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ABSTRACT
Motivated by real-world applications such as the allocation of public

housing, we examine the problem of assigning a group of agents to

vertices (e.g., spatial locations) of a network so that the diversity level

is maximized. Specifically, agents are of two types (characterized

by features), and we measure diversity by the number of agents

who have at least one neighbor of a different type. This problem is

known to be NP-hard, and we focus on developing approximation

algorithms with provable performance guarantees. We first present

a local-improvement algorithm for general graphs that provides an

approximation factor of 1⇑2. For the special case where the sizes
of agent subgroups are similar, we present a randomized approach

based on semidefinite programming that yields an approximation

factor better than 1⇑2. Further, we show that the problem can be

solved efficiently when the underlying graph is treewidth-bounded

and obtain a polynomial time approximation scheme (PTAS) for

the problem on planar graphs. Lastly, we conduct experiments to

evaluate the performance of the proposed algorithms on synthetic

and real-world networks.
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1 INTRODUCTION
Many countries have public housing initiatives that offer low-

income individuals secure and affordable residences. Housing op-

tions are typically allocated by government agencies that involve

a process of assigning applicants to vacant apartments [14, 39].

Given that the applicants often come from a variety of demographic

groups, the spatial distribution of public housing partially shapes

the demographic structure of local communities [16, 35]. The pro-

motion and cultivation of integrated communities is an objective

of contemporary societies. It has been shown that integration can

improve a country’s financial performance, reduce the disparity

between demographic groups, and advance social prosperity in gen-

eral [9, 24, 36]. Conversely, segregated neighborhoods widen the

socioeconomic divide in the population. As noted by many social

scientists, residential segregation remains a persistent problem that

directly contributes to the uneven distribution of resources and

limited life chances for some groups (e.g., [33, 38, 40]).

In this work, we study the problem of promoting community

integration (i.e., diversity) in the context of housing assignment.

Indeed, public housing programs often take diversity into account.

In Singapore, there are established policies to ensure that a certain

ethnic quota must be satisfied for each project at the neighborhood

level [10]. In the U.S., cities like Chicago and New York also place

emphasis on the value of having integrated communities [8, 28].

Nevertheless, formal computational methods for improving the level

of integration in the housing assignment process have received

limited attention. Motivated by the above considerations, we inves-

tigate the problem of public housing allocation from an algorithmic

perspective and provide systematic approaches to design assignment

strategies that enhance community integration.

Formally, we model a housing project as a graph 𝒢 = (𝒱,ℰ)
where 𝒱 is the set of vacant residences, and the edges in ℰ represent
proximity between residences. We are also given a set 𝒜 of agents

representing the applicants to be assigned to residences. Agents

are partitioned into two demographic subgroups: type-1 and type-2.
Without loss of generality, we assume that the number of type-1
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agents does not exceed the number of type-2 agents. (We sometimes

use the phrase “minority agents” for type-1 agents.) We also assume

that the number of vacant residences (i.e., ⋃︀𝒱 ⋃︀) equals the number of

agents. Our goal is to construct an assignment (bijective mapping)

𝒫 of residences to agents that maximizes the the integration level

of the layout of agents on 𝒢.
To quantify the integration level of a given assignment 𝒫 , we

use the index of integration (IoA) metric proposed in [1]. This index

is defined as the number of integrated agents, that is, agents with at

least one neighbor of a different type in 𝒢. An illustrative example

is given in Fig. 1. We refer to the above assignment problem as

Integration Maximization - Index of Agent Integration (IM-

IoA). We note that this problem could also arise in other settings

where integration is preferred, such as dormitory assignments for

freshmen in universities [6].

The problem of maximizing IoA is known to be NP-hard [1].

Nevertheless, the authors of [1] did not address approximation

questions for the problem, as their focus is on game theoretic as-

pects of IoA. In this work, we focus on developing approximation

algorithms with provable performance guarantees for IM-IoA. Our
main contributions are as follows.

- Approximation for general instances. We present a local-

improvement algorithm that guarantees a factor 1⇑2 approxima-

tion. We further show that our analysis is tight by presenting an

example that achieves this bound. While it is possible to derive

an approximation for the problem using a general result in [7],

the resulting performance guarantee is 0.356, which is weaker

than our factor of 1⇑2.
- Improved approximation for special instances. For the case
when the number of type-1 agents is a constant fraction 𝛼 of the

total number of agents, 0 < 𝛼 ≤ 1⇑2, we present a semidefinite

programming (SDP) based randomized algorithm that yields ap-

proximation ratios in the range (︀0.516, 0.649⌋︀ for 𝛼 in the range

(︀0.403, 0.5⌋︀. For example, when 𝛼 = 0.45, the ratio is 0.578, and

when 𝛼 = 0.5, the ratio is 0.649.

