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ABSTRACT

Motivated by real-world applications such as the allocation of public
housing, we examine the problem of assigning a group of agents to
vertices (e.g., spatial locations) of a network so that the diversity level
is maximized. Specifically, agents are of two types (characterized
by features), and we measure diversity by the number of agents
who have at least one neighbor of a different type. This problem is
known to be NP-hard, and we focus on developing approximation
algorithms with provable performance guarantees. We first present
a local-improvement algorithm for general graphs that provides an
approximation factor of 1/2. For the special case where the sizes
of agent subgroups are similar, we present a randomized approach
based on semidefinite programming that yields an approximation
factor better than 1/2. Further, we show that the problem can be
solved efficiently when the underlying graph is treewidth-bounded
and obtain a polynomial time approximation scheme (PTAS) for
the problem on planar graphs. Lastly, we conduct experiments to
evaluate the performance of the proposed algorithms on synthetic
and real-world networks.
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1 INTRODUCTION

Many countries have public housing initiatives that offer low-
income individuals secure and affordable residences. Housing op-
tions are typically allocated by government agencies that involve
a process of assigning applicants to vacant apartments [14, 39].
Given that the applicants often come from a variety of demographic
groups, the spatial distribution of public housing partially shapes
the demographic structure of local communities [16, 35]. The pro-
motion and cultivation of integrated communities is an objective
of contemporary societies. It has been shown that integration can
improve a country’s financial performance, reduce the disparity
between demographic groups, and advance social prosperity in gen-
eral [9, 24, 36]. Conversely, segregated neighborhoods widen the
socioeconomic divide in the population. As noted by many social
scientists, residential segregation remains a persistent problem that
directly contributes to the uneven distribution of resources and
limited life chances for some groups (e.g., [33, 38, 40]).

In this work, we study the problem of promoting community
integration (i.e., diversity) in the context of housing assignment.
Indeed, public housing programs often take diversity into account.
In Singapore, there are established policies to ensure that a certain
ethnic quota must be satisfied for each project at the neighborhood
level [10]. In the U.S,, cities like Chicago and New York also place
emphasis on the value of having integrated communities [8, 28].
Nevertheless, formal computational methods for improving the level
of integration in the housing assignment process have received
limited attention. Motivated by the above considerations, we inves-
tigate the problem of public housing allocation from an algorithmic
perspective and provide systematic approaches to design assignment
strategies that enhance community integration.

Formally, we model a housing project as a graph G = (V, &)
where V is the set of vacant residences, and the edges in € represent
proximity between residences. We are also given a set A of agents
representing the applicants to be assigned to residences. Agents
are partitioned into two demographic subgroups: type-1 and type-2.
Without loss of generality, we assume that the number of type-1
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agents does not exceed the number of type-2 agents. (We sometimes
use the phrase “minority agents” for type-1 agents.) We also assume
that the number of vacant residences (i.e., |V|) equals the number of
agents. Our goal is to construct an assignment (bijective mapping)
‘P of residences to agents that maximizes the the integration level
of the layout of agents on G.

To quantify the integration level of a given assignment P, we
use the index of integration (IoA) metric proposed in [1]. This index
is defined as the number of integrated agents, that is, agents with at
least one neighbor of a different type in G. An illustrative example
is given in Fig. 1. We refer to the above assignment problem as
INTEGRATION MAXIMIZATION - INDEX OF AGENT INTEGRATION (IM-
IoA). We note that this problem could also arise in other settings
where integration is preferred, such as dormitory assignments for
freshmen in universities [6].

The problem of maximizing IoA is known to be NP-hard [1].
Nevertheless, the authors of [1] did not address approximation
questions for the problem, as their focus is on game theoretic as-
pects of IoA. In this work, we focus on developing approximation
algorithms with provable performance guarantees for IM-IoA. Our
main contributions are as follows.

- Approximation for general instances. We present a local-
improvement algorithm that guarantees a factor 1/2 approxima-
tion. We further show that our analysis is tight by presenting an
example that achieves this bound. While it is possible to derive
an approximation for the problem using a general result in [7],
the resulting performance guarantee is 0.356, which is weaker
than our factor of 1/2.

- Improved approximation for special instances. For the case
when the number of type-1 agents is a constant fraction « of the
total number of agents, 0 < & < 1/2, we present a semidefinite
programming (SDP) based randomized algorithm that yields ap-
proximation ratios in the range [0.516,0.649] for « in the range
[0.403,0.5]. For example, when a = 0.45, the ratio is 0.578, and
when a = 0.5, the ratio is 0.649.

We present a dynamic programming algorithm that solves IM-IoA
in polynomial time on graphs with bounded treewidth. Using
this result in conjunction with a technique due to Baker [2], we
obtain a polynomial time approximation scheme (PTAS) for the
problem on planar graphs. For any fixed € > 0, the algorithm
provides a performance guarantee of 1 —e.

Empirical analysis. We study the empirical performance of the
proposed local-improvement algorithm against baseline methods
on both synthetic and real-world networks. Overall, we observe
that the empirical approximation ratio of the proposed algorithm
is much higher than 1/2, which is our theoretical guarantee.

