) ← z(𝑔𝑖 ) − 𝑥 // reduce supply of 𝑔𝑖

15 G ← G \ {𝑔 ∈ G | t(𝑔) ≤ t(𝑔′) for all 𝑔′ ∈ G}
// remove finished items

16 return X

We denote by 𝑋DSE

the output of DSE. The key properties are

summarized in the following lemma.

Lemma 1 (Properties of DSE). The following holds:

(1)

∑
𝑔∈G 𝑥

DSE

𝑖𝑔
= 𝑤𝑖 ·𝑚 for each 𝑖 ∈ N ;
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(2) the time needed for agent 𝑖 to eat one unit of goods is 1

𝑤𝑖
;

(3) overall, one unit of goods is consumed in one unit of time, and

therefore, DSE runs for𝑚 time units.

Let us observe the behavior of DSE on I∗.

Example 2 (DSE at work). Letting 𝑖 = 2, 3, agents’ priorities in

I∗ for the goods are the following:

𝑔1 ≻1 𝑔2 ≻1 𝑔3 ≻1 𝑔4, 𝑔2 ≻𝑖 𝑔3 ≻𝑖 𝑔1 ≻𝑖 𝑔4 .

Notice that, for agent 1, goods 𝑔1 and 𝑔2 are identical and ties are

broken in favor of the good coming first in the ordering 𝑔1, . . . , 𝑔4.

Agents 2 and 3 have same priorities, thus, they will always be eating

the same good at the same time.

During a run of DSE, whenever a good gets entirely eaten up, the

behavior of agents who were eating this good changes.

At the beginning, 𝑥𝑖𝑔 = 0, for all 𝑖 ∈ N and 𝑔 ∈ G. Agent 1 starts
eating 𝑔1 while agents 2 and 3 good 𝑔2. Notice that agents 2 and 3

together have the same speed as agent 1. At 𝑡 = 2, 𝑔1 and 𝑔2 get

fully consumed and 𝑥1𝑔1 = 1, 𝑥2𝑔2 = 2

3
and 𝑥3𝑔2 = 1

3
, respectively.

Agent 1 will start eating 𝑔3 as well as agents 2 and 3. All the agents

together have speed equal to 1. Notice that agent 1 would prefer good

𝑔2, however, it has been consumed entirely by agents 2 and 3. At 𝑡 = 3,

𝑔3 is now fully consumed. We have 𝑥1𝑔3 =
1

2
, 𝑥2𝑔3 =

1

3
and 𝑥3𝑔3 =

1

6
,

respectively. All the agents are now starting to eat 𝑔4. At 𝑡 = 4, all

goods are fully consumed and DSE returns the fractional allocation

𝑋 DSE =
©­«
1 0

1

2

1

2

0
2

3

1

3

1

3

0
1

3

1

6

1

6

ª®¬ .

■

Our first result is that the output of DSE is WSD-EF.

Proposition 2. 𝑋 DSE

is WSD-EF.

Proof. For convenience, we use 𝑋 = 𝑋DSE

. Let us consider an

agent 𝑖 ∈ N . Note that the goods 𝑔1, . . . , 𝑔𝑚 are ordered in the same

manner as in DSE for agent 𝑖 , since we always break ties according

to a predefined ordering of G. Now consider another agent 𝑗 ∈ N .

Using the notation 𝐺𝑘 = {𝑔1, . . . , 𝑔𝑘 } for the first 𝑘 goods in 𝑖’s

ordering, we show

𝑤 𝑗 ·
∑
𝑔∈𝐺𝑘

𝑥𝑖𝑔 ≥ 𝑤𝑖 ·
∑
𝑔∈𝐺𝑘

𝑥 𝑗𝑔 , (2)

for every 𝑘 ∈ [𝑚], and WSD-EF follows for agent 𝑖 .

Let 𝑡𝑘 be the time when 𝑖 stops eating 𝑔𝑘 during the run of DSE.

We set 𝑡𝑘 = 𝑡𝑘−1 if good 𝑔𝑘 has been completely consumed before

time 𝑡𝑘−1 by others. This means that, by the time 𝑡𝑘 , no good in

𝐺𝑘 remains available. On the one hand, until time 𝑡𝑘 , agent 𝑖 could

only consume goods in 𝐺𝑘 , implying 𝑤𝑖 · 𝑡𝑘 =
∑
𝑔∈𝐺𝑘

𝑥𝑖𝑔 . On the

other hand, every good in𝐺𝑘 has been fully consumed by that time,

i.e., 𝑤 𝑗 · 𝑡𝑘 ≥
∑
𝑔∈𝐺𝑘

𝑥 𝑗𝑔 , for every 𝑗 ∈ N . Combining these two

properties proves Equation (2) and, hence, the theorem. □

It is known that SD-EF implies ex-ante EF for additive valuations;
it remains true for different entitlements.