- Apolynomial time approximation scheme for planar graphs.
We present a dynamic programming algorithm that solves IM-IoA
in polynomial time on graphs with bounded treewidth. Using

this result in conjunction with a technique due to Baker [2], we

obtain a polynomial time approximation scheme (PTAS) for the

problem on planar graphs. For any fixed 𝜖 > 0, the algorithm

provides a performance guarantee of 1 − 𝜖 .
- Empirical analysis. We study the empirical performance of the

proposed local-improvement algorithm against baseline methods

on both synthetic and real-world networks. Overall, we observe

that the empirical approximation ratio of the proposed algorithm

is much higher than 1⇑2, which is our theoretical guarantee.

Figure 1: An example assignment
of two type-1 agents (blue) and
six type-2 agents (red) on a graph
𝒢. Vertices with integrated agents
are labeled by dashed circles. The
index of integration for this as-
signment (i.e., the number of in-
tegrated agents) is 6.

2 RELATEDWORK
Integration in public housing. Issues regarding segregation

and the need for enhancing integration have been documented

extensively in the social science literature (e.g., [12, 22, 25, 26]). In

particular, many works on segregation in social networks (e.g., [17,

19]) stem from the pioneering models proposed by Schelling [34],

where agents move between vertices to improve their utility values.

While Schelling’s framework allows the study of agent dynamics,

Benabbou et al. [4] study integration in public housing allocation

from a planning perspective. In particular, they formulate the setting

as a weighted matching problem where the set of available houses

is partitioned into blocks, and agents are assigned (by some central

agency) to blocks to maximize a utility measure while satisfying

some diversity constraints. They establish the NP-hardness of the
problem and present an approximation algorithm based on a result

of Stamoulis [37]. A number of other studies have also addressed

integration in the context of public housing from a social science

perspective (e.g., [18, 20, 23, 30]).

The problem formulations and the algorithmic techniques used

in Benabbou et al. [4] and in our work are significantly different.

First, Benabbou et al. [4] examine a weighted matching problem.

Their model does not use any network structure for the residences,

whereas our work approaches the problem from a graph theoretic

standpoint, with the underlying network playing an important role

in the formulation. Further, the integration index studied in our

work is defined w.r.t the graph structure, whereas the measure used

in [4] is based on constraints on the ethnicity quotas for blocks.

More importantly, the goal of our work is to find an assignment

that maximizes the integration level, whereas the goal in [4] is to

maximize the overall utility of agents under a diversity constraint.

Integration indices. Various indices to measure the level of

integration in a population are surveyed in [25]. However, most of

those indices cannot be naturally extended to a network setting.

The integration index IoA considered in our work was proposed

by Agarwal et al. [1] in the context of the Schelling Game on net-

works, where agents can change locations to increase their utilities.

Agarwal et al. explore several properties (e.g., the integration price

of anarchy/stability) of the index from a game theoretic perspec-

tive. Further, they show that finding an assignment for which all

agents are integrated (i.e., each agent has at least one neighbor of a

different type) is NP-hard [1]. A further discussion of related work

is provided in the full version of this manuscript [31].

3 PROBLEM DEFINITION
Graphs and agents. Let 𝒢 = (𝒱,ℰ) be an undirected graph, where

𝒱 is a set of vertices representing vacant residences, and ℰ is a set of
edges representing the proximity relationship between residences.

Let 𝒜 be the set of agents to be assigned to 𝒱 . The set 𝒜 is divided

into two subgroups. Formally, 𝒜 is partitioned into two subsets

𝒜1 and 𝒜2; we refer to agents in 𝒜𝑖 as type 𝑖 agents, 𝑖 = 1, 2. Let
𝑘 = ⋃︀𝒜1⋃︀ denote the number of type-1 agents, so 𝑛−𝑘 is the number

of type-2 agents.Without loss of generality, let𝑘 ≤ 𝑛⇑2, and we refer
to 𝒜1 as the minority subgroup. Lastly, we assume that ⋃︀𝒱 ⋃︀ = ⋃︀𝒜⋃︀;
that is, the number of vertices is the same as the number of agents.