Figure 1: An example assignment
of two type-1 agents (blue) and
six type-2 agents (red) on a graph
G. Vertices with integrated agents
are labeled by dashed circles. The
index of integration for this as-
signment (i.e., the number of in-
tegrated agents) is 6.

A polynomial time approximation scheme for planar graphs.

601

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

2 RELATED WORK

Integration in public housing. Issues regarding segregation
and the need for enhancing integration have been documented
extensively in the social science literature (e.g., [12, 22, 25, 26]). In
particular, many works on segregation in social networks (e.g., [17,
19]) stem from the pioneering models proposed by Schelling [34],
where agents move between vertices to improve their utility values.
While Schelling’s framework allows the study of agent dynamics,
Benabbou et al. [4] study integration in public housing allocation
from a planning perspective. In particular, they formulate the setting
as a weighted matching problem where the set of available houses
is partitioned into blocks, and agents are assigned (by some central
agency) to blocks to maximize a utility measure while satisfying
some diversity constraints. They establish the NP-hardness of the
problem and present an approximation algorithm based on a result
of Stamoulis [37]. A number of other studies have also addressed
integration in the context of public housing from a social science
perspective (e.g., [18, 20, 23, 30]).

The problem formulations and the algorithmic techniques used
in Benabbou et al. [4] and in our work are significantly different.
First, Benabbou et al. [4] examine a weighted matching problem.
Their model does not use any network structure for the residences,
whereas our work approaches the problem from a graph theoretic
standpoint, with the underlying network playing an important role
in the formulation. Further, the integration index studied in our
work is defined w.r.t the graph structure, whereas the measure used
in [4] is based on constraints on the ethnicity quotas for blocks.
More importantly, the goal of our work is to find an assignment
that maximizes the integration level, whereas the goal in [4] is to
maximize the overall utility of agents under a diversity constraint.

Integration indices. Various indices to measure the level of
integration in a population are surveyed in [25]. However, most of
those indices cannot be naturally extended to a network setting.
The integration index I0A considered in our work was proposed
by Agarwal et al. [1] in the context of the Schelling Game on net-
works, where agents can change locations to increase their utilities.
Agarwal et al. explore several properties (e.g., the integration price
of anarchy/stability) of the index from a game theoretic perspec-
tive. Further, they show that finding an assignment for which all
agents are integrated (i.e., each agent has at least one neighbor of a
different type) is NP-hard [1]. A further discussion of related work
is provided in the full version of this manuscript [31].

3 PROBLEM DEFINITION

Graphs and agents. Let G = (V, £) be an undirected graph, where
V is a set of vertices representing vacant residences, and £ is a set of
edges representing the proximity relationship between residences.
Let A be the set of agents to be assigned to V. The set A is divided
into two subgroups. Formally, A is partitioned into two subsets
A1 and Ajy; we refer to agents in A; as type i agents, i = 1,2. Let
k = |A;| denote the number of type-1 agents, so n—k is the number
of type-2 agents. Without loss of generality, let k < n/2, and we refer
to Aj as the minority subgroup. Lastly, we assume that [V| = |A[;
that is, the number of vertices is the same as the number of agents.

Assignment. An assignment is a mapping from vertices to
agents. To simplify the proofs, we use an equivalent definition where
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an assignment is a mapping from vertices to agent types. In particu-
lar, an assignment P : V — {1, 2} is a function that assigns an agent
type to each vertex in V), such that k vertices are assigned type-1
and n — k vertices are assigned type-2. In such an assignment, a
type-i vertex is occupied by a type-i agent, i = 1, 2. We remark that
the above definition of an assignment is mathematically equivalent
to defining an assignment to be a mapping from V to A.

The index of integration. We consider the integration index
proposed in [1] and apply it to our context.

Definition 3.1 (Index of agent-integration (IoA) [1]). Given
an assignment P, an agent x € A is integrated if x has at least
one neighbor in G whose type is different from that of x. Let
A’ be the set of integrated agents under P. The index of agent-
integration of P is then defined as the number of integrated
agents in A:

IoA(P) = A 1)

Equivalently, a vertex u € V is integrated under P if the agent
assigned to u is integrated. Thus, we may also view the index as
I0A(P) = |V'| where V' is the set of integrated vertices under P.
These two definitions of IoA are mathematically equivalent.

The optimization problem. We now define the problem INTE-
GRATION MAXIMIZATION-INDEX OF AGENT INTEGRATION (IM-I0A).
Note that IM-IoA can be viewed as an optimization version of 2-
weak coloring [27], where the number of vertices with each color is
specified, and the number of properly colored vertices is maximized.

Definition 3.2 (IM-IoA). Given a graph G = (V, &), a set A of
agents with k type-1 and n—k type-2 agents, find an assignment
P such that IoA(P) is maximized.

4 APPROXIMATION FOR GENERAL GRAPHS

IM-IoA is known to be NP-hard [1]. In this section, we present a
local-improvement algorithm for IM-IoA and show that the algo-
rithm achieves a factor 1/2 approximation for general graphs. For
convenience in presenting the proofs, we consider an assignment
from the perspective of vertices rather than that of the agents. As
stated earlier, these two definitions are equivalent.