Proposition 3. Given a fractional allocation 𝑋 , if 𝑋 is ex-ante

WSD-EF, then 𝑋 is ex-ante WEF.

Proposition 2 and Proposition 3 show that the outcome of DSE

satisfies the ex-ante properties stated in Theorem 2 . We next show

that 𝑋DSE

can be decomposed into a lottery with good ex-post

properties. To this end, we use Theorem 1 with the bihierarchyHUG
.

Example 3 (TheHUG
-decomposition). TheHUG

-decomposition

of 𝑋 DSE

is a convex combination 𝜆1𝑌
1 + · · · +𝜆𝑘𝑌𝑘

, for some integer 𝑘 .

Every allocation 𝑌ℎ
is deterministic and its properties are determined

by the bihierarchyHUG
. In the following, we use𝑌 to refer to a generic

deterministic allocation in the decomposition.

Recall that HUG = H1 ∪ H2. The hierarchy H1 deals only with

columns and ensures that any 𝑌 in the decomposition is complete.

Let us now considerH2 defined in 1.

Note that only one agent appears in any pair of H2. Hence, we

discuss the implications of Theorem 1 agent by agent.

Let us consider agent 1. The pair (1, 𝑆) belongs toH2 if and only if

𝑆 ∈ {{𝑔1}, {𝑔1, 𝑔2}, {𝑔1, 𝑔2, 𝑔3}, {𝑔1, 𝑔2, 𝑔3, 𝑔4}} ∪ {{𝑔2}, {𝑔3}, {𝑔4}}.
The feasibility conditions imply:

𝑦1𝑔1 = 1, 𝑦1𝑔1 + 𝑦1𝑔2 = 1,

1 ≤ 𝑦1𝑔1 + 𝑦1𝑔2 + 𝑦1𝑔3 ≤ 2, 𝑦1𝑔1 + 𝑦1𝑔2 + 𝑦1𝑔3 + 𝑦1𝑔4 = 2 ,

and

𝑦1𝑔2 = 0, 0 ≤ 𝑦1𝑔3 ≤ 1, 0 ≤ 𝑦1𝑔4 ≤ 1 .

In other words, in any deterministic allocation𝑌 , agent 1 always re-

ceives 2 goods. In particular, she always gets 𝑔1 but never 𝑔2. Moreover,

she gets either 𝑔3 or 𝑔4, but not both of them.

Similarly, by imposing the corresponding feasibility conditions on

agent 2 and 3 we can deduce: i) the bundle of agent 2 is of size either 1

or 2, never contains 𝑔1 and must contain one good between 𝑔2 and 𝑔3,

and possibly contains 𝑔4; ii) the bundle of agent 3 contains at most

one of 𝑔2, 𝑔3, 𝑔4 and never contains 𝑔1.

Finally, we provide a concreteHUG
-decomposition of 𝑋 DSE

for I∗
with the aforementioned properties:

𝑋 DSE =
1

6

·
(
1 0 0 1

0 1 0 0

0 0 1 0

)
+ 1

6

·
(
1 0 1 0

0 1 0 0

0 0 0 1

)
+ 1

3

·
(
1 0 0 1

0 0 1 0

0 1 0 0

)
+ 1

3

·
(
1 0 1 0

0 1 0 1

0 0 0 0

)
.

■

Theorem 3. Every deterministic allocation 𝑌 in theHUG
-decomp-

osition of 𝑋 DSE

isWEF(1, 1).

To show the theorem we need some preliminary notions.

Eating Time. We define the eating time 𝑡 (𝑔) of a good 𝑔 as the

point in time when it has been entirely consumed (during a run

of DSE). Whenever an agent starts eating a good 𝑔, she can start

eating another good only after the eating time of 𝑔.

Goods Eaten by 𝑖 at Time 𝑡 . Recall that DSE runs for𝑚 units of

time. Every agent 𝑖 exactly eats a total mass of𝑤𝑖 ·𝑚 of G during

DSE. Let 𝑔1, . . . , 𝑔𝑚 be the ordering of goods according to 𝑣𝑖 . We

define Eaten(𝑖, 𝑡) = {𝑔1, . . . , 𝑔ℓ } = 𝐺ℓ , where 𝑔ℓ is either a good

that agent 𝑖 just finished to consume (i.e., 𝑡 is the eating time of

𝑔ℓ and agent 𝑖 was consuming it) or agent 𝑖 at time 𝑡 is eating the

good 𝑔ℓ+1, which has not been finished yet. Consequently, by time

𝑡 , agent 𝑖 may have contributed only to the consumption of goods

in 𝐺ℓ . In particular, all goods in 𝐺ℓ have been entirely consumed

(by 𝑖 and/or others), since otherwise 𝑖 would not start eating 𝑔ℓ+1.

Session 2C: Fair Allocations + Public Goods Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

568



Recall that 𝑤𝑖 is the speed of 𝑖 . At time 𝑡 = 𝑘
𝑤𝑖

agent 𝑖 ate a

total mass 𝑘 of goods. With the next lemma, we show that the

HUG
-decomposition guarantees agent 𝑖 deterministically receives

at most 𝑘 goods from the ones eaten by time
𝑘
𝑤𝑖

.

Lemma 2. Given any deterministic allocation𝑌 in theHUG
-decomp-

osition of 𝑋 DSE

, for every 𝑖 ∈ N and 𝑘 = 1, . . . , ⌊𝑤𝑖 ·𝑚⌋,

|𝑌𝑖 ∩ Eaten(𝑖, 𝑘
𝑤𝑖
) | ≤ 𝑘 .

Furthermore, ⌊𝑤𝑖 ·𝑚⌋ ≤ |𝑌𝑖 | ≤ ⌈𝑤𝑖 ·𝑚⌉.

Proof. By definition, Eaten(𝑖, 𝑘
𝑤𝑖
) = 𝐺ℓ , the ℓ most preferred

goods of 𝑖 , for some ℓ . Thus, by the time
𝑘
𝑤𝑖

, agent 𝑖 only ate goods

in 𝐺ℓ and possibly is currently eating the next less preferred good.

Moreover, goods are eaten by 𝑖 in the same orderingwe used to build

the collection S𝑖 in the definition ofHUG
implying (𝑖,𝐺ℓ ) ∈ HUG

.

Since |𝑌𝑖∩Eaten(𝑖, 𝑘
𝑤𝑖
) | = ∑

𝑔∈𝐺ℓ
𝑦𝑖𝑔 , theHUG

-decomposition prop-

erties imply

∑
𝑔∈𝐺ℓ

𝑦𝑖𝑔 ≤
⌈∑

𝑔∈𝐺ℓ
𝑥𝑖𝑔

⌉
. This last is upper-bounded

by 𝑘 because of these two simple observations: 𝑔ℓ is fully consumed

by the time
𝑘
𝑤𝑖
, and at that time agent 𝑖 ate 𝑘 units of goods. The

first claim follows.

The second claim immediately follows by theHUG
-decomposition

properties, since (𝑖,G) ∈ HUG
. □

Given any deterministic allocation 𝑌 in theHUG
-decomposition,

consider agent 𝑖 and sort the goods in𝑌𝑖 in a non-increasing manner

with respect to 𝑣𝑖 : 𝑌𝑖 = {𝑔𝑖
1
, . . . , 𝑔𝑖

ℎ𝑖
} and 𝑣𝑖 (𝑔𝑖

1
) ≥ · · · ≥ 𝑣𝑖 (𝑔𝑖ℎ𝑖 ). By

Lemma 2, we see ℎ𝑖 = ⌊𝑤𝑖 ·𝑚⌋ or ℎ𝑖 = ⌈𝑤𝑖 ·𝑚⌉.

Stopping Time. Given any deterministic allocation 𝑌 in theHUG
-

decomposition of 𝑋 , for each 𝑖 ∈ N and 𝑘 ∈ [ℎ𝑖 ], we define the
stopping time by 𝑠 (𝑔𝑖

𝑘
) = min{𝑡 (𝑔𝑖

𝑘
), 𝑘

𝑤𝑖
}. Note that 𝑠 (𝑔𝑖

𝑘
), differ-

ently from the stopping time 𝑡 (𝑔𝑖
𝑘
) which solely depends on the run

of DSE, also depends on 𝑌 . Indeed, in 𝑌𝑖 good 𝑔
𝑖
𝑘
is the 𝑘-th most

preferred good. However, if the eating time is greater than
𝑘
𝑤𝑖

, this

good might appear as (𝑘 + 1)-th most preferred good in another

deterministic allocation of the decomposition. For convenience,

we omit 𝑌 in the notation since we only discuss stopping times

of single allocations. Let us show a couple of useful properties of

stopping times.

Lemma 3. Given any deterministic allocation𝑌 in theHUG
-decomp-

osition of 𝑋 DSE

, let 𝑔𝑖
𝑘
be the 𝑘-th most preferred good in 𝑌𝑖 , it holds

𝑠 (𝑔𝑖
𝑘
) ∈

(
𝑘−1
𝑤𝑖

, 𝑘
𝑤𝑖

]
.

Proof. By definition, 𝑠 (𝑔𝑖
𝑘
) = min{𝑡 (𝑔𝑖

𝑘
), 𝑘

𝑤𝑖
} ≤ 𝑘

𝑤𝑖
. For con-

tradiction, suppose 𝑡 (𝑔𝑖
𝑘
) ≤ 𝑘−1

𝑤𝑖
. Then, 𝑔𝑖

𝑘
∈ 𝑌𝑖 ∩ Eaten

(
𝑖, 𝑘−1𝑤𝑖

)
.

Notice that 𝑡 (𝑔𝑖
1
) ≤ · · · ≤ 𝑡 (𝑔𝑖

𝑘
), by definition of DSE, and therefore

𝑔𝑖
ℎ
∈ 𝑌𝑖 ∩ Eaten

(
𝑖, 𝑘−1𝑤𝑖

)
, for each ℎ = 1, . . . , 𝑘 .

In conclusion,

���𝑌𝑖 ∩ Eaten (
𝑖, 𝑘−1𝑤𝑖

)��� ≥ 𝑘 which is a contradiction

by Lemma 2, and hence 𝑡 (𝑔𝑖
𝑘
) > 𝑘−1

𝑤𝑖
. □

Notice that for the eating time 𝑡 (𝑔𝑖
𝑘
) the same lower bound holds;

however, we can only upper bound 𝑡 (𝑔𝑖
𝑘
) by 𝑘+1

𝑤𝑖
. This difference

will be crucial in the proof of Theorem 3 andmotivates the definition

of stopping times.

Lemma 4. Given any deterministic allocation𝑌 in theHUG
-decomp-

osition of 𝑋 DSE

, let 𝑔𝑖
𝑘
be the 𝑘-th most preferred good in 𝑌𝑖 . For

every good 𝑔 coming earlier in 𝑖’s ordering of goods, it holds that

𝑠 (𝑔) < 𝑠 (𝑔𝑖
𝑘
).

Proof. The claim follows by the definition of stopping time

and the properties of DSE. Indeed, by the definition of stopping

time 𝑠 (𝑔) ≤ 𝑡 (𝑔), and 𝑡 (𝑔) < min{𝑡 (𝑔𝑖
𝑘
), 𝑘

𝑤𝑖
} = 𝑠 (𝑔𝑖

𝑘
). The second

inequality holds because at time 𝑠 (𝑔𝑖
𝑘
) agent 𝑖 is eating or finishes to

eat 𝑔𝑖
𝑘
, and 𝑔 must have been eaten before 𝑖 starts eating 𝑔𝑖

𝑘
. Further,

the inequality is strict since agent 𝑖 ate a positive fraction of 𝑔𝑖
𝑘

(that is, 𝑥𝑖𝑔𝑖
𝑘
> 0); otherwise, since (𝑖, 𝑔𝑖

𝑘
) ∈ H2, 𝑥𝑖𝑔𝑖

𝑘
= 0 would

imply 𝑦𝑖𝑔𝑖
𝑘
= 0 and, hence, 𝑔𝑖

𝑘
∉ 𝑌𝑖 . □

We are now ready to show Theorem 3.

Proof of Theorem 3. Let 𝑌 be any deterministic allocation in

the HUG
-decomposition of 𝑋DSE

. The proof proceeds as follows:

We first generate a picking sequence 𝜋 , then show that 𝑌 is the

output of such a picking sequence, and finally prove that 𝜋 satisfies

Proposition 1, for 𝑥 = 𝑦 = 1. This shows that 𝑌 isWEF(1, 1).
Defining 𝜋 . We sort the goods G in a non-decreasing order of

stopping times 𝑠1, . . . , 𝑠𝑚 (defined according to 𝑌 ). If 𝑔 ∈ 𝑌𝑖 is the
ℎ-th good in this ordering, then, 𝜋 (ℎ) = 𝑖 .

𝑌 is the result of 𝜋 . Assume 𝑖 is the ℎ-th agent in 𝜋 . Assume that

𝜋 (ℎ) = 𝑖 is the 𝑘-th occurrence of 𝑖 in 𝜋 . We show that for each

ℎ ∈ [𝑚], the most preferred available good for 𝑖 is exactly 𝑔𝑖
𝑘
. Let

us proceed by induction on ℎ.

For ℎ = 1, clearly, 𝑘 = 1. By Lemma 4, 𝑔𝑖
1
must be the most

preferred good of 𝑖 , otherwise we contradict the fact that 𝑠1 = 𝑠 (𝑔𝑖
1
)

is the minimum stopping time. At this point no good has been

assigned, so 𝑖 selects 𝑔𝑖
1
.

Assume the statement is true until the ℎ-th component of 𝜋 . We

show it is true for ℎ + 1 ≤ 𝑚. Suppose a good 𝑔 coming before 𝑔𝑖
𝑘
,

in 𝑖’s ordering, is still available. By Lemma 4, there exists ℎ′ s.t.
𝑠ℎ′ = 𝑠 (𝑔) < 𝑠 (𝑔𝑖

𝑘
) with ℎ′ ≤ ℎ. By the inductive hypothesis, 𝑔 must

have been assigned to 𝜋 (ℎ′). On the other hand, 𝑔𝑖
𝑘
is still available,

otherwise there exists ℎ′ ≤ ℎ, such that 𝜋 (ℎ′) picked 𝑔𝑖
𝑘
during the

ℎ′-th round – a contradiction with the inductive hypothesis.

𝜋 satisfies Proposition 1. We now show that 𝜋 satisfiesWEF(1, 1).
Consider any prefix of 𝜋 and any pair of agents 𝑖, 𝑗 . Let us denote by

𝑡𝑖 (resp. 𝑡 𝑗 ) the number of picks of agent 𝑖 (resp. 𝑗 ) in the considered

prefix. Let 𝑠 𝑗 and 𝑠𝑖 be the stopping time of the good selected by

𝑗 at her 𝑡 𝑗 -th pick and the stopping time of the good selected by

𝑖 at her (𝑡𝑖 + 1)-th pick, respectively. If 𝑖 has no (𝑡𝑖 + 1)-th pick,

we set 𝑠𝑖 = 𝑚 ≤ 𝑡𝑖+1
𝑤𝑖

. Within the considered prefix of 𝜋 , agent 𝑗

already made its 𝑡 𝑗 -th pick but 𝑖 didn’t make its (𝑡𝑖 +1)-th pick. Now
by definition of 𝜋 , 𝑠 𝑗 ≤ 𝑠𝑖 . By Lemma 3, 𝑠 𝑗 >

𝑡 𝑗−1
𝑤𝑗

and 𝑠𝑖 ≤ 𝑡𝑖+1
𝑤𝑖

.

We finally get

𝑡 𝑗−1
𝑤𝑗

<
𝑡𝑖+1
𝑤𝑖

. This shows that the hypothesis of

Proposition 1 is fulfilled for 𝑥 = 𝑦 = 1. □
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Note that if we had chosen eating rather than stopping times for

the picking sequence, we could only deduce

𝑡 𝑗−1
𝑤𝑗

<
𝑡𝑖+2
𝑤𝑖

which is

not sufficient to show WEF(1, 1).
As 𝑋DSE

is (ex-ante)WEF, it is alsoWPROP. By ex-anteWPROP
and Corollary 1, the following is implied.

Proposition 4. Every deterministic allocation 𝑌 in the HUG
-

decomposition of 𝑋 DSE

is WPROP1.

Proof. The fractional allocation𝑋DSE

isWEF, and henceWPROP.
Therefore, 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑤𝑖 · 𝑣𝑖 (G). By Corollary 1, for any 𝑌 in the

HUG
-decomposition, 𝑣𝑖 (𝑌𝑖 ) + 𝑣𝑖 (𝑔) > 𝑣𝑖 (𝑋𝑖 ), for some 𝑔 ∈ G \ 𝑌𝑖 .

This implies 𝑣𝑖 (𝑌𝑖 ∪ {𝑔}) ≥ 𝑤𝑖 · 𝑣𝑖 (G), and WPROP1 follows. □

In conclusion, we proved that theHUG
-decomposition of 𝑋DSE

is

a lottery achieving ex-ante WSD-EF, and therefore ex-ante WEF,
and ex-postWEF(1, 1) +WPROP1. As a consequence of Theorem 1,

our lottery has polynomial support and the computation requires

strongly polynomial time.

While our guarantee is weaker than the ex-post EF1 for equal
entitlements, we show that our lottery is, in a sense, best possible

in terms of ex-post guarantees. Indeed, we prove that no stronger

ex-post envy notion is compatible with ex-ante WEF.

Proposition 5. For every pair 𝑥,𝑦 ∈ [0, 1] such that 𝑥 + 𝑦 < 2,

ex-ante WEF is incompatible with ex-post WEF(𝑥,𝑦).

Proof. Consider a fair division instance I = (N ,G, {𝑣𝑖 }𝑖∈N),
where N = {1, 2} and G = {𝑔1, 𝑔2}. Moreover, 𝑣𝑖 (𝑔1) = 𝑣𝑖 (𝑔2) = 1,

for 𝑖 = 1, 2. Let us set 𝑤1 ∈
(

𝑦
2+𝑦−𝑥 ,

1

2

)
and 𝑤2 = 1 −𝑤1. Observe

that
𝑦

2+𝑦−𝑥 < 1

2
, since 𝑥 + 𝑦 < 2. In any ex-ante WEF allocation

agent 1 receives in expectation less than one good. This means, the

allocation 𝑌 = (𝑌1, 𝑌2) = (∅,G) is in the support of any ex-ante

WEF lottery. Therefore, since𝑤1 +𝑤2 = 1, for each 𝑔 ∈ 𝑌2
𝑤1 · (𝑣1 (𝑌2) − 𝑥 · 𝑣1 (𝑔)) = 𝑤1 · (2 − 𝑥)

>
𝑦

2 + 𝑦 − 𝑥 · (2 − 𝑥) > 𝑤2 · 𝑦

= 𝑤2 · (𝑣1 (𝑌1) + 𝑦 · 𝑣1 (𝑔)) .
This proves 𝑌 is not WEF(𝑥,𝑦). □

Remark. For equal entitlements our approach also provides ex-

ante EF and ex-post EF1. The ex-ante property follows directly

since 𝑤𝑖 = 1/𝑛. For ex-post EF1, similarly to [2], it is possible to

show that any allocation 𝑌 in theHUG
-decomposition of the 𝑋DSE

is the result of an RB picking sequence. In particular, this holds for

the picking sequence defined in the proof of Theorem 3.

3.2 Ex-ante WGF and Ex-postWEF1
1
+WPROP1

In this subsection, we generalize Theorem 4/Corollary 1 of Freeman

et al. [19] to entitlements. We follow the general argument and

incorporate some technical extensions to allow for different agent

weights.

Theorem 4. For entitlements and additive valuations, we can

compute in strongly polynomial time a lottery that is ex-anteWGF
and ex-post WEF1

1
+WPROP1.

Note that ex-anteWGF implies ex-anteWEF. Moreover, ex-ante

WGF implies ex-ante Pareto optimality.

Remark. One might wonder whether the ex-post guarantee in

Theorem 4 could be replaced with WEF(𝑥,𝑦) for some parameters

𝑥,𝑦 ∈ [0, 1]. There are instances where this is impossible, even in

the unweighted setting. Consider the following example: There are

three agents 1, 2, 3, three light goods, and one heavy good. Agents 1

and 2 have the same valuation function, they value the heavy good

at 6, and each light good at 1. Agent 3 values the light goods at 1

and the heavy good at 0.

Now consider a fractional group fair allocation 𝑋 . Observe that

all light goods need to be allocated completely to agent 3 in 𝑋 . If

one of the first two agents (say, agent 1) gets a fraction 𝜖 > 0 of

light goods, the group fairness condition is violated for 𝑆 = {2, 3}
and 𝑇 = {1, 3}: If one reallocates the fraction 𝜖 of light goods from

agent 1 to agent 3, then the utility agent 3 strictly improves and the

utility of agent 2 remains unchanged.

Now consider any allocation 𝑌 in the support of a lottery imple-

menting 𝑋 . 𝑌 needs to give all light goods to agent 3, so at least

one of the first two agents gets no good at all. This agent is then

envious to agent 3, and transferring one good from agent 3 to agent

1 cannot remove this envy.

4 EXTENSIONS TO GENERAL VALUATIONS
In this section, we explore to which extent our techniques apply

to more general valuations. Let us start by introducing the classes

that will be discussed.

Classes of Valuations. A valuation function 𝑣𝑖 is 𝑘-unit-demand

if 𝑣𝑖 (𝐴) is given by the sum of the 𝑘 most valuable goods in 𝐴 for

𝑖 . A valuation function is multi-demand, iff it is 𝑘-unit-demand for

some 𝑘 ∈ N. If 𝑘 = 1 we talk about unit-demand.

A valuation function 𝑣𝑖 is cancelable if

𝑣𝑖 (𝑆 ∪ {𝑔}) > 𝑣𝑖 (𝑇 ∪ {𝑔}) ⇒ 𝑣𝑖 (𝑆) > 𝑣𝑖 (𝑇 ) ,
for all 𝑆,𝑇 ⊆ G and ∀𝑔 ∈ G \ (𝑆 ∪𝑇 ). Cancelable valuations gener-
alize several classes studied in the literature, e.g., additive, weakly-

additive, budget-additive, product, and unit-demand, see [8].

A valuation function 𝑣𝑖 is XOS if there is a family of additive

set functions F𝑖 such that 𝑣𝑖 (𝐴) = max𝑓 ∈F𝑖 𝑓 (𝐴). XOS generalize
additive and submodular valuations.

Both ex-ante WEF and ex-ante WSD-EF allocations exist for all

valuations. In particular, for ex-anteWEFwe use the trivial uniform
random assignment from the introduction. For ex-ante WSD-EF it

is sufficient to invoke DSE only using agents’ priorities over single

goods. Observe that for general valuations it is no longer true that

ex-ante WSD-EF implies ex-ante WEF. We next show that ex-ante

WEF and either ex-postWPROP1 or ex-postWEF(1, 1) is no longer
guaranteed.

Theorem 5. For general valuations, ex-anteWEF is not compatible

with WPROP1 orWEF(1, 1).

Proof. Let us consider a fair division instance with two agents

and four goods. Suppose agent 1 has an entitlement of
2

3
, and has

value 1 for any bundle (except the empty bundle, for which she has

value 0). Agent 2 has entitlement
1

3
and value 𝑘 for any bundle of

size 𝑘 , for 𝑘 = 0, . . . , 4.

Let us denote by 𝑝𝑘 the probability that 1 receives 𝑘 goods.

Clearly, if the allocation is ex-post WPROP1 or ex-post WEF(1, 1),
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then 𝑝0 = 0 and

∑
4

𝑘=1
𝑝𝑘 = 1. Since the allocation is complete, 𝑝𝑘

is also the probability that agent 2 receives 4 − 𝑘 goods. Agent 1 is

ex-ante WEF if and only if

1

3

· (𝑝1 + 𝑝2 + 𝑝3 + 𝑝4) ≥
2

3

· (𝑝0 + 𝑝1 + 𝑝2 + 𝑝3)

which implies 1 − 𝑝0 ≥ 2 · (1 − 𝑝4) and, hence, 2𝑝4 ≥ 1 + 𝑝0. Thus,
𝑝4 ≥ 1

2
. Therefore, the allocation where agent 1 receives every good

and 2 no good occurs with positive probability. However, such an

allocation is neitherWPROP1 norWEF(1, 1) (not evenWEF1
1
) for

agent 2. □

Notice that both agents in the above example value 1 each good,

and hence agent 1 is unit-demand and agent 2 is additive.

4.1 XOS Valuations
For an agent 𝑖 with XOS valuation, our algorithm only makes use

of the additive function 𝑓𝑖 such that 𝑣𝑖 (G) =
∑
𝑔∈G 𝑓𝑖 (𝑔), i.e., the

additive function for the grand bundle. Therefore, either we assume

𝑓𝑖 to be known or we have access to an XOS-oracle (using which

𝑓𝑖 can be obtained with a single query). Given a query with a set

𝐴 ⊆ G, the XOS-oracle returns a function 𝑓 ∈ F𝑖 that maximizes

𝑓 (𝐴).
Let 𝑋 be the fractional allocation with 𝑥𝑖𝑔 = 𝑤𝑖 , for each 𝑖 ∈ N

and 𝑔 ∈ G.

Proposition 6. 𝑋 is ex-ante WPROP.

Proof. Let 𝜆1𝑌
1 + · · · + 𝜆𝑘𝑌𝑘

be any decomposition of 𝑋 . For

any allocation 𝑌 ∈ {𝑌 ℓ }ℓ∈[𝑘 ] , 𝑣𝑖 (𝑌𝑖 ) = max𝑓 ∈F𝑖 𝑓 (𝑌𝑖 ) ≥ 𝑓𝑖 (𝑌𝑖 ),
since 𝑓𝑖 ∈ F𝑖 . Hence, the expected utility of agent 𝑖 in the lottery is

𝑘∑
ℎ=1

𝜆ℎ𝑣𝑖 (𝑌ℎ
𝑖 ) ≥

𝑘∑
ℎ=1

𝜆ℎ 𝑓𝑖 (𝑌ℎ
𝑖 ) =

𝑘∑
ℎ=1

∑
𝑔∈𝑌ℎ

𝑖

𝜆ℎ 𝑓𝑖 (𝑔)

=
∑
𝑔∈G

∑
ℎ :𝑔∈𝑌ℎ

𝑖

𝜆ℎ 𝑓𝑖 (𝑔) =
∑
𝑔∈G

𝑓𝑖 (𝑔)
∑

ℎ :𝑔∈𝑌ℎ
𝑖

𝜆ℎ

=
∑
𝑔∈G

𝑥𝑖𝑔 𝑓𝑖 (𝑔) = 𝑤𝑖

∑
𝑔∈G

𝑓𝑖 (𝑔) = 𝑤𝑖 · 𝑣𝑖 (G) .

□

In order to apply Theorem 1, we need to set up an appropriate

additive function. For the next result, we assume that agent 𝑖 has

additive valuation 𝑓𝑖 , for each 𝑖 ∈ N .

Proposition 7. TheHUG
-decomposition of𝑋 is ex-postWPROP1.

Proof. Given any allocation 𝑌 of the decomposition, by defini-

tion of XOS, Corollary 1 and Proposition 6, we see that

𝑣𝑖 (𝑌𝑖 ∪ {𝑔}) ≥ 𝑓𝑖 (𝑌𝑖 ∪ {𝑔}) = 𝑓𝑖 (𝑌𝑖 ) + 𝑓𝑖 (𝑔) > 𝑓𝑖 (𝑋𝑖 ) = 𝑤𝑖 · 𝑣𝑖 (G) .

□

4.2 Equal Entitlements
Here we briefly discuss to which extent we can guarantee BoBW

results for equally entitled agents and general valuations. In par-

ticular, we explore valuation functions for which Eating together

with theHUG
-decomposition can be used to guarantee ex-ante EF

and ex-post EF1.

Both Eating and the definition of the HUG
bihierarchy only

depend on the ranking of each agent for singleton bundles of goods.

Therefore, we can determine a fractional allocation 𝑋DSE

with Eat-

ing and compute itsHUG
-decomposition for any class of valuation

functions. This also yields the desired properties for broader classes

of valuations.

Theorem 6. For equal entitlements, if an agent 𝑖 ∈ N has a 𝑘-

unit-demand valuation for some 𝑘 ∈ N, then theHUG
-decomposition

of 𝑋 DSE

is ex-ante EF and ex-post EF1 for 𝑖 .

We point out that we must rely on theHUG
-decomposition to

prove ex-ante EF. In fact, when valuations are multi-demand, not

all lotteries implementing 𝑋DSE

are ex-ante EF.
Being additive valuations a special case of multi-demand valua-

tions (it is sufficient to set 𝑘 =𝑚), we have the following:

Corollary 2. For equal entitlements and any combination of

additive and multi-demand valuations, the HUG
-decomposition of

𝑋 DSE

is ex-ante EF and ex-post EF1.

Another interesting observation is that the concept of SD-EF
depends only on the ranking of single goods provided by the agents.

Thus, the output of Eating is always an ex-ante SD-EF allocation,

regardless of the valuation function. By proving that any RB picking

sequence gives an EF1 allocation for cancelable valuations (see full

version), we obtain the following:

Theorem 7. For equal entitlements and cancelable valuations, the

HUG
-decomposition of 𝑋 DSE

is ex-ante SD-EF and ex-post EF1.

Unfortunately, we were not able to prove that the lottery is ex-

ante EF (only ex-ante SD-EF) for cancelable valuations, and this

remains an interesting open question.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we obtain best of both worlds results for fair division

with entitlements. Our results for additive valuations paint a rather

complete picture. We present a lottery that can be computed in

strongly polynomial time and guarantees ex-anteWEF and ex-post

WEF(1, 1) +WPROP1. This is tight in the sense that any stronger

notion of WEF(𝑥,𝑦) is incompatible with ex-ante WEF. We also

present a lottery that is ex-anteWGF (and therefore ex-ante Pareto

optimal) and ex-post WEF1
1
+ WPROP1. Again, ex-ante WGF is

incompatible with stronger ex-post notions.

We also explore how some of our results can be extended to

more general valuation functions. These insights represent an in-

teresting first step, but many important open problems remain. As

a prominent one, to the best of our knowledge, it is open for which

classes of valuation functions ex-ante EF is always compatible with

ex-post EF1 in the unweighted setting. In addition, providing tight

guarantees with entitlements and combinations of other fairness

concepts (such as, e.g., variants of the Max-Min-Share) is an inter-

esting direction for future work.

Finally, in our work, we have not put particular attention to

Pareto optimality. This is motivated by the impossibility result

of [2, 19]: i) ex-ante Prop, ex-post EF1, and ex-post fractional Pareto

optimality are incompatible and ii) ex-ante SD-EF, ex-post EF1,

and ex-post Pareto optimality are incompatible even for 2 agents.

Reducing the ex-post EF1 guarantee in favor of Pareto optimality

is indeed another interesting research direction.
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