Assignment. An assignment is a mapping from vertices to

agents. To simplify the proofs, we use an equivalent definitionwhere
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an assignment is a mapping from vertices to agent types. In particu-

lar, an assignment𝒫 ∶ 𝒱 → {1, 2} is a function that assigns an agent
type to each vertex in 𝒱 , such that 𝑘 vertices are assigned type-1
and 𝑛 − 𝑘 vertices are assigned type-2. In such an assignment, a

type-𝑖 vertex is occupied by a type-𝑖 agent, 𝑖 = 1, 2. We remark that

the above definition of an assignment is mathematically equivalent

to defining an assignment to be a mapping from 𝒱 to 𝒜.
The index of integration. We consider the integration index

proposed in [1] and apply it to our context.

Definition 3.1 (Index of agent-integration (IoA) [1]). Given
an assignment 𝒫 , an agent 𝑥 ∈ 𝒜 is integrated if 𝑥 has at least

one neighbor in 𝒢 whose type is different from that of 𝑥 . Let

𝒜′ be the set of integrated agents under 𝒫 . The index of agent-
integration of 𝒫 is then defined as the number of integrated

agents in 𝒜:
IoA(𝒫) = ⋃︀𝒜′⋃︀ (1)

Equivalently, a vertex 𝑢 ∈ 𝒱 is integrated under 𝒫 if the agent

assigned to 𝑢 is integrated. Thus, we may also view the index as

IoA(𝒫) = ⋃︀𝒱 ′⋃︀ where 𝒱 ′ is the set of integrated vertices under 𝒫 .
These two definitions of IoA are mathematically equivalent.

The optimization problem. We now define the problem Inte-

gration Maximization-Index of Agent Integration (IM-IoA).
Note that IM-IoA can be viewed as an optimization version of 2-

weak coloring [27], where the number of vertices with each color is

specified, and the number of properly colored vertices is maximized.

Definition 3.2 (IM-IoA). Given a graph 𝒢 = (𝒱,ℰ), a set𝒜 of

agents with 𝑘 type-1 and 𝑛−𝑘 type-2 agents, find an assignment

𝒫 such that IoA(𝒫) is maximized.

4 APPROXIMATION FOR GENERAL GRAPHS
IM-IoA is known to be NP-hard [1]. In this section, we present a

local-improvement algorithm for IM-IoA and show that the algo-

rithm achieves a factor 1⇑2 approximation for general graphs. For

convenience in presenting the proofs, we consider an assignment

from the perspective of vertices rather than that of the agents. As

stated earlier, these two definitions are equivalent.

The algorithm. Starting from a random assignment 𝒫 , in each

iteration, we find a pair of vertices with different types such that

swapping their types strictly increases the objective. Specifically,

let𝑢 be a type-1 vertex, and 𝑣 be a type-2 vertex. We swap the types

of 𝑢 and 𝑣 if and only if the resulting new assignment 𝒫 ′ yields
a strictly higher IoA; that is, IoA(𝒫) < IoA(𝒫 ′). The algorithm
terminates when no such swap can be made. The pseudocode is

given in Algorithm (1).

4.1 Analysis of the algorithm
Given a problem instance of IM-IoA, let 𝒫 be a saturated assign-

ment
1
returned by Algorithm (1). Let 𝒫∗ be an optimal assign-

ment that achieves the maximum objective, denoted by OPT. We

assume that 𝒫 ≠ 𝒫∗. In this section, we show that IoA(𝒫) ≥

1

An assignment is saturated if no pairwise swap of types between a type-1 and a

type-2 vertices can increase the objective.

1⇑2 ⋅ IoA(𝒫∗) = 1⇑2 ⋅OPT, thereby establishing a 1⇑2 approxima-

tion. Due to the page limit, we sketch the proof here; the detailed

proof appears in the full version [31].