The algorithm. Starting from a random assignment P, in each
iteration, we find a pair of vertices with different types such that
swapping their types strictly increases the objective. Specifically,
let u be a type-1 vertex, and v be a type-2 vertex. We swap the types
of u and v if and only if the resulting new assignment P’ yields
a strictly higher IoA; that is, IoA(P) < IoA(P"). The algorithm
terminates when no such swap can be made. The pseudocode is
given in Algorithm (1).

4.1 Analysis of the algorithm

Given a problem instance of IM-IoA, let P be a saturated assign-
ment! returned by Algorithm (1). Let P* be an optimal assign-
ment that achieves the maximum objective, denoted by OPT. We
assume that P # P”. In this section, we show that IoA(P) >

'An assignment is saturated if no pairwise swap of types between a type-1 and a
type-2 vertices can increase the objective.
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1/2-IoA(P™) = 1/2 - OPT, thereby establishing a 1/2 approxima-
tion. Due to the page limit, we sketch the proof here; the detailed
proof appears in the full version [31].

Algorithm 1: Local-Improvement-IoA
Input :Agraph G = (V,€), k, where k < |V|/2
Output: An assignment P

1 P « arandom assignment, Updated < True

2 while Updated do

3 Updated < False

4+ | forxeV(P)do

5 for y € Vo (P) do

6 P’ « the assignment where P’(x) = P(y) and
P'(y) = P(x)

7 if ToA(P’) > I0A(P) then

8 L P = P’, Updated < True & break

9 return P

Under the assignment P, we call a vertex v a type-1 (or type-2)
vertex if P(v) = 1 (or P(v) = 2). Let V1(P) and V5 (P) denote the
set of type-1 and type-2 vertices under P. Let V{ (P) and Vy (P)
denote the set of uncovered? type-1 and type-2 vertices under P.
For each vertex u, let Ny (P) denote the set of neighbors of u that
are uncovered under P, and let I, (P) denote the set of different-
type neighbors of u that are uniquely covered by u, i.e., I(P)
is the set of vertices v such that (i) v is a neighbor of u, (ii) the
type of v is different from the type of u, and (iii) v has no other
neighbor whose type is the same as u’s type.

I> OBSERVATION 4.1. The index ToA(P) = n—|VY(P)|-[VY(P).

We now consider the following mutually exclusive and collec-
tively exhaustive cases of Vij (P) and v;’ (P) under the saturated
assignment P. We start with a simple case where all the type-2
vertices under P are integrated.

Case 1: V3 (P) = @.

Under this case, all vertices in V(P) are integrated which gives
IoA(P) > (1/2)-OPT. This case trivially implies that the algorithm
provides a 1/2 approximation. We now look at the remaining case:
Case 2: V3 (P) + @.

Under this case, there exists at least one vertex in V3 (P) that is
not integrated. We first show that VY (P) and VY (P) cannot both
be non-empty.

> LEMMA 4.2. For a saturated assignment P, if V3 (P) # @, then
VI(P) = 2.

ProOF. (Sketch) Let y € V5 (P) be a vertex of type-2 that is not
integrated (i.e., all neighbors of y are of type-2). For contradiction,
suppose W(P) # @. Now let x ¢ VY(P) be an non-integrated
vertex of type-1 whose neighbors are all of type-1. Let P’ denote
the assignment where we switch the types between x and y, that
is, P'(x) = P(y) = 2, P'(y) = P(x) = 1, while the types of all
other vertices remain unchanged. One can verify that ToA(P’) >

2 s« o iy e « N .
A vertex is “covered” if it is integrated and “uncovered" otherwise.
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IoA(P)+2, that is, switching the types of x and y increases the index
I0A by at least 2. This implies the existence of an improvement
move from P, which contradicts the fact that P is saturated. It
follows that VY (P) = @. ]

Lemma 4.2 implies that under case 2 (i.e., Vg (P) + @), we have
W (P) = . We now consider the following two mutually exclusive
and collectively exhaustive subcases under Case 2 and show that
the approximation factor under each subcase is 1/2.

Subcase 2.1: VY(P) # @, and Ix(P) + @, Vx € V{(P), that
is, for each type-1 vertex x € V1(P), there is at least one type-2
neighbor of x that is uniquely covered (“made integrated”) by x.

Suppose P # P*, that is, for some vertices x € V, P(x) # P* (x).
Let Vouy = {v eV : P(v) = 2,P*(v) = 1} be the set of vertices
that are type-2 under P, but are type-1 under P*. Analogously, let
Via={veV : P(v) =1,P*(v) = 2} be the set of vertices of
type-1 under P, but are of type-2 under P*. Observe that |V5_1| =
|V1-2|. We may view P* as the result of a transformation from
P under pairwise swaps of types between V;_; and V;_3. An
example is given in Figure (2). We present a key lemma that bounds
the difference between the objective values of P and P*.

> LEMMA 4.3 (SuBCASE 2.1). Let P be a saturated assignment
under subcase 2.1, and let P be an optimal assignment. We have

AP -TAP) < Y [NWnW®) @
yeV, \VJ(P)

DY

(V@) VP +1).
yEf/z_lﬂVg(’P)

Proor. (Sketch) Since P is saturated, Lemma (4.2) implies that
all type-1 vertices under P are integrated. Thus, the difference
IoA(P™) - IoA(P) is at most the number of type-2 vertices that
are integrated under P* but are not integrated under P.

Let f: Vi_g = Va_1 be an arbitrary bijective mapping. We may
regard P” as a result of the transformation from P via pairwise
swaps of types between vertices specified by f (ie., the type of
x € Vi_y is swapped with the type of f(x) € Vz 1). Observe
that only vertices in V5 (P) that are adjacent to V;_; (or within
Vg 1) under P can be newly integrated under P* after swapping
Vi_p with Vy_;. (By the definition of V2 (P), vertices in Vies
have no neighbors in V5 (P).) It follows that for each vertex y €
Vy_1, at most | (N (y) 0 VY (P)] of its neighbors can become newly
integrated after transforming from P to P*. Further, if also y €
Va_1 N VS(P), y itself could also be newly integrated after the
swap. We then have

LoA(P*) ~IoA(P) <| U N(y) Vo (P)|+|Varr n V5 (P)|

yeVr1

< X W@V ®)
yeVa 1 \VY(P)
u
Y (W@ e +1)
yE\?zqﬂVg('P)
where the last inequality follows from the union bound. [ |

We now proceed to show that the difference between I0oA(P)
and IoA(P*) established in Lemma (4.3) is at most IoA(P), thereby
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P P
Figure 2: Two assignments P and P where type-1 and type-
2 vertices are highlighted in blue and red, respectively. In
this case, Vy_1 = {X3,X4} and Vy_; = = {x1,x2}. We may then
transform P into P* by swapping types between the pair
(x1,x3) and between (x2,x4). Note that this example is only
to demonstrate how V,_; and V1_, are defined, as P cannot
be a saturated assignment returned by the algorithm.

establishing ToA(P) > 1 - ToA(P™). Recall that for each vertex
x € V, Ix(P) is the set of neighbors of x whose types are different
from x, and are uniquely covered by x under P. By the definition of
Subcase 2.1, I (P) is not empty for all x € V1(P). We first argue
that for any y € VY(P) and any x € V1(P), we have [N (y) n
V(P)| < [x(P)].

> LEMMA 4.4 (SUBCASE 2.1). Given a saturated assignment P, for
anyy € VY(P) and any x € V1(P), we have

W (y) n V3 (P)| < [T (P)].

ProoF. (Sketch) Given that y is not integrated under P, x and y
cannot be adjacent. Since P is a saturated assignment, if the types
of x and y are to be swapped, the number of newly integrated
vertices would be at most the number of newly non-integrated
vertices. Further, one can verify that the number of vertices that are
newly integrated is at least [N (y) n V§ (P)| + 1, and the number
of vertices that are newly non-integrated is at most [Ix(P)| + 1.
Since P is saturated, it follows that [N (y) n V§(P)| < [Tx(P)].
This concludes the proof. [ ]

We now establish the next lemma, which bounds the size of

N(y) nV§(P) fory e Vo(P) V3§ (P) and x € V1 (P).

> LEMMA 4.5 (SUBCASE 2.1). Given a saturated assignment P, for
anyy € Vo(P) \ V3 (P) and any x € V1(P), we have

V() V2 (P)| <[ (P)] +1

PRrOOF. (Sketch) We partition V3 (P) \ V5 (P) into two subsets
B and C, as follows. Subset B is the set of integrated type-2 vertices
whose neighbors are all integrated under P, i.e., B = {y € V2(P) ~
VI(P) N(y) n VY(P) = @}. Subset C, the complement of
B, is the set of integrated type-2 vertices with at least one non-
integrated neighbor under P, ie., C = {y € V3(P) \ V§(P)
N(y) n VY(P) + @}. The lemma clearly holds if y € B. Further,
we show that for the case when y € C, no type-1 neighbors of y is
uniquely covered by y under P (i.e., Ty(P) = @). Further, suppose
y € C, consider an objective non-increasing move from P where
we swap the types between x and y. If y is a neighbor of x under
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P, one can verify that the the maximum loss is |Ix(P)| and the
minimum gain is [NV (y) N VY (P)|. Thus

W () nV2(P)] < [L(P)]. @

On the other hand, if y is not a neighbor of x under P, one can

verify that the maximum loss is |Ix (P)| + 1 and the minimum gain
is [NV (y) n VY(P)|. Thus

W () V3 (P)] < I (P)] + 1. 5)

This concludes the proof. [ ]

We are now ready to establish IoA(P) >
Subcase 2.1.

3 - IoA(P*) under

> LEMMA 4.6 (SUBCASE 2.1). Suppose V3 (P) + @ and T (P) +
@,¥x € V1(P), we have IoA(P) > % - T0A(P*) where P* is an
optimal assignment that gives the maximum objective.

Proor. (Sketch) Note that \}2_1 is a subset of V2 (P). Further,
observe that I'x (P) are pairwise disjoint for different vertices x €
V1(P). Now, by Lemma (4.3) and (4.5), We have

I0A(P”) - IoA(P) < Z ITp-1(4) (P + Voot
yeVa

<[Va(P) N V3 (P)] + [V1(P)]

< IoA(P)

where Inequality (6) follows from |Va_;| = [V1—2| < [V1(P)] and
(Zyep,, Tr1() (P]) < V2(P) S VE(P). =

We have shown that if V (P) # @ and I (P) # @, Vx € V1 (P),

the algorithm gives a 1/2 approximation. We proceed to the final
subcase.
Subcase 2.2: VY(P) # @, and Ix(P) = @,3x € V1 (P), that is,
there exists at least one type-1 vertex x € V1 (P) such that for each
type-2 neighbor y of x, y is adjacent to at least one type-1 vertex
other than x.

O

> LEMMA 4.7 (SUBCASE 2.2). Under subcase 2.2, for each non-
integrated type-2 vertex y € Vg(’P), all type-2 neighbors of y are
integrated (i.e, N'(y) N V5 (P) = @) under P. That is, the vertices in
VY(P) form an independent set of G.

Proor. (Sketch) Given such a x € V1(P) defined in Subcase
2.2, for contradiction, suppose there exists a non-integrated type-2
vertex y € V3 (P) such that at least one type-2 neighbor, denoted by
y' € N'(y), of y is not integrated under P. (Note that all neighbors
of y are of type-2 since y is not integrated.) Now consider a new
assignment P’ where we switch the types between x and y. One
can verify that ToA(P’) > ToA(P) + 1, that is, after the switch, the
index IoA would increase by at least 1. This implies the existence
of an improvement move from P, which contradicts P being a
saturated assignment. Thus, no such a non-integrated type-2 vertex
y’ of y can exist. [ ]

Observe that ToA(P) = (n - |VY(P)|). With Lemma (4.7) in place,
we now argue that the size of v;’ (P) cannot be too large.

1> LEMMA 4.8 (SUBCASE 2.2). Under Subcase 2.2, |V (P)| < 2
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Proor. (Sketch) Let V) := {y € Vo(P) \ VI (P) N(y) n
Vg(P) + @} be the set of type-2 integrated vertices which have at
least one non-integrated type-2 neighbor. We first note that I'y (P)
(if not empty) are mutually disjoint for different y € Y. It follows
that ToA(P) > [V| + X yey [Ty(P)|. Suppose we switch the types
between such a vertex x and a vertex y € ), and let P’ denote the
resulting new assignment. One can verify that the maximum loss of
objective after the swap is [Ty ()| + 1, whereas the minimum gain
is |V (y) n V5 (P)|. Since P is a saturated assignment returned
by the algorithm, we must have IoA(P) > IoA(P’). Therefore,
IV (y) N VI (P)| < |Ty(P)| + 1, ¥y € V. Overall, we have that

V3 (P)| = Lg)/\/(y) nV2(P)| @)
ye
<P+ 1Y) ®)
<Vi(P)[+ [Va(P) N Vi (P)) ©)
=n-2(P)] (10)
It immediately follows that [VY (P)| < Z. ]

Lastly, Since ToA(P) = n — |VY(P)|, by Lemma (4.8), we have
ToA(P) = n— [VY(P)| 2 % -n> 3 -ToA(P"), thereby establishing
a 1/2 approximation for Subcase 2.2. Overall, we have shown that
a saturated assignment P returned by Algorithm (1) gives a 1/2-
approximation for IM-IoA. Thus:

> THEOREM 4.9. Algorithm (1) gives a %-approximation for IM-
IoA.

Tightness of Analysis. We present a class of problem instances
where the approximation ratio of the solution produced by Algo-
rithm (1) can be made arbitrarily close to 1/2. Therefore, the ratio
1/2 in the statement of Theorem (4.9) cannot be improved, so our
analysis is tight. Due to the page limit, the proof appears in the full
version [31].

> ProPOSITION 4.10. For every € > 0, there exists a problem
instance of IM-10A for which there is a saturated assignment P such
that IoA(P) < (3 +¢€) - OPT.

5 SUBGROUPS WITH SIMILAR SIZES

In this section, we study the problem instances where the number
of type-1 agents is a constant fraction of the total number of agents,
that is, k = « - n for some constant 0 < & < 1/2. We refer to this
problem as an-IM-IoA. For example, a = 1/2 represents the bisection
constraint. We first show that an-IM-IoA remains computationally
intractable. See the full version [31] for the proof.

> THEOREM 5.1. The problem an-IM-IoA is NP-hard.

5.1 A semidefinite programming approach

We now present an approximation algorithm for an-IM-IoA based
on semidefinite programming (SDP) relaxation [15]. The overall
scheme is inspired by the work of Frieze and Jerrum [13] on the
Max-Bisection problem. Given a graph G = (V,&), each vertex
i € V has a binary variable x; € {-1,1} such that x; = -1 if i is of
type-1, and x; = 1 if i is of type-2. First, a valid quadratic program
(QP) for the problem is as follows (see the full version [31] for
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o 1-xix;
the proof): maximize ¥;eyy max;epr(;) {—5} st Xicjxixj =

(1-2a)*-n*-n
2

.It can be verified that the following SDP is a relaxation

of the QP:
1- Us U
SDP:  maximize max ﬂ}
iey JEN (i) 2
2 2
1-2a)? n®-
st S gi-gj< (-20)"-n"-n
i<j 2
¥i - yi = 1, VieV

Main idea of the algorithm and analysis. Our algorithm involves
two steps. We elaborate on these steps and the analysis below.

(1) The SDP solution g;,i = 1,...,n is not a feasible integral
solution. So we “round” it to get a partition (V1, V) using
the hyperplane rounding [15] approach. We show that the ex-
pected number of integrated vertices is Q(OPTspp), where
OPTspp is the value of the SDP solution.

(2) {V1,V2} need not be a (an, (1 — «)n)-partition, so we fix
it by moving |V1| — an vertices from V; to the other side.
In particular, we present a strategy that picks a vertex to
remove from V) at each step, which minimizes the decrease
in IoA. Overall, to achieve the overall guarantees, we increase
the probability of success by running the rounding and size
adjustment step multiple times, and taking the best solution.

First step: Round the SDP. Let {;, ..., } be an optimal solution
to the SDP; let OPTgpp be the objective value of the SDP. We round
the SDP solution to a partition {V1,V2} of the vertex set such that
vertices in V; are of type-i, i = 1,2 by applying Goemans and
Williamson’s hyperplane rounding method [15]. In particular, we
draw a random hyperplane thought the origin with a normal vector
r,andthen Vi = {i:gj;-r>0}and Vo = {i:g; - r <0}.

Consider an assignment P generated by the above rounding
method (i.e., vertices in V; are assigned to type-i). Let f(V1) : 2V >
N be the number of integrated vertices under P. We establish the
following lemma. The detailed proof appears in the full version [31].

>LEmMA 5.2. E[f(V1)] = agw-OPTspp, whereagy > 0.878567.

Proor. (Sketch) We first establish that Pr[i is integrated] >
max N(i){ w } for any vertex i. Further, as shown
in [15], arccos (z)/m > agw - (1 — z)/2 for any real z € [-1,1].
Thus,

( arccos (i - ;) )

E[f(V1)]> ), max (11)
igz]:} JEN (i) T
1-4i-gj
>acw - max {——} (12)
igz]:) JEN (i) 2
> agw - OPTspp (13)
This concludes the proof. [ ]

Second step: Fix the size. In the previous step, we have shown that
given a partition {1, V, } resulting from hyperplane rounding, if all
vertices in V1 are of type-1, and all vertices in V5 are of type-2, then
the expected number of integrated vertices is at least agy of the
optimal. However, the partition is not necessarily an (an, (1-a)n)-
partition. Thus, we present an algorithm to move vertices from one
subset to another such that (i) the resulting new partition is an
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(an, (1 - a)n)-partition, and (ii) the objective does not decrease
“too much” after the moving process.

Algorithm 2: Fix-the-Size. Without loss of generality, suppose
[V1| > an. Overall, our algorithm consists of T = [V1| — an iter-
ations, and in each each iteration, we move a vertex i € V; to

V,. Specifically, let VY) be the subset at the tth iteration, with
VEO) = V1. To obtain VYH), we choose i € Vgt) to be a vertex that
maximizes f(Vit) ~A{i}) - f(Vit)), and the move i to the other

subset. Lemma 5.3 below establishes the performance of Algorithm
(2); a detailed proof appears in the full version [31].

)
i
T = |V1| — an, is returned by Algorithm (2).

fvy)

> LEMMA 5.3. We have
Vil

where VET) , with

The final algorithm. We have defined the two steps (i.e., (i)
round the SDP and (ii) fix the sizes of the two subsets) needed to
obtain a feasible solution for the problem. Let € > 0 be a small con-
stant, and let L = [loga(é)] wherea = [(1+8)—(1-€)2agw]/(1+
B —2agw), p = 1/(4(ax — @*)). Note that L is a constant w.r.t. n.
The final algorithm consists of L iterations, where each iteration
performs the two steps defined above. This gives us L feasible so-
lutions. The algorithm then outputs a solution with the highest
objective among the L feasible solutions.

> THEOREM 5.4. The final algorithm gives a factor
_ 2
o ((1 —-€) 2aGw — (’;_Zz)
(1-¢)
Y

approximation with high probability, where agy > 0.878567, € > 0
is an arbitrarily small positive constant, & = k/n is the fraction of

minority agents in the group, andy = \/a(1 - a)(1 - €) - 2aGw.

See the full version [31] for detailed proof. For small enough e,
say € = 1073, the approximation ratio is greater than 1/2 for « in
range [0.403,0.5]. For example, & = 0.45 gives a ratio of 0.5781, and
a = 0.5 gives a ratio of 0.6492.

6 TREE-WIDTH BOUNDED GRAPHS AND
PLANAR GRAPHS

In this section, we show that IM-IoA can be solved in polynomial
time on treewidth bounded graphs. Using this result, we obtain a
polynomial time approximation scheme (PTAS) for the problem on
planar graphs.

6.1 A dynamic programming algorithm for
treewidth bounded graphs

The concept treewidth was introduced in the seminal work of Robert-
son and Seymour [32]. Many NP-hard graph problems are known
to be solvable in polynomial time when the underlying graphs
have bounded treewidth. In this section, we present a polynomial-
time dynamic programming algorithm for IM-IoA for the class of
treewidth bounded graphs. We refer readers to the full version [31]
for the definition of a tree decomposition and treewidth.

Dynamic programming setup. Given an instance of IM-IoA
with graph G = (V,£) and the number k of minority agents, let
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T = (Z,F) be a tree decomposition of G with treewidth o. For
each X; € Z, let ); be the set of vertices in the bags in the subtree
rooted at X;. Let G[);] denote the subgraph of G induced on ;.
For each bag X}, we define an array H; to keep track of the optimal
objectives in G[);]. In particular, let H;(S,S’,y) be the optimal
objective value for G[V;] such that (i) vertices in the subset S ¢ X
are of type-1 and vertices in X; \ S are of type-2; (ii) vertices in
S’ ¢ A are to be treated as integrated; and (iii) G[V;] has a total of
y type-1 vertices and |);| — y type-2 vertices. For space reasons, the
update scheme for Hj for each bag X and the proof of correctness
appear in the full version [31].

> THEOREM 6.1. IM-I0A can be solved in polynomial time on
treewidth bounded graphs.

6.2 PTAS for planar graphs

Using the proof presented in [1], it is easy to verify that IM-IoA
remains hard on planar graphs. Given a planar graph G and for any
fixed € > 0, based on the technique introduced in [2], we present
a polynomial time approximation scheme that achieves a (1 — ¢)
approximation for IM-IoA.

PTAS Outline. Let g = 2- [1/€]. We start with a plane embedding
of G, which partitions the set of vertices into ¢ layers for some
integer ¢ < n. Let V; be the set of vertices in the ith layer, i =
1,...¢.Foreachr = 1,..., q, observe that we may partition the vertex
set into ¢ + 1 subsets, where ¢+ = [(£ - r)/q], such that (i) the
first subset W, ,.) consists of the first r layers, (ii) the last subset
W(¢+1,r) consists of the last ((I - r) mod g) layers, and (iii) each
ith subset W, .y in the middle contains g layers in sequential order.
Let Wr = {W(1,)s - W(z41,r) } be such a partition. Let G ; ,.) be
the subgraph induced on W( ir) i=1.,,t+1.Itis known that each
G (i) is a g-outerplanar graph with treewidth O(q) [5], which is
bounded. Let G = U; g(i,,). By Theorem (6.1), we can solve the
problem optimally on each Gr, r = 1, ..., ¢, in polynomial time. The
algorithm then returns the solution with the largest objective over
allr = 1,...,q. Using the fact that q is fixed, one can verify that the
running time of the overall scheme is polynomial in n.

> THEOREM 6.2. The PTAS algorithm gives a factor (1 — €) ap-
proximation on planar graphs for any fixed € > 0.

Proor. (Sketch) Let g = 2 - [1/e]. We show that the algorithm
givesa 1—2/q > 1 — € approximation. Let P* be an assignment of
agents on G that gives the maximum number of integrated agents.
Fix an integer r € [1 .. q], and let Wy = {W(y ), ... W(;41,) } be
a partition of the vertex set as described above. Let Py be an as-
signment on G that is obtained from the proposed algorithm. We
now look at the assignments P and P*, restricted to vertices in
Wi Specifically, let P; .y and "P(* ir) be the assignment of agents
restricted to the subset W(; .y under Pr and P*, respectively. Fur-
ther, let ToA(7P(; ) be the number of integrated agents in G; .y
under Py, and IoA(P(yr i,r)) be the number of integrated agents in
G (i,r) under P*.

Define A, = ToA(P*) - X/
that are left uncounted can only exist on the two adjacent layers
between each pair of subgraphs G; ;) and G(;,4,), 1 = 1,...t. Let

IoA(P(* ir) ). Integrated vertices
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V* be the set of integrated vertices under P*. We then have, A, <
Yhoo (V1 Vjiger) + (V0 V)gars1). It follows that

miny=1,_g{Ar} < %'IOA('P* ). One can then verify that ToA(P,« ) >
(1- %) -IoA(P”) where r* = arg minr:l"_"q{Ar}. Lastly, let P be
an assignment returned by the algorithm, = arg max, ToA(P;).
It follows that ToA(P) > (1 - 2)-ToA(P*). .

7 EXPERIMENTAL EVALUATION

We evaluate the empirical performance of the proposed local im-
provement algorithm for IM-IoA under several scenarios. Our re-
sults demonstrate the high effectiveness of the algorithm on both
synthetic and real-world networks.

7.1 Experimental setup

Networks. We select networks based on their sizes and applica-
tion domains, as shown in Table 1. Specifically, Gnp and Power-law
are synthetic networks generated using the Erdés-Rényi [11] and
Barabasi-Albert [3] models, respectively. City is a synthetic net-
work of a residential area in Charlottesville, obtained from the
Biocomplexity Institute at the University of Virginia. In this net-
work, vertices are houses, and any pair of houses within 100 yards
are considered as neighbors. Arena and Google+ are mined social
networks obtained from a public repository [21].

Network Type n m Max deg
Gnp Random 1,000 4,975 36
Power-law Random 1,000 5,015 355
City Residential 7,444 238,802 165
Arena Social 10,680 24,316 205
Google+ Social 23,613 39,182 2,761

Table 1: List of networks

Algorithms. We evaluate the performance of Local-Improvement
algorithm using the following baselines: (1) Greedy: Initially, all
vertices are occupied by type-2 agents; then iteratively k of these
are replaced by type-1 agents in a greedy manner. Specifically, in
each iteration, a replacement that causes the largest increase in
the objective value is chosen. (2) Random: a random subset of k
vertices are chosen for type-1 agents, and the remaining vertices
are assigned to type-2 agents.

Evaluation metrics. We use two metrics to quantify the per-
formance: (i) the integration ratio y = obj/n (i.e., the fraction of
integrated agents) and (ii) the empirical approximation ratio y =
0bj/OPT where OPT is the optimal value. The value OPT is com-
puted by solving an integer linear program (ILP) using Gurobi [29].

Reproducibility. The source code and selected datasets are at
https://github.com/bridgelessqiu/Integration_Max.

7.2 Experimental results

We present an overview of the results under the following experi-
mental scenarios.

Empirical ratio across networks. We first study the empirical
approximation ratio y of the algorithms on different networks. For
the three large networks, namely City, Arena and Google+, the
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ILP solver didn’t terminate even though it was run for 24 hours.
Therefore, we restricted our focus to smaller subgraphs of these
networks. For each subgraph, we fixed the number k of minority
agents to be 10% of n, where n is the number of vertices in the
network. The empirical ratio for each algorithm is then averaged
over 100 repetitions.

1o0q - i -
V]
V]
0.754 d
u 7 [ q
% V1

Approximation Ratio ~
<] o
[\ ot
ot (=)
A Y

<
o
S

Power-law City* Arena*  Google+*
Network

EZ3 Greedy

Gnp

[I:I Local-Improvement [ Random |

Figure 3: The empirical approximation ratio y for algorithms.
The number of vertices and edges (n, m) for each subgraph are
as follows. City*: (1607,50112), Arena*: (1981, 9132), Google+*:
(2000, 5042).

Representative results for the empirical ratio are shown in Fig. 3.
Overall, we observe that the performance of Local-Improvement
and Greedy are close to the optimal value, with Local-Improvement
outperforming Greedy by a small margin. Specifically, the empir-
ical ratio of Local-Improvement is greater than 0.85 on all tested
instances. As one would expect, the empirical ratio of Random is
much lower than its counterparts. Overall, we note that the empiri-
cal ratio of Local-Improvement is much higher than its theoretical
guarantee of 1/2. Recall from Section 4 that there are instances
where Local-Improvement produces solutions that are of 1/2 of the
optimal value. Our experimental findings indicate such worst-case
instances did not occur in these experiments. We also note that
empirically Greedy is comparable to Local Improvement. However,
no known performance guarantee for Greedy has been established.
In contrast, as shown in Section 4, Local Improvement provides a
guarantee of 1/2.

—e— |ocal-Improvement
—k—  Greedy
Random

0.00+

0.05 0.10 0.15 0.20
The fraction of minority agents

0.05 0.10 0.15 0.20
The fraction of minority agents

0.25

(a) Gnp network (b) City network
Figure 4: The change of the fraction of integrated agents as
the fraction of minority agents increases. The networks are
Gnp and City shown in Table (1).

Variations on the number of minority agents. Next, we
study the integration ratio y (i.e., the fraction of integrated agents)
obtained by the algorithms under the scenario where the fraction of

0.25
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minority agents (k) increases from 0.01 to 0.25. The representative
results for Gnp and City networks are shown in Fig. 4. Overall,
we observe that as the fraction of minority agents increases, the
integration ratio y grows monotonically for all algorithms. Similar
results are observed for all the chosen networks. Despite the mono-
tonicity observed in the experiments, we remark that the objective
value that an algorithm can obtain is general non-monotone as k
increases. (A simple example is a star where the objective is maxi-
mized for k = 1 when the type-1 agent is placed at the center. It is
easy to verify that as k increases, the optimal objective decreases.)

Change of objective as local improvement proceeds. Lastly,
we study the increase in the objective value as the number of swaps
used in Local-Improvement is increased. Results are shown in Fig. 5
for gnp networks with 1000 nodes and average degrees varying
from 10 to 30. Overall, we observe a linear relationship between
the objective value and the number of swaps.

1.04 /
.2 094
=
~
S 084
o074 Avg deg: 10 —o— Avgdeg: 25
— —e— Avg deg: 15 —o— Avg deg: 30
—e— Avg deg: 20
0.6

25 50 75 100 125 150 175 200

Number of Swaps

o

Figure 5: The change in the number of integrated agents as
Local-Improvement proceeds. The underlying gnp networks
have 1,000 vertices; the average degree varies from 10 to 30.

8 CONCLUSIONS

We considered an optimization problem that arises in the context
of assigning agents to the nodes of a network to maximize the inte-
gration level. Since the general problem is NP-hard, we presented
approximation algorithms with provable performance guarantees
for several versions of the problem. Our work suggests several di-
rections for further research. First, it is of interest to investigate
approximation algorithms with better performance guarantees for
the general problem. One possible approach is to consider local
improvement algorithms that, instead of swapping just one pair of
vertices to increase the number of integrated vertices, swap up to
J pairs, for some fixed j > 2 in each iteration. One can also study
the problem under network-based extensions of other integration
indices proposed in the social science literature [25]. Another direc-
tion is the scenario where the total number of agents is less than
the number of vertices (so that some vertices remain unoccupied
by agents). In addition, one can also study the variant where there
are agents of three or more types, and the notion of integration
is defined by requiring the neighborhood of an agent to include
a certain number of agents of the other types. Overall, this topic
offers a variety of interesting new problems for future research.
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