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ABSTRACT
Our work studies the fair allocation of indivisible items to a set of

agents, and falls within the scope of establishing improved approxi-

mation guarantees. It is well known by now that the classic solution

concepts in fair division, such as envy-freeness and proportionality,

fail to exist in the presence of indivisible items. Unfortunately, the

lack of existence remains unresolved even for some relaxations of

envy-freeness, and most notably for the notion of EFX, which has

attracted significant attention in the relevant literature. This in turn

has motivated the quest for approximation algorithms, resulting

in the currently best known (𝜙 − 1)-approximation guarantee by

[5], where 𝜙 equals the golden ratio. So far, it has been notoriously

hard to obtain any further advancements beyond this factor. Our

main contribution is that we achieve better approximations, for

certain special cases, where the agents agree on their perception of

some items in terms of their worth. In particular, we first provide

an algorithm with a 2/3-approximation, when the agents agree on

what are the top 𝑛 items (but not necessarily on their exact ranking),

with 𝑛 being the number of agents. To do so, we also propose a gen-

eral framework that can be of independent interest for obtaining

further guarantees. Secondly, we establish the existence of exact

EFX allocations in a different scenario, where the agents view the

items as split into tiers w.r.t. their value, and they agree on which

items belong to each tier. Overall, our results provide evidence

that improved guarantees can still be possible by exploiting ordinal

information of the valuations.
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1 INTRODUCTION
Our work follows the ongoing line of research on fair division

with indivisibilities. During the last decade, we have experienced

a surge of interest in defining new fairness notions, tailored for

allocating a set of indivisible items to a set of agents. This effort has

been largely motivated by the realization that the more traditional

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
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solution concepts, such as envy-freeness or proportionality are too

demanding and fail to exist for the discrete setting.

As a result, there are by now several relaxations that try to incor-

porate different fairness aspects. In this work we are particularly

interested in the relaxation referred to as EFX (envy-freeness up to

any item), but we will also discuss and utilize results for a weaker

variant referred to as EF1 (envy-freeness up to one item). The no-

tion of an EFX allocation was defined in [13] and demands that an

agent 𝑖 stops being envious of another agent 𝑗 , if at most one item

was to be removed from the bundle of agent 𝑗 .

Over the last years, the question of finding EFX allocations has

become one of the most important open problems in fair division

[22]. Despite the effort and interest of the community, we are still

not aware if EFX allocations exist for instances with at least 4 agents.

Naturally, this also led to the study of approximation algorithms,

which brought forward further insights. But unfortunately, even

on this front, it is still unresolved to identify what is the best ap-

proximation guarantee that we can have. At the moment, the best

known algorithm is by [5], producing in worst case a 0.618-EFX

allocation, and ideally, it would be very desirable to improve this

to a factor as close to 1 as possible.

Driven by these considerations and the difficulty of the problem

in its general case, our main focus is to identify conditions under

which we can obtain improved approximation guarantees or even

exact EFX allocations. We are particularly motivated by a positive

result established in [21], that EFX allocations exist and can be

computed efficiently, when all the agents agree on how the items

are ranked w.r.t. their value (the agents can have different additive

valuation functions, only agreement on the ranking is required).

Such instances can be justified as capturing scenarios where all

the items are perceived in a similar way by all agents. Although it

may seem too strict that the ranking should be exactly the same

for all agents and over all the items, this is one of the few positive

results that are known on the existence of EFX allocations, and to

our surprise, no further progress has been reported if the condition

is even minimally violated.

1.1 Contribution
We investigate the direction of obtaining further positive results

for larger families of instances, by considering relaxations of the

common ranking assumption of [21]. To this end, we investigate

two possible such weakenings. Our first main result (Section 3.2)

is that for instances with 𝑚 items and 𝑛 agents, we provide an

algorithm with a 2/3-approximation guarantee, when the set of the

top 𝑛 items is the same for every agent (they do not have to agree

on their ranking for them, and we also impose no assumption on
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the remaining𝑚 − 𝑛 items). This improves the currently known

0.618-approximation for these instances and is particularly useful

for cases with a small number of agents, where it can often be the

case that they agree on the set of top-tier items. To prove our result,

we propose a general framework that is of independent interest for

obtaining approximation guarantees. We demonstrate (in Section

3.3) that indeed, via this framework, we can reprove some already

existing results in the literature and also attain further improve-

ments, when agents have additional agreements on the ranking

of items. This reveals a smooth degrading of the approximation

factor as agents get to have fewer agreements on how they rank

the items. Moving on, in Section 4, we obtain a better guarantee by

looking at a different relaxation of the common ranking assumption.

Namely, we establish the existence and efficient computation of

exact EFX allocations in the scenario where the agents view the

items as grouped into tiers of size at most three w.r.t. their value,

and they agree on the items that belong to each tier. Each tier can

be thought of as a different quality/desirability level and the agents

in this setting have a common perception on classifying the items

to these levels. We note that our proof holds for the more general

family of cancelable valuation functions, an interesting superclass

of additive functions. Finally, this result also contributes to ruling

out instances for constructing potential counterexamples to the

non-existence of EFX allocations (which is an ongoing pursuit for

the EFX concept).

1.2 Related work
The first direct relaxation of envy freeness tailored for indivisible

items, was the notion of envy freeness up to 1 good (EF1). Formally

it was introduced by Budish in [11], while implicitly considered

also in [18]. Later on, Caragiannis et al. defined the stronger notion

of envy freeness up to any good (EFX), in [13]. The first positive

result in the pursuit of exact EFX allocations, was due to Plaut and

Roughgarden, [21], where the existence of such allocations was

proved in the case that all agents have identical valuation functions.

Making progress even for a small number of agents turned out

to be highly non trivial with the currently best result being the

existence of EFX allocations for 3 agents with additive valuations,

by Chaudhury et al., [15].

Plaut and Roughgarden also investigated two other ways to

attack the problem. The first one was a definition of a multiplicative

approximation version of EFX, for which they provided a non-

polynomial algorithm with a guarantee of 1/2. The same ratio was

later attained efficiently in [14], and currently, the state of the art

approximation is 𝜙 − 1 ≈ 0.618, in [5]. The second contribution

of Plaut and Roughgarden was a polynomial time algorithm for

additive valuations under the restricted setting where agents rank

all the items in the same way. After this, exact EFX allocations

have also been shown to exist in a variety of other special cases:

for additive binary valuations in [1], for dichotomous preferences

and submodular valuations in [7], for two-valued instances and

bounded value instances in [3], and when all agents have one of

two possible valuation functions in [19].

An alternative approach to the problem was initiated in [12]

where EFX allocations (with high Nash welfare) were shown to

exist when some items may be unallocated; giving birth to EFX

with charity. Subsequent work by Chaudhury et al., [17], proved the
existence of EFX allocations with bounded charity, i.e., the number

of donated items is no more than 𝑛 − 1. The bound was improved

in [19] to 𝑛 − 2, while approximate EFX allocations with sublinear

charity was the focus of [16]. In that work a connection between

the size of the charity and a problem in extremal combinatorics

was shown; the second problem was studied outside the context of

Fair Division in [9], [2] and [20]. Finally, Berger et al., [10], proved

that for the special case of 4 agents, an EFX allocation with at most

one unallocated item exists, even for a broader class than the case

of additive valuation functions.

Apart from the notions of EF1 and EFX, there have been already

several other fairness concepts that have been proposed, such as

the notions of Maximin, Pairwise, and Groupwise Share fairness

(MMS, PMMS and GMMS, introduced respectively in [11], [13] and

[8]). For an overview of these notions, we refer the reader to [4],

[6] and the references therein.

2 MODEL AND PRELIMINARIES
We consider a set of agents, 𝑁 = {1, . . . , 𝑛} and a set 𝑀 of𝑚 in-

divisible items. Each agent 𝑖 ∈ 𝑁 is associated with a valuation

function 𝑣𝑖 , which is assumed to be monotone and nonnegative (i.e.,

we do not allow for chores). An allocation A is any valid ordered

partition of 𝑀 into 𝑛 subsets, A = (𝐴1, . . . , 𝐴𝑛), where 𝐴𝑖 is the

bundle of agent 𝑖 . The goal is to compute an allocation that satisfies

some desirable fairness criteria.

2.1 Basic definitions
Our first set of results in Section 3 concerns additive valuation
functions, which is a typical assumption made in the fair division

literature. A valuation is additive if every agent 𝑖 associates a value

𝑣𝑖 𝑗 with each item 𝑗 ∈ 𝑀 , and the total value of 𝑖 for a subset 𝑆 ⊆ 𝑀

is given by 𝑣𝑖 (𝑆) =
∑

𝑗∈𝑆 𝑣𝑖 𝑗 . Later in Section 4, we will also define

and study generalizations to richer valuations. For ease of notation,

we will use 𝑔 for a singleton set {𝑔}, so that, e.g., 𝑣𝑖 (𝑔) = 𝑣𝑖 ({𝑔}).
Given an input profile, described by the valuation functions of

the agents, an ideal solution is to allocate the items so that no one

envies someone else’s bundle.

Definition 2.1 (Envy freeness-EF). An allocation A is envy free

(EF) if for every pair of agents 𝑖, 𝑗 , it holds that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ).

Envy freeness turns out to be too strict for indivisible items, and

therefore several relaxations have been considered as alternative

solutions. The first such relaxation is the notion of EF1, due to

Budish, [11].

Definition 2.2 (EF1). An allocationA is envy free up to one good

(EF1) if for every pair of agents 𝑖, 𝑗 , there exists a good 𝑔 ∈ 𝐴 𝑗 , such

that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ 𝑔).

The intuition behind EF1 allocations is that the agents cannot be

too envious, in the sense that there always exists a single itemwhose

removal can eliminate envy from one agent to another. This is an

efficiently computable fairness notion, as demonstrated in the next

subsection. Towards coming closer to envy-freeness, Caragiannis

et al., [13], defined a stronger notion (but still a weakening of EF),

which is also the notion of interest for our work. The difference w.r.t.
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EF1 is the switch of the quantifiers, so that envy can be eliminated

by the removal of any single item.

Definition 2.3 (EFX). An allocationA is envy free up to any good

(EFX) if for every pair of agents 𝑖, 𝑗 , and for every 𝑔 ∈ 𝐴 𝑗 , it holds

that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ 𝑔).
EFX allocations have turned out to be much harder to compute.

As a result, approximate versions of EFX have also received consid-

erable attention. Although there are multiple ways of defining an

approximation notion, we will stick to the multiplicative version,

as studied in previous works as well:

Definition 2.4 (𝛼-EFX). An allocation A is 𝛼-EFX, for 𝛼 ∈ [0, 1],
if for every pair of agents 𝑖, 𝑗 , and for every 𝑔 ∈ 𝐴 𝑗 , it holds that

𝑣𝑖 (𝐴𝑖 ) ≥ 𝛼 · 𝑣𝑖 (𝐴 𝑗 \ 𝑔).
Hence, our goal is to obtain 𝛼-EFX allocations, with 𝛼 as close to

1 as possible. Furthermore, in the same manner one can also define

approximate versions for other concepts (e.g. 𝛼-EF). For further

illustrations and examples on these concepts, we also refer the

reader to [4].

2.2 Envy cycle elimination
In the sequel we will use as a building block, a well-known al-

gorithm, which we will refer to as Envy Cycle Elimination (ECE).

Introduced in [18], it computes an EF1 allocation in polynomial time,

even for general valuations. The algorithm uses a graph-theoretic

approach, where each agent is viewed as a node, and where envy

from an agent 𝑖 towards an agent 𝑗 corresponds to the directed

edge (𝑖, 𝑗). Hence, any allocation (not necessarily of the whole set

of goods), can be represented by the corresponding directed graph,

referred to as the envy graph of the allocation and denoted by 𝐸𝐺 .

The algorithm starts from the empty allocation and allocates one

item per round. In each round, if there exists an unenvied agent 𝑖 in

the current allocation, then she can receive the next item without

violating the EF1 property. If no such agent exists, then any agent in

𝐸𝐺 has an incoming edge, meaning that the graph contains at least

one directed cycle in the form 𝑖1 → 𝑖2 → · · · → 𝑖1. Reallocating the

bundles backwards along the cycle, i.e., agent 𝑗 would receive 𝐴 𝑗+1,
removes some envy edges, and by repeating the process enough

times, we can eliminate all cycles and leave some agent without an

incoming edge. This would be the agent to receive the item of the

current round (breaking ties arbitrarily if there are multiple such

agents). The formal description of the algorithm follows.

Algorithm 1 Envy Cycle Elimination(N ,M)
1: Set 𝐴𝑖 = ∅ for every agent 𝑖

2: while ∃ some unallocated item 𝑔 do
3: Pick some source agent 𝑠 (guaranteed to exist, break ties

arbitrarily)

4: Set 𝐴𝑠 = 𝐴𝑠 ∪ {𝑔}
5: Decycle the envy graph by repeatedly finding envy cycles

and reallocating backwards the bundles along each cycle

6: end while
7: return A = (𝐴1, . . . , 𝐴𝑛)

Theorem 2.5 (implied by [18]). Algorithm 1 computes an EF1
allocation in polynomial time.

At this point, we should note that in the original version in [18],

it suffices to execute the decycling step in line 5, until we obtain

at least one source agent (with no incoming edges), to maintain

the EF1 property. For our purposes, it is convenient to eliminate

all cycles, and maintain the invariant that 𝐸𝐺 is a DAG (Directed

Acyclic Graph) at the end of each round. We will discuss more about

the source agents of 𝐸𝐺 in Section 4.

3 AGREEMENT ON TOP ITEMS
In this section, we will focus on additive valuations and on extend-

ing the positive result of Plaut and Roughgarden, [21], regarding

the existence of EFX allocations, when the agents share a common

ranking over the items. A natural path to follow is to study in-

stances where this assumption is somewhat relaxed (e.g., truncated

to apply only to a few items). Although our results do not guar-

antee existence of exact EFX allocations, we do obtain improved

approximation guarantees compared to the state of the art for some

of these instances, and our general aim is to study the tradeoff

between the approximation ratio and the extent of departure from

the common ranking assumption over all items.

3.1 General approximation framework
Before addressing our main goal, we will first introduce a frame-

work for producing approximation algorithms. This framework

serves both as a unifying umbrella for some of the already existing

results, but also helps us in establishing our improvements. We

stress that from now on, we will assume that𝑚 > 𝑛, since other-

wise, there exists a trivial exact EFX allocation, where each agent

receives at most one item.

We start with a few observations to develop some intuition.

Consider a variation of the ECE algorithm, where during the first 𝑛

rounds, every time we select a source agent to allocate the next item

to, we actually let her pick her favorite one, among the unallocated

items. Assume also, we select a distinct agent in each of these first

𝑛 rounds. The remainder of the ECE algorithm can run as presented

in the previous section. Interestingly, Algorithm 2 of [14] achieves

a 1/2-EFX approximation by essentially doing this, even though its

first phase may look unrelated to ECE
1
. It is instructive to present

the proof below under this viewpoint, for the sake of completeness,

and for motivating the more general framework that we want to

exploit in the sequel.

Theorem 3.1 (Implied by [14]). The Envy Cycle Elimination al-
gorithm computes a 1/2-EFX allocation when in each of the first 𝑛
rounds, the source agent (selected in line 3) is granted the right to
choose her favorite unallocated item.

Proof. Consider two agents 𝑖 and 𝑗 and let 𝐴𝑖 , 𝐴 𝑗 , be the final

bundles allocated to these agents at the end of the algorithm. We

will prove that 𝑖 satisfies the EFX condition w.r.t. 𝑗 . Let𝑔𝑖 be the first

item that was allocated to agent 𝑖 . Since the ECE algorithm never

decreases the valuation of any agent during its rounds, we have that

𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝑔𝑖 ). Also, let ℎ be the last item that was added to the

bundle𝐴 𝑗 of agent 𝑗 . We know that whenℎ was added, the owner of

1
The algorithm of [14] was developed with a different fairness notion in mind and

uses perfect matchings, with the first one corresponding to the right of choice in the

first 𝑛 rounds of ECE.
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the bundle𝐴 𝑗 \ℎ at that time, was unenvied, thus 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ℎ).
Moving on, if 𝐴 𝑗 contains only ℎ, then 𝑖 trivially satisfies the EFX

condition w.r.t. 𝑗 . Hence, suppose |𝐴 𝑗 | ≥ 2, which means that ℎ

was picked after the 𝑛-th round. Then, from the definition of 𝑔𝑖 , it

follows 𝑣𝑖 (ℎ) ≤ 𝑣𝑖 (𝑔𝑖 ) ≤ 𝑣𝑖 (𝐴𝑖 ). Adding the two inequalities for

𝑣𝑖 (𝐴𝑖 ), yields 2𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ). □

We note that the previous result actually produces a 1/2-EF
allocation when𝑚 > 𝑛, hence, an even better guarantee than 1/2-
EFX. A crucial observation arising from this proof is that the more

times an agent 𝑖 gets to pick an item before becoming envious

of another agent, the better the approximation. In particular, we

used in the proof of Theorem 3.1 the inequality 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (ℎ), but
if 𝑖 had picked an item 𝑘 times during the execution of ECE, and

before the addition of ℎ to the bundle𝐴 𝑗 , we could replace this with:

𝑣𝑖 (𝐴𝑖 ) ≥ 𝑘 ·𝑣𝑖 (ℎ). And this would lead to a 𝑘
𝑘+1 -EFX approximation.

Although it may not always be easy to enforce such a property, it

still yields an approach for obtaining approximation guarantees for

certain families of instances, as we shall see. In fact, all we need is

to be able to produce first a partial EFX allocation of some items,

that satisfies such a property for every agent. We can now formally

put everything together and have the following scheme.

Algorithm 2 General approximation framework

1: For 𝛼, 𝛽 > 0, compute a partial 𝛼-EFX allocation S =

(𝑆1, . . . 𝑆𝑛), with the property that

𝑣𝑖 (𝑆𝑖 ) ≥ 𝛽 · 𝑣𝑖 (ℎ) for all 𝑖 ∈ 𝑁 and all ℎ ∈ 𝑀 \
⋃
𝑗∈𝑁

𝑆 𝑗

2: Continue with running the ECE algorithm, until there are no

unallocated items

Theorem 3.2 (Approximation Framework). Algorithm 2 com-

putes a min

(
𝛼,

𝛽

𝛽+1

)
-EFX allocation. Moreover, if the partial alloca-

tion S is 𝛾-EF1 for some 𝛾 ≤ 1, or if it can be computed efficiently,
the same properties carry over for the final allocation as well.

Proof. Let A = (𝐴1, . . . , 𝐴𝑛) denote the final output of the

algorithm and fix an agent 𝑖 . As a first case, consider an agent 𝑗 ,

who receives as her final bundle, one of the bundles of the allocation

S, say 𝑆 𝑗 . Then, we know that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝑆𝑖 ), and since S was

an 𝛼-EFX allocation, agent 𝑖 satisfies the 𝛼-EFX condition towards

agent 𝑗 . For the second case, consider an agent 𝑗 , so that 𝐴 𝑗 is a

strict superset of some bundle of S. Let ℎ be the last item added

to 𝐴 𝑗 by the algorithm. This means that the owner of the bundle

𝐴 𝑗 \ ℎ, right before ℎ was allocated, was unenvied. Hence, if 𝐵𝑖
was the bundle owned by 𝑖 at that time, we have that 𝑣𝑖 (𝐵𝑖 ) ≥
𝑣𝑖 (𝐴 𝑗 \ ℎ). Moreover, we also know by the algorithm construction

that 𝑣𝑖 (𝐵𝑖 ) ≥ 𝑣𝑖 (𝑆𝑖 ) ≥ 𝛽 · 𝑣𝑖 (ℎ). Multiplying the first inequality by

𝛽 and adding it to the second yields

(𝛽 + 1)𝑣𝑖 (𝐵𝑖 ) ≥ 𝛽𝑣𝑖 (𝐴 𝑗 ) ⇒ 𝑣𝑖 (𝐵𝑖 ) ≥
𝛽

𝛽 + 1

𝑣𝑖 (𝐴 𝑗 )

The same inequality holds for the bundle 𝐴𝑖 too, since the ECE

algorithm never makes an agent worse. Thus, 𝑖 satisfies the
𝛽

𝛽+1 -EF
condition, which implies the same for EFX as well. Combining the

two cases completes the proof. □

For an immediate illustration, the proof of Theorem 3.1 corre-

sponds to applying the framework with 𝛼 = 1 and 𝛽 = 1. We note

also that all the results presented in the next subsections, satisfy

EF1 exactly (Theorem 3.2 applies with 𝛾 = 1), and we will therefore

focus only on the achieved EFX approximation.

3.2 An algorithm under a common top-𝑛 set
Suppose that the agents have additive valuations, and they agree on

which are the 𝑛 most favorable items, without necessarily agreeing

on their ranking w.r.t. their value
2
. A simple thought to achieve

a 2/3 approximation is by trying to apply the framework of the

previous subsection, with 𝛼 = 2/3 and 𝛽 = 2. Before presenting

our algorithm, we provide first some initial ideas and intuition.

To achieve 𝛽 = 2 for a partial allocation, it is natural to consider

allocating first 2 items per agent. This could be done by allocating

the first 𝑛 items in a round robin fashion, and then use the reverse

order of round robin for agents to select a second item. Each agent

will indeed prefer each of her two items to any unallocated one,

thus we can guarantee that 𝛽 = 2 in the conditions of Theorem

3.2. Unfortunately though, this partial allocation may not be 2/3-
EFX and hence we cannot use our framework for analyzing it.

A violation of this property means than for some pair of agents

𝑖, 𝑗 , it holds 𝑣𝑖 (𝑆𝑖 ) < 2/3 · 𝑣𝑖 (𝑆 𝑗 \ 𝑔). Our algorithm is built on

exploiting that information, and on constructing a more careful

partial allocation; some agents will receive only one item (they will

be content with one item from the top-𝑛 set) whereas the remaining

ones will receive two items (one of which will again be from the

top-𝑛 set).

Algorithm 3 2/3 EFX for identical top-𝑛 set

1: Let𝑀 = 𝑇 ∪ 𝐵, where 𝑇 is the set of the 𝑛 most valuable items

and 𝐵 consists of the remaining𝑚 − 𝑛 items

2: for each agent 𝑖 do
3: ℎ𝑖 = argmax

𝑚∈𝑇
𝑣𝑖 (𝑚)

4: 𝑔1,𝑖 = arg min

𝑚∈𝑇
𝑣𝑖 (𝑚)

5: 𝑔2,𝑖 = argmax

𝑚∈𝐵
𝑣𝑖 (𝑚)

6: if 𝑣𝑖 (𝑔1,𝑖 ) + 𝑣𝑖 (𝑔2,𝑖 ) ≥ 2

3
· 𝑣𝑖 (ℎ𝑖 ) then

7: 𝐴𝑖 = {𝑔2,𝑖 } (non-content agent)
8: 𝐵 = 𝐵 \ 𝑔2,𝑖
9: else
10: 𝐴𝑖 = {ℎ𝑖 } (content agent)
11: 𝑇 = 𝑇 \ ℎ𝑖
12: end if
13: end for
14: For every non-content agent, allocate to her one item arbitrarily

from 𝑇

15: Continue with running the ECE algorithm

Theorem 3.3. Algorithm 3 efficiently computes a 2/3-EFX alloca-
tion, when the agents agree upon the set of top 𝑛 items.

Proof. We will discern two cases based on whether an agent

was content or not, as determined by the condition in line 6. Before

2
Existence of possible ties with the remaining𝑚 − 𝑛 items does not affect our result.
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proceeding, note that all the items in𝑇 will eventually get allocated.

Every content agent gets one item from𝑇 in line 10. And then, there

will be as many left-over items of 𝑇 as the number of non-content

agents, and each of them receives one such item in line 14.

To prove our result using the framework of Theorem 3.2, we will

establish the desired properties for 𝛼 = 2/3 and 𝛽 = 2. To be more

precise, let 𝑆 = (𝑆1, . . . , 𝑆𝑛) be the partial allocation produced up

until the execution of line 14 of the algorithm, and let 𝑀′
denote

the set of unallocated items at that time. By Theorem 3.2, it suffices

to establish that right before the execution of the ECE algorithm,

S is a 2/3-EFX allocation, and that also 𝑣𝑖 (𝑆𝑖 ) ≥ 2𝑣𝑖 (𝑚) for any
𝑚 ∈ 𝑀′

and every 𝑖 ∈ 𝑁 .

Fix an agent 𝑖 and for simplicity in the analysis, we will drop the

subscript 𝑖 and use ℎ instead of ℎ𝑖 and so on. We have the following

two cases.

Case 1: 𝑣𝑖 (𝑔1) + 𝑣𝑖 (𝑔2) < 2

3
· 𝑣𝑖 (ℎ) (agent 𝑖 is content).

We have that agent 𝑖 receives exactly one item in the allocation S,
𝑆𝑖 = {ℎ}, thus every other agent satisfies the EFX condition towards

her. At the same time, 𝑖 also satisfies the EFX condition towards

agents with one item. Hence consider an agent 𝑗 having obtained

two items. We know that 𝑖 has received her favorite remaining item

from 𝑇 in line 10, therefore she cannot envy the item of 𝑇 that was

received by 𝑗 in line 14. Agent 𝑖 also cannot envy the other item of

𝑗 since it belongs to 𝐵 and is not more valuable than the items of 𝑇 .

In conclusion, agent 𝑖 satisfies the EFX condition towards all other

agents under allocation S. Moreover, it holds that

𝑣𝑖 (𝑔1) + 𝑣𝑖 (𝑔2) ≥ 2 · 𝑣𝑖 (𝑔2) =⇒ 𝑣𝑖 (𝑔2) ≤
1

3

· 𝑣𝑖 (ℎ)

And by the definition of 𝑔2

𝑣𝑖 (ℎ) ≥ 3 · 𝑣𝑖 (𝑚) ∀𝑚 ∈ 𝑀′

Thus all conditions of Theorem 3.2 that concern agent 𝑖 are

satisfied.

Case 2: 𝑣𝑖 (𝑔1) + 𝑣𝑖 (𝑔2) ≥ 2

3
· 𝑣𝑖 (ℎ) (non-content agent 𝑖).

Now agent 𝑖 will receive initially the item 𝑔2 from 𝐵, and later,

in line 14, she will receive an item from 𝑇 , which we will denote

by ℎ′. Since 𝑔1 was the least valued top item for 𝑖 , it follows that

𝑣𝑖 (ℎ′) ≥ 𝑣𝑖 (𝑔1). Therefore, the bundle of 𝑖 , 𝑆𝑖 = {ℎ′, 𝑔2}, is at least
as valuable as {𝑔1, 𝑔2}, and thus 𝑣𝑖 (𝑆𝑖 ) ≥ 2

3
· 𝑣𝑖 (ℎ). Similar to Case

1, it suffices to check the envy of 𝑖 towards any agent 𝑗 receiving

two items. As in Case 1, the item ℎ has to be more valuable than

any of the two items received by 𝑗 . Thus, for any 𝑔 ∈ 𝑆 𝑗 ,

𝑣𝑖 (𝑆 𝑗 \ 𝑔) ≤ 𝑣𝑖 (ℎ) =⇒ 𝑣𝑖 (𝑆𝑖 ) ≥
2

3

· 𝑣𝑖 (𝑆 𝑗 \ 𝑔)

meaning that 𝑖 satisfies 2/3-EFX towards 𝑗 . Finally,

𝑣𝑖 (𝑆𝑖 ) ≥ 2 · 𝑣𝑖 (𝑔2) ≥ 2 · 𝑣𝑖 (𝑚) ∀𝑚 ∈ 𝑀′

Thus the conditions of Theorem 3.2 are again satisfied.

Putting everything together, the partial allocation after line 14 is

at worst 2/3-EFX. Also, for every agent 𝑖 and every unallocated good
𝑚, it holds that 𝑣𝑖 (𝐴𝑖 ) ≥ 2 · 𝑣𝑖 (𝑚), and the proof is completed. □

3.3 Other applications of the framework
We close this section by presenting some more straightforward

applications of our framework based on other classes of restricted

scenarios, generalizing some results from the existing literature.

Corollary 3.4 (Relaxed top ranking). Assume that for some
ℓ ≤ 𝑚, all agents agree not only on the set of the top ℓ items, but also
on their order w.r.t. their value. Then one can efficiently compute a
𝑘

𝑘+1 -EFX allocation, with 𝑘 = ⌊ℓ/𝑛⌋.

Proof. Given ℓ , we know that a partial EFX allocation for the

top ℓ items can be computed efficiently by [21], due to the identical

ranking assumption for them. Hence, we can achieve 𝛼 = 1 in our

framework. It suffices to establish Theorem 3.2, with 𝛽 = 𝑘 = ⌊ℓ/𝑛⌋.
Let S = (𝑆1, . . . , 𝑆𝑛) be the allocation of the top ℓ items. Note that

for each agent with a bundle of size no less than 𝑘 , the relation

we want follows directly due to additivity. Assuming that some

agent 𝑖 has less than 𝑘 items, then by the pigeonhole principle,

some other agent 𝑗 has more than 𝑘 items. Since the allocation S is

EFX, 𝑣𝑖 (𝑆𝑖 ) ≥ 𝑣𝑖 (𝑆 𝑗 \ 𝑔) for any 𝑔 ∈ 𝑆 𝑗 . But now, the bundle in the

right hand side is of size at least 𝑘 and again the relation we want

regarding the unallocated items follows. □

The above result captures the trade-off between the achievable

approximation ratio and the degree of agreement on the ranking of

the top items: for every additional group of 𝑛 items that the agents

agree upon, the approximation ratio improves. Also, it demonstrates

that different applications of the framework for the same setting can

yield suboptimal results; for 𝑘 = 1(ℓ = 𝑛), the above corollary yields
a 1/2 ratio, whereas we know that we can get a better approximation

by the previous subsection, using different values for 𝛼 and 𝛽 .

The next corollary combines the approximation framework with

an algorithm presented in [3], that computes an exact EFX allocation

when all agents value all items within a bounded interval of the

form [𝑥, 2𝑥]. We can obtain the following generalization of [3].

Corollary 3.5 (Relaxed bounded interval). Assuming that
all agents value their top ℓ items within an interval of the form [𝑥, 2𝑥],
then one can efficiently compute a 𝑘

𝑘+1 -EFX allocation with 𝑘 = ⌊ℓ/𝑛⌋.

Proof. The proof is identical with that of Corollary 3.4 except

that S is constructed via the Modified Round Robin algorithm of

[3]. □

Finally, we also present a result in the opposite direction, where

we assume full disagreement among the agents on top items. Our

framework can help us in improving the state of the art and obtain

a 2/3-approximation in the following case.

Corollary 3.6 (Distinct top items). Assuming that each agent
𝑖 has a different favorite good 𝑓𝑖 , then a 2/3-EFX allocation can be
computed efficiently.

Proof. We construct a partial EFX allocation S as follows: we

first let each agent get her favorite item, 𝑓𝑖 , and then run 𝑛 rounds

of the ECE algorithm, to allocate 𝑛 more items, but as in Theorem

3.1, we grant each agent the right to choose her favorite unallocated

item, say 𝑔𝑖 , when selected as the unenvied agent. Therefore, in the

produced partial allocation S, we have that 𝑆𝑖 = {𝑓𝑖 , 𝑔𝑖 }. Then
𝑣𝑖 (𝑆𝑖 ) ≥ 𝑣𝑖 (𝑓𝑖 ) ≥ 𝑣𝑖 (𝑆 𝑗 \ 𝑔) ∀𝑔 ∈ 𝑆 𝑗

where the last inequality is due to the fact that 𝑆 𝑗 \ 𝑔 is a singleton

set and 𝑓𝑖 is the best item according to 𝑖 . Hence, S is a partial EFX

allocation (𝛼 = 1). Proving that Theorem 3.2 is satisfied with 𝛽 = 2

is identical to Case 2 in the proof of Theorem 3.3. □
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4 TIERED RANKINGS AND FURTHER
IMPROVEMENTS

Our second main result concerns the existence of exact EFX alloca-

tions. Following the spirit of the previous results, one can ask if we

can prove even better results, when the agreement between agents

goes on beyond the first tier of most valuable items. Keeping in

mind that we are also interested in relaxations of the common rank-

ing assumption over all items, studied in [21], a natural approach

is to consider scenarios where the goods can be split into tiers w.r.t.

their value. This leads to the following definition.

Definition 4.1. An instance of our problem has a common tiered
ranking among all agents, if there exists an ordered partition of all

items𝑀 = (𝑀1, 𝑀2, . . . , 𝑀ℓ ), such that for every agent 𝑖 ,

∀𝑔 ∈ 𝑀𝑘 ,∀ℎ ∈ 𝑀𝑗>𝑘 : 𝑣𝑖 (𝑔) ≥ 𝑣𝑖 (ℎ)
Moreover, we define the size of the tiered ranking to be the size of

the largest tier, i.e., max𝑗∈[ℓ ] |𝑀𝑗 |.
Under the prism of tiers, the identical ranking setting can be

viewed as a tiered ranking of size 1. We will study such instances,

under a more general family of valuation functions, defined below.

Definition 4.2 (Definition 2.1 in [10]). A valuation function 𝑣 is

cancelable if for any bundles 𝑆,𝑇 ⊂ 𝑀 , and item 𝑔 ∈ 𝑀 \ (𝑆 ∪𝑇 ), it
holds that

𝑣 (𝑆 ∪ 𝑔) > 𝑣 (𝑇 ∪ 𝑔) =⇒ 𝑣 (𝑆) > 𝑣 (𝑇 )
Clearly, cancelable valuations include additive ones and are

monotone (as we have no chores). Moreover, they include other well

known classes, such as multiplicative and unit-demand valuations

(see [10]). So far, there are several results for additive valuations

that have been shown to carry over to cancelable functions as well,

making this class a natural generalization of additivity (this is not

applicable for our results in Section 3 however). In the following

theorem, we assume at least 3 agents, since the existence for 2

agents is already well known.

Theorem 4.3. Assuming 𝑛 ≥ 3, and that the agents have cance-
lable valuations with a common tiered ranking of size at most 3, then
an EFX allocation exists and can be computed efficiently.

We stress that although the assumption of tiers with up to three

items may look like a simple relexation of the common ranking

assumption over all items, the proof turns out to be much more

involved, than the existence result of [21]. To proceed, we state the

following simple lemma on cancelable valuations, that we will use.

Lemma 4.4. Let 𝑆,𝑇 ,𝑄 and 𝑅 be sets such that 𝑆 ∩ 𝑄 = ∅, and
𝑇 ∩ 𝑅 = ∅. Then, for a cancelable valuation function 𝑣 ,

𝑣 (𝑆) ≥ 𝑣 (𝑇 )
𝑣 (𝑄) ≥ 𝑣 (𝑅)

}
=⇒ 𝑣 (𝑆 ∪𝑄) ≥ 𝑣 (𝑇 ∪ 𝑅)

Proof. In the definition of cancelable valuations, it is easy to

see that one direction implies the opposite: 𝑣 (𝑇 ) ≤ 𝑣 (𝑆) =⇒
𝑣 (𝑇 ∪ 𝑔) ≤ 𝑣 (𝑆 ∪ 𝑔). Applying this for every 𝑔 ∈ 𝑄 \𝑇 gives

𝑣 (𝑇 ∪𝑄) = 𝑣 (𝑇 ∪ (𝑄 \𝑇 )) ≤ 𝑣 (𝑆 ∪ (𝑄 \𝑇 )) ≤ 𝑣 (𝑆 ∪𝑄)
where the last inequality is due to monotonicity. Similarly we obtain

𝑣 (𝑄 ∪𝑇 ) ≥ 𝑣 (𝑅 ∪𝑇 ), and the lemma follows.

□

Proof of Theorem 4.3. Under our assumption, we can parti-

tion the items into tiers so that all agents have preferences in the

following form:

𝑀1 ⪰ 𝑀2 ⪰ ... ⪰ 𝑀𝑠

where each 𝑀𝑖 is a set of items with |𝑀𝑖 | ≤ 3, and the notation

𝑀𝑖 ⪰ 𝑀𝑗 means that all the agents find the items of 𝑀𝑖 at least

as valuable as those of 𝑀𝑗 . We note that within a tier, it is not

necessary that all agents rank the items in the same way. Also,

some of the tiers may only contain just one or two items.

To prove the theorem, we need to establish that for any ordered

pair of agents (𝑖, 𝑗), agent 𝑖 satisfies the EFX condition towards 𝑗 .

For convenience in the analysis, whenever this is violated, we will

say that agent 𝑖 strongly envies agent 𝑗 .
We will prove the theorem by induction on the number of tiers.

We present the proof here only for the case where each tier has

exactly 3 items, since the other cases are easier. Note that the basis

of our induction, allocating the first triplet, is easy: just give a

single item to three different agents, and this is trivially EFX. For

the inductive step, assume that we have a partial EFX allocation

after allocating all the goods up to some tier 𝑘 , and we will need

to see how to allocate the three items of tier 𝑘 + 1. We will denote

from now on the three items of tier 𝑘 + 1 by 𝑎, 𝑏, 𝑐 .

Let 𝐸𝐺 be the envy graph of the allocation that has resulted from

the induction hypothesis for the items of the first 𝑘 tiers. We can

assume that we can maintain 𝐸𝐺 from tier to tier as a DAG. If it is

not, we can always remove all the envy cycles prior to continuing

with the next tier, by running the decycling step (line 5) of the

ECE algorithm. Hence, 𝐸𝐺 has at least one source. We discern three

cases based on the number of sources in 𝐸𝐺 , and discuss them in

order of difficulty.

Case 1: 𝐸𝐺 has at least three source agents.

This is the easiest case since we have three items and we can pick

three sources (i.e., unenvied agents) and just do a matching. The

EFX property is maintained.

On a high level, both remaining cases work as follows: the agents

closest (in the sense of topological distance) to the sources are pos-

sible new sources. Therefore, if our current sources outvalue them

or maybe get their bundles via some envy cycle elimination, we

can allocate the remaining items. Otherwise, some current source

will receive more than one items without violating the EFX prop-

erty. We introduce also some extra notation. We will often refer to

agents based on their level when we view 𝐸𝐺 with the following

topological ordering: sources are at level 0, the agents envied by

some source and with no envy within them at level 1, and so on

(at each level, incoming edges come only from previous levels). Let

also (𝐴1, . . . , 𝐴𝑛) be the current EFX allocation.

Case 2: 𝐸𝐺 has one source agent 𝑠1.

Let 𝑜1, 𝑜2, . . . , 𝑜ℓ be the agents of level 1 ordered based on 𝑠1’s valu-

ation: 𝑣𝑠1 (𝐴𝑜1 ) ≤ 𝑣𝑠1 (𝐴𝑜2 ) ≤ · · · ≤ 𝑣𝑠1 (𝐴𝑜ℓ ).
• Subcase 2a: 𝑠1 can receive multiple items without breaking EFX.

If 𝑠1 can receive all three goods of the tier without violating the

EFX property we are done. If not, but she still can receive two

goods, say 𝑎 and 𝑏, we allocate them to her. It remains to allocate

𝑐 . If 𝑣𝑠1 (𝐴𝑠1 ∪ 𝑎 ∪ 𝑏) ≥ 𝑣𝑠1 (𝐴𝑜1 ), we allocate 𝑐 to 𝑜1 and complete

the inductive step. Indeed, note that 𝑐 is the least valuable item

of the bundle that 𝑜1 has now. Since 𝑠1 was not envying 𝑜1 after

Session 2C: Fair Allocations + Public Goods Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

596



she received 𝑎 and 𝑏, the EFX property will not be violated by

giving 𝑐 to 𝑜1. There is no other pair of agents that we need to

check since no one else is allocated any items. Suppose now that

𝑣𝑠1 (𝐴𝑠1 ∪ 𝑎 ∪ 𝑏) < 𝑣𝑠1 (𝐴𝑜1 ). We also know that since 𝑠1 could not

receive all 3 items, some agent, say 𝑥 , must envy her. The fact that

𝑠1 was the single source of 𝐸𝐺 means that 𝑥 is reachable from 𝑠1 via

an envy path. Therefore, the allocation of 𝑎 and 𝑏 to 𝑠1 has created

an envy cycle 𝑠1 → 𝑜𝑖 → · · · → 𝑥 → 𝑠1, for some agent 𝑜𝑖 of level

1. After decycling the graph (using line 5 of the ECE algorithm),

𝑠1 will be in possession of the bundle 𝐴𝑜𝑖 . Since previously she

was the only one envying the bundle, we can now allocate 𝑐 to her

without disrupting EFX.

• Subcase 2b: 𝑠1 cannot receive multiple items.

If allocating 2 items is problematic for the EFX property, we deduce

that after giving, say 𝑎, to 𝑠1, some agent 𝑥 becomes envious of

her. Firstly, we will identify possible new sources. Those are the 𝑜𝑖
agents, and more specifically 𝑜1 and 𝑜2, and agents envied only by

𝑜1 (and maybe 𝑠1), which we denote by 𝑡1, 𝑡2, . . . , and so on. The

nodes of interest are shown in Figure 1.

𝑠1 𝑜1

𝑜2

𝑡1

Figure 1: Subcase 2b

Similarly to the previous case, if 𝑣𝑠1 (𝐴𝑠1 ∪ 𝑎) ≥ 𝑣𝑠1 (𝐴𝑜2 ), we
allocate one item to both 𝑜1 and 𝑜2 and we are done. Otherwise,

we continue in the same spirit as before. Suppose first that 𝑥 is

reachable from 𝑜𝑟 , for some 𝑟 ≥ 2. Then, given that 𝑣𝑠1 (𝐴𝑠1 ∪ 𝑎) <
𝑣𝑠1 (𝐴𝑜2 ) ≤ 𝑣𝑠1 (𝐴𝑜𝑟 ), an envy cycle 𝑠1 → 𝑜𝑟 → · · · → 𝑥 → 𝑠1 is

created. After decycling it, we allocate one item to 𝑜1 and one to the

current owner of 𝑜2 (it could be either 𝑜2 or 𝑠1), and we are done.

Suppose now that 𝑟 = 1. We have that 𝑥 could be some agent only

reachable from 𝑜1 or she could be 𝑜1 herself, and we need to look

at these two further cases separately.

When 𝑟 = 1, and 𝑥 can be some agent other than 𝑜1, the role of the

𝑡𝑖 nodes becomes more clear. So far, the possible new sources were

always 𝑜1 and 𝑜2. Now they are 𝑜1 and some node 𝑡𝑖 . To proceed,

note that there may not be a path from 𝑠1 to 𝑥 after allocating item

𝑎 to 𝑠1, but we will reallocate the bundles as if there was; checking

that the EFX property is maintained is easy. Also, we pick 𝑥 as the

agent furthest away from 𝑠1. The image looks as follows:

𝑠1

𝐴𝑜1

𝑜1

𝐴𝑡𝑖

𝑥

𝐴𝑠1 ∪ 𝑎

Figure 2: Subcase 2b with 𝑟 = 1 and 𝑥 ≠ 𝑜1

Now 𝑠1 with her new bundle is again a source (single one if 𝑥 is

not a source) and if any node other than 𝑥 is envious of 𝐴𝑜1 ∪ 𝑏 or

𝐴𝑜1 ∪ 𝑐 , the next source will be either 𝑜1 (owning 𝐴𝑡𝑖 ) or 𝑜𝑖 , 𝑖 ≥ 2

and we are done. The same applies if 𝑠1 can stop envying some

node 𝑡𝑖 after she receives a good due to 𝑡𝑖 becoming the final source

or if 𝑠𝑖 will receive 𝐴𝑡𝑖 after some envy cycle elimination. If neither

is true and 𝑠1 cannot receive both of the remaining items without

violating the EFX property, 𝑥 must be a source and some agent

reachable only from her envies 𝑠1 after she receives a good. In this

scenario, if one of the two matchings between the two sources and

the two items produce an EFX allocation, we have completed this

case. Otherwise, there is a cycle containing both sources and nodes

from one or both connected components (Lemma 4.4 guarantees

that no agent between 𝑠1 and 𝑥 can strongly envy the other one)

if we substitute 𝑎 with 𝑏 or 𝑐 . Now, 𝑠1 is in possession of some 𝐴𝑡𝑖

and she can have the last item.

When 𝑟 = 1, and𝑥 is𝑜1, we have only one source and one possible

new source. However, apart from 𝑜1, no other agent would strongly

envy 𝐴𝑠1 ∪ 𝑎 ∪ 𝑏 (or any other combination of 𝐴𝑠1 with a pair of

goods from the given tier); otherwise we would be back to 𝑥 being

different that 𝑜1. Therefore, we will compensate the lack of possible

sources by possibly adding two items to one bundle. We start by

asking 𝑠1 to choose between receiving her favorite item or 𝑜1’s

favorite, thus creating an envy cycle of size 2 and causing a swap.

Note however, that if 𝑠1 and 𝑜1 have a different favorite item, then

𝑠1 will always choose to swap since she may well get her favorite

item right after, and Lemma 4.4 guarantees the optimality of the

choice. In any case, and with 𝑎 the favorite item of 𝑜1, the owner

of 𝐴𝑜1 will be the new source. If she can get both of the remaining

items, the proof is completed. Otherwise some agent envies𝐴𝑜1 ∪𝑏

or 𝐴𝑜1 ∪ 𝑐 . Since we have a single source, that envious agent is

reachable so we ask our source to choose between her favorite item

or the one that forms the envy cycle implied above. In either case,

the new source will be eligible to receive the last item even if her

bundle is 𝐴𝑠1 ∪ 𝑎.

Case 3: 𝐸𝐺 has two source agents, 𝑠1 and 𝑠2.

Now, we have more sources than Case 2, but also a harder time

identifying the possible third one to receive an item. To bypass this

problem we partition the envy graph 𝐸𝐺 in the following manner:

𝐸𝐺 = 𝑠1 ∪ 𝑠2 ∪𝑉1 ∪𝑉2 ∪𝑉12

where 𝑉1 (resp. 𝑉2) is the set of nodes reachable only from 𝑠1 (resp.

𝑠2) via an envy path and𝑉12 is the set of nodes reachable from both

sources. Since 𝐸𝐺 is a DAG, the same follows for the graphs induced

by𝑉1,𝑉2 and𝑉12 as well. If 𝑠
′
1
is a source of the𝑉1 DAGwe have that

𝑠1 is the only agent envious of her; otherwise it would be reachable

from 𝑠2 thus contradicting the definition of the partition. Therefore,

𝑠′
1
is a possible new source substituting 𝑠1 and, symmetrically, a

source 𝑠′
2
of 𝑉2 is a candidate substitution for 𝑠2. A source 𝑠′

12
of

𝑉12 may be a possible replacement for both. Now, if 𝑠1 can receive

two items or one and simultaneously stop envying 𝑠′
1
, we easily

allocate all the items of the tier. Therefore, we assume this is not

the case and denote by 𝑒1 the agent envious of 𝑠1, after receiving

one item of the current tier, and respectively, 𝑒2 for 𝑠2. We will do

some case analysis based on which connected component, 𝑒1 and

𝑒2 belong to. Since they may not be unique, we define 𝑇1 to be the
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set of agents envying 𝑠1 (and respectively 𝑇2 for 𝑠2). Fortunately,

due to symmetry, the number of different subcases is small.

•Subcase 3a: 𝑇1 ∩𝑉1 ≠ ∅ (or resp. 𝑇2 ∩𝑉2 ≠ ∅).
Let 𝑒1 ∈ 𝑇1 ∩𝑉1. In that case 𝑒1 is reachable from 𝑠1 and we have an

envy cycle. After applying a decycling step, 𝑠1 will own𝐴𝑠′
1

, a bundle

of which she previously was the only envious agent. Therefore, we

can allocate one more item to 𝑠1 and the other to 𝑠2.

•Subcase 3b: 𝑇1 ∩ (𝑠2 ∪𝑉2) ≠ ∅ (or resp. 𝑇2 ∩ (𝑠1 ∪𝑉1) ≠ ∅).
Let 𝑒1 ∈ 𝑠2 ∩ 𝑉2. Now, 𝑒1 is not reachable from 𝑠1. However, the

same must apply to 𝑠2 and 𝑒2, otherwise we are back to subcase

3a . In other words, 𝑒2 ∈ 𝐸𝐺 \𝑉2. This means that, after allocating

two of the three items of the tier, a cycle in the form 𝑠1 → · · · →
𝑒2 → 𝑠2 → · · · → 𝑒1 → 𝑠1, is created. Once we decycle the graph,

checking that the EFX property is maintained is trivial. Moreover,

there will be again two sources. If one of them does not own one of

the two bundles previously owned by the sources, we can allocate

the final item. In the unique case where 𝑒1 = 𝑠2 and 𝑠1 = 𝑒2 were

the only choices for envious agents, we can allocate the last item to

any of them. To see why, assume that 𝑠1 owns 𝐴𝑠2 ∪ 𝑎 ∪ 𝑐 . Agent 𝑠2
cannot strongly envy her and if some other agent does so, it means

that 𝑒1 = 𝑠2 was not the only choice.

After careful inspection, subcases 3a and 3b cover for 8 out of

the 9 possible scenarios. It remains to check the case where both

envious agents are in 𝑉12.

•Subcase 3c: 𝑇1 ∩𝑉12 ≠ ∅ and 𝑇2 ∩𝑉12 ≠ ∅.
Let 𝑒1, 𝑒2 ∈ 𝑉12. Note that since 𝑒1 is reachable from 𝑠1, if the

first node in the path between them belongs to 𝑉1, the argument

of subcase 3a applies. Therefore, the first envy edge in the path

is from 𝑠1 to some source of 𝑉12. If 𝑒1 and 𝑒2 belong to different

weakly connected components of 𝑉12, we are done since one of the

owners (𝑠1 or 𝑠2) of some 𝐴𝑠′
12

will get the last item. Assuming the

contrary, the image is given in Figure 3.

𝑠1

𝑠′
12

𝑠2

Figure 3: Subcase 3c

We now select the source, say 𝑠1, and the item, say 𝑎 to allo-

cate, based on 𝑒1’s preferences, who we pick to be in maximum

topological distance (this can be achieved by checking all possible

cases of allocating one item from the tier to 𝑠1). After reallocating

the bundles along the cycle (if 𝑠1 stops envying 𝑠
′
12
, she becomes a

possible new source similar to case 2 and we are done accordingly),

the situation now is depicted in Figure 4.

The way we picked 𝑒1, we have that 𝑒1 and every possible node

reachable from her cannot strongly envy 𝐴𝑠2 ∪ 𝑏 ∪ 𝑐; otherwise

the strongly envious agent would have been envious before and in

a greater topological distance
3
. Therefore, either 𝑠2 will get both

3
To be precise, 𝑒1 could have been envious of 𝐴𝑠

2
∪ 𝑏 but then we restart the tier

allocation working with 𝑠2 .

𝑠2

𝐴𝑠2

𝑠1𝐴𝑠′
12

𝑒1

𝐴𝑠1 ∪ 𝑎

Figure 4: Subcase 3c continued

items or there will be an envious agent she can reach. In the end,

whoever owns𝐴𝑠′
12

will get the last item and the proof is completed.

□

We close this section, by providing one more positive result, but

under an assumption in the opposite direction of Theorem 4.3, in

the same spirit as Corollary 3.6 in Section 3.

Theorem 4.5 (Distinct top tiers). Assuming that each agent
has a different favorite tier 𝑇𝑖 of size ⌊𝑚/𝑛⌋, then an EFX allocation
exists.

Proof. We show how to construct the allocation. Let𝑚 = 𝑘𝑛 +
𝑟, 0 ≤ 𝑟 < 𝑛, and let each 𝑇𝑖 be of size ⌊𝑚/𝑛⌋ = 𝑘 . We allocate each

𝑇𝑖 to the corresponding agent, and to 𝑟 of them one of the remaining

items arbitrarily. If agent 𝑖’s envy towards agent 𝑗 violates the EFX

property, it means that 𝑖 envies a set of cardinality at most 𝑘 , which

contradicts the definition of 𝑇𝑖 . Thus, the allocation is EFX. □

Note that the above result holds even for general (monotone)

valuations.

5 CONCLUSIONS
We have presented a unifying framework for obtaining approximate

EFX allocations. This framework allowed us to reprove and extend

some existing results of the literature and at the same time obtain

improved approximations for families of instances where agents

agree only on their perception of what are the most valuable items.

For instances with a relatively large number of goods, this imposes

quite minimal assumptions on the structure of the instance. Finally,

we have also established the existence of exact EFX allocations by

considering assumptions on how the agents rank the whole set of

items w.r.t their value, extending the existence result of [21], that

holds under the common ranking assumption.

The most intriguing question of whether exact EFX allocations

exist for arbitrary additive valuations still remains open. Along

with this, identifying the best possible approximation guarantee

that we can have in polynomial time is also unresolved. Overall,

we view our work as adding a positive note on these directions,

providing evidence that improved approximations and existence

results on certain families of instances can still be attainable.
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