Algorithm 1: Local-Improvement-IoA
Input :A graph 𝒢 = (𝒱,ℰ), 𝑘 , where 𝑘 ≤ ⋃︀𝒱 ⋃︀⇑2
Output :An assignment 𝒫

1 𝒫 ← a random assignment, Updated← True

2 while Updated do
3 Updated← False

4 for 𝑥 ∈ 𝒱1(𝒫) do
5 for 𝑦 ∈ 𝒱2(𝒫) do
6 𝒫 ′ ← the assignment where 𝒫 ′(𝑥) = 𝒫(𝑦) and

𝒫 ′(𝑦) = 𝒫(𝑥)
7 if IoA(𝒫 ′) > IoA(𝒫) then
8 𝒫 = 𝒫 ′, Updated← True & break

9 return 𝒫

Under the assignment 𝒫 , we call a vertex 𝑣 a type-1 (or type-2)
vertex if 𝒫(𝑣) = 1 (or 𝒫(𝑣) = 2). Let 𝒱1(𝒫) and 𝒱2(𝒫) denote the
set of type-1 and type-2 vertices under 𝒫 . Let 𝒱U

1
(𝒫) and 𝒱U

2
(𝒫)

denote the set of uncovered
2
type-1 and type-2 vertices under 𝒫 .

For each vertex 𝑢, let𝒩 U
𝑢 (𝒫) denote the set of neighbors of 𝑢 that

are uncovered under 𝒫 , and let Γ𝑢(𝒫) denote the set of different-
type neighbors of 𝑢 that are uniquely covered by 𝑢, i.e., Γ𝑢(𝒫)
is the set of vertices 𝑣 such that (𝑖) 𝑣 is a neighbor of 𝑢, (𝑖𝑖) the
type of 𝑣 is different from the type of 𝑢, and (𝑖𝑖𝑖) 𝑣 has no other

neighbor whose type is the same as 𝑢’s type.

▷Observation 4.1. The index IoA(𝒫) = 𝑛− ⋃︀𝒱U
1
(𝒫)⋃︀− ⋃︀𝒱U

2
(𝒫)⋃︀.

We now consider the following mutually exclusive and collec-

tively exhaustive cases of 𝒱U
1
(𝒫) and 𝒱U

2
(𝒫) under the saturated

assignment 𝒫 . We start with a simple case where all the type-2
vertices under 𝒫 are integrated.

Case 1: 𝒱U
2
(𝒫) = ∅.

Under this case, all vertices in 𝒱2(𝒫) are integrated which gives

IoA(𝒫) ≥ (1⇑2) ⋅OPT. This case trivially implies that the algorithm

provides a 1⇑2 approximation. We now look at the remaining case:

Case 2: 𝒱U
2
(𝒫) ≠ ∅.

Under this case, there exists at least one vertex in 𝒱2(𝒫) that is
not integrated. We first show that 𝒱U

1
(𝒫) and 𝒱U

2
(𝒫) cannot both

be non-empty.

▷ Lemma 4.2. For a saturated assignment 𝒫 , if 𝒱U
2
(𝒫) ≠ ∅, then

𝒱U
1
(𝒫) = ∅.

Proof. (Sketch) Let 𝑦 ∈ 𝒱U
2
(𝒫) be a vertex of type-2 that is not

integrated (i.e., all neighbors of 𝑦 are of type-2). For contradiction,

suppose 𝒱U
1
(𝒫) ≠ ∅. Now let 𝑥 ∈ 𝒱U

1
(𝒫) be an non-integrated

vertex of type-1 whose neighbors are all of type-1. Let 𝒫 ′ denote
the assignment where we switch the types between 𝑥 and 𝑦, that

is, 𝒫 ′(𝑥) = 𝒫(𝑦) = 2, 𝒫 ′(𝑦) = 𝒫(𝑥) = 1, while the types of all
other vertices remain unchanged. One can verify that IoA(𝒫 ′) ≥
2

A vertex is “covered” if it is integrated and “uncovered" otherwise.
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IoA(𝒫)+2, that is, switching the types of𝑥 and𝑦 increases the index
IoA by at least 2. This implies the existence of an improvement

move from 𝒫 , which contradicts the fact that 𝒫 is saturated. It

follows that 𝒱U
1
(𝒫) = ∅. ∎

Lemma 4.2 implies that under case 2 (i.e., 𝒱U
2
(𝒫) ≠ ∅), we have

𝒱U
1
(𝒫) = ∅. We now consider the following two mutually exclusive

and collectively exhaustive subcases under Case 2 and show that

the approximation factor under each subcase is 1⇑2.
Subcase 2.1: 𝒱U

2
(𝒫) ≠ ∅, and Γ𝑥(𝒫) ≠ ∅, ∀𝑥 ∈ 𝒱1(𝒫), that

is, for each type-1 vertex 𝑥 ∈ 𝒱1(𝒫), there is at least one type-2
neighbor of 𝑥 that is uniquely covered (“made integrated”) by 𝑥 .

Suppose𝒫 ≠ 𝒫∗, that is, for some vertices 𝑥 ∈ 𝒱 ,𝒫(𝑥) ≠ 𝒫∗(𝑥).
Let

˜𝒱2−1 = {𝑣 ∈ 𝒱 ∶ 𝒫(𝑣) = 2,𝒫∗(𝑣) = 1} be the set of vertices

that are type-2 under 𝒫 , but are type-1 under 𝒫∗. Analogously, let
˜𝒱1−2 = {𝑣 ∈ 𝒱 ∶ 𝒫(𝑣) = 1,𝒫∗(𝑣) = 2} be the set of vertices of

type-1 under 𝒫 , but are of type-2 under 𝒫∗. Observe that ⋃︀ ˜𝒱2−1⋃︀ =
⋃︀ ˜𝒱1−2⋃︀. We may view 𝒫∗ as the result of a transformation from

𝒫 under pairwise swaps of types between
˜𝒱2−1 and

˜𝒱1−2. An
example is given in Figure (2). We present a key lemma that bounds

the difference between the objective values of 𝒫 and 𝒫∗.

▷ Lemma 4.3 (Subcase 2.1). Let 𝒫 be a saturated assignment

under subcase 2.1, and let 𝒫∗ be an optimal assignment. We have

IoA(𝒫∗) − IoA(𝒫) ≤ ∑
𝑦∈ ˜𝒱2−1∖𝒱U

2
(𝒫)

⋃︀(𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ (2)

+ ∑
𝑦∈ ˜𝒱2−1∩𝒱U

2
(𝒫)

(⋃︀(𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ + 1) .

Proof. (Sketch) Since 𝒫 is saturated, Lemma (4.2) implies that

all type-1 vertices under 𝒫 are integrated. Thus, the difference

IoA(𝒫∗) − IoA(𝒫) is at most the number of type-2 vertices that
are integrated under 𝒫∗ but are not integrated under 𝒫 .

Let 𝑓 ∶ ˜𝒱1−2 → ˜𝒱2−1 be an arbitrary bijective mapping. We may

regard 𝒫∗ as a result of the transformation from 𝒫 via pairwise

swaps of types between vertices specified by 𝑓 (i.e., the type of

𝑥 ∈ ˜𝒱1−2 is swapped with the type of 𝑓 (𝑥) ∈ ˜𝒱2−1). Observe
that only vertices in 𝒱U

2
(𝒫) that are adjacent to ˜𝒱2−1 (or within

˜𝒱2−1) under 𝒫 can be newly integrated under 𝒫∗ after swapping
˜𝒱1−2 with

˜𝒱2−1. (By the definition of 𝒱U
2
(𝒫), vertices in

˜𝒱1−2
have no neighbors in 𝒱U

2
(𝒫).) It follows that for each vertex 𝑦 ∈

˜𝒱2−1, at most ⋃︀(𝒩 (𝑦)∩𝒱U
2
(𝒫)⋃︀ of its neighbors can become newly

integrated after transforming from 𝒫 to 𝒫∗. Further, if also 𝑦 ∈
˜𝒱2−1 ∩ 𝒱U2 (𝒫), 𝑦 itself could also be newly integrated after the

swap. We then have

IoA(𝒫∗) − IoA(𝒫) ≤ ⋃︀ ⋃
𝑦∈ ˜𝒱2−1

𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ + ⋃︀ ˜𝒱2−1 ∩ 𝒱U2 (𝒫)⋃︀

≤ ∑
𝑦∈ ˜𝒱2−1∖𝒱U

2
(𝒫)

⋃︀(𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ (3)

+ ∑
𝑦∈ ˜𝒱2−1∩𝒱U

2
(𝒫)

(⋃︀(𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ + 1)

where the last inequality follows from the union bound. ∎
We now proceed to show that the difference between IoA(𝒫)

and IoA(𝒫∗) established in Lemma (4.3) is at most IoA(𝒫), thereby

Figure 2: Two assignments 𝒫 and 𝒫∗ where type-1 and type-
2 vertices are highlighted in blue and red, respectively. In
this case, ˜𝒱2−1 = {𝑥3, 𝑥4} and ˜𝒱1−2 = {𝑥1, 𝑥2}. We may then
transform 𝒫 into 𝒫∗ by swapping types between the pair
(𝑥1, 𝑥3) and between (𝑥2, 𝑥4). Note that this example is only
to demonstrate how

˜𝒱2−1 and ˜𝒱1−2 are defined, as 𝒫 cannot
be a saturated assignment returned by the algorithm.

establishing IoA(𝒫) ≥ 1

2
⋅ IoA(𝒫∗). Recall that for each vertex

𝑥 ∈ 𝒱 , Γ𝑥(𝒫) is the set of neighbors of 𝑥 whose types are different

from 𝑥 , and are uniquely covered by 𝑥 under 𝒫 . By the definition of

Subcase 2.1, Γ𝑥(𝒫) is not empty for all 𝑥 ∈ 𝒱1(𝒫). We first argue

that for any 𝑦 ∈ 𝒱U
2
(𝒫) and any 𝑥 ∈ 𝒱1(𝒫), we have ⋃︀𝒩 (𝑦) ∩

𝒱U
2
(𝒫)⋃︀ ≤ ⋃︀Γ𝑥(𝒫)⋃︀.

▷ Lemma 4.4 (Subcase 2.1). Given a saturated assignment 𝒫 , for
any 𝑦 ∈ 𝒱U

2
(𝒫) and any 𝑥 ∈ 𝒱1(𝒫), we have

⋃︀𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ ≤ ⋃︀Γ𝑥(𝒫)⋃︀.

Proof. (Sketch) Given that 𝑦 is not integrated under 𝒫 , 𝑥 and 𝑦

cannot be adjacent. Since 𝒫 is a saturated assignment, if the types

of 𝑥 and 𝑦 are to be swapped, the number of newly integrated

vertices would be at most the number of newly non-integrated

vertices. Further, one can verify that the number of vertices that are

newly integrated is at least ⋃︀𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ + 1, and the number

of vertices that are newly non-integrated is at most ⋃︀Γ𝑥(𝒫)⋃︀ + 1.
Since 𝒫 is saturated, it follows that ⋃︀𝒩 (𝑦) ∩ 𝒱U

2
(𝒫)⋃︀ ≤ ⋃︀Γ𝑥(𝒫)⋃︀.

This concludes the proof. ∎

We now establish the next lemma, which bounds the size of

𝒩 (𝑦) ∩ 𝒱U
2
(𝒫) for 𝑦 ∈ 𝒱2(𝒫) ∖ 𝒱U2 (𝒫) and 𝑥 ∈ 𝒱1(𝒫).

▷ Lemma 4.5 (Subcase 2.1). Given a saturated assignment 𝒫 , for
any 𝑦 ∈ 𝒱2(𝒫) ∖ 𝒱U2 (𝒫) and any 𝑥 ∈ 𝒱1(𝒫), we have

⋃︀𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ ≤ ⋃︀Γ𝑥(𝒫)⋃︀ + 1

Proof. (Sketch) We partition 𝒱2(𝒫) ∖ 𝒱U2 (𝒫) into two subsets

ℬ and 𝒞, as follows. Subset ℬ is the set of integrated type-2 vertices
whose neighbors are all integrated under 𝒫 , i.e., ℬ = {𝑦 ∈ 𝒱2(𝒫)∖
𝒱U
2
(𝒫) ∶ 𝒩 (𝑦) ∩ 𝒱U

2
(𝒫) = ∅}. Subset 𝒞, the complement of

ℬ, is the set of integrated type-2 vertices with at least one non-

integrated neighbor under 𝒫 , i.e., 𝒞 = {𝑦 ∈ 𝒱2(𝒫) ∖ 𝒱U2 (𝒫) ∶
𝒩 (𝑦) ∩ 𝒱U

2
(𝒫) ≠ ∅}. The lemma clearly holds if 𝑦 ∈ ℬ. Further,

we show that for the case when 𝑦 ∈ 𝒞, no type-1 neighbors of 𝑦 is

uniquely covered by 𝑦 under 𝒫 (i.e., Γ𝑦(𝒫) = ∅). Further, suppose
𝑦 ∈ 𝒞, consider an objective non-increasing move from 𝒫 where

we swap the types between 𝑥 and 𝑦. If 𝑦 is a neighbor of 𝑥 under
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𝒫 , one can verify that the the maximum loss is ⋃︀Γ𝑥(𝒫)⋃︀ and the

minimum gain is ⋃︀𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀. Thus

⋃︀𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ ≤ ⋃︀Γ𝑥(𝒫)⋃︀. (4)

On the other hand, if 𝑦 is not a neighbor of 𝑥 under 𝒫 , one can
verify that the maximum loss is ⋃︀Γ𝑥(𝒫)⋃︀ + 1 and the minimum gain

is ⋃︀𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀. Thus

⋃︀𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀ ≤ ⋃︀Γ𝑥(𝒫)⋃︀ + 1. (5)

This concludes the proof. ∎

We are now ready to establish IoA(𝒫) ≥ 1

2
⋅ IoA(𝒫∗) under

Subcase 2.1.

▷ Lemma 4.6 (Subcase 2.1). Suppose 𝒱U
2
(𝒫) ≠ ∅ and Γ𝑥(𝒫) ≠

∅,∀𝑥 ∈ 𝒱1(𝒫), we have IoA(𝒫) ≥ 1

2
⋅ IoA(𝒫∗) where 𝒫∗ is an

optimal assignment that gives the maximum objective.

Proof. (Sketch) Note that
˜𝒱2−1 is a subset of 𝒱2(𝒫). Further,

observe that Γ𝑥(𝒫) are pairwise disjoint for different vertices 𝑥 ∈
𝒱1(𝒫). Now, by Lemma (4.3) and (4.5), We have

IoA(𝒫∗) − IoA(𝒫) ≤
⎛
⎜
⎝
∑

𝑦∈ ˜𝒱2−1

⋃︀Γ𝑓 −1(𝑦)(𝒫)⋃︀
⎞
⎟
⎠
+ ⋃︀ ˜𝒱2−1⋃︀

≤ ⋃︀𝒱2(𝒫) ∖ 𝒱U2 (𝒫)⋃︀ + ⋃︀𝒱1(𝒫)⋃︀ (6)

≤ IoA(𝒫)

where Inequality (6) follows from ⋃︀ ˜𝒱2−1⋃︀ = ⋃︀ ˜𝒱1−2⋃︀ ≤ ⋃︀𝒱1(𝒫)⋃︀ and
(∑𝑦∈ ˜𝒱2−1 ⋃︀Γ𝑓 −1(𝑦)(𝒫)⋃︀) ≤ ⋃︀𝒱2(𝒫) ∖ 𝒱

U
2
(𝒫)⋃︀. ∎

We have shown that if 𝒱U
2
(𝒫) ≠ ∅ and Γ𝑥(𝒫) ≠ ∅,∀𝑥 ∈ 𝒱1(𝒫),

the algorithm gives a 1⇑2 approximation. We proceed to the final

subcase.

Subcase 2.2: 𝒱U
2
(𝒫) ≠ ∅, and Γ𝑥(𝒫) = ∅,∃𝑥 ∈ 𝒱1(𝒫), that is,

there exists at least one type-1 vertex 𝑥 ∈ 𝒱1(𝒫) such that for each

type-2 neighbor 𝑦 of 𝑥 , 𝑦 is adjacent to at least one type-1 vertex
other than 𝑥 .

▷ Lemma 4.7 (Subcase 2.2). Under subcase 2.2, for each non-

integrated type-2 vertex 𝑦 ∈ 𝒱U
2
(𝒫), all type-2 neighbors of 𝑦 are

integrated (i.e.,𝒩 (𝑦)∩𝒱U
2
(𝒫) = ∅) under 𝒫 . That is, the vertices in

𝒱U
2
(𝒫) form an independent set of 𝒢.

Proof. (Sketch) Given such a 𝑥 ∈ 𝒱1(𝒫) defined in Subcase

2.2, for contradiction, suppose there exists a non-integrated type-2

vertex𝑦 ∈ 𝒱U
2
(𝒫) such that at least one type-2 neighbor, denoted by

𝑦
′ ∈ 𝒩 (𝑦), of 𝑦 is not integrated under 𝒫 . (Note that all neighbors
of 𝑦 are of type-2 since 𝑦 is not integrated.) Now consider a new

assignment 𝒫 ′ where we switch the types between 𝑥 and 𝑦. One

can verify that IoA(𝒫 ′) ≥ IoA(𝒫) + 1, that is, after the switch, the
index IoA would increase by at least 1. This implies the existence

of an improvement move from 𝒫 , which contradicts 𝒫 being a

saturated assignment. Thus, no such a non-integrated type-2 vertex
𝑦
′
of 𝑦 can exist. ∎

Observe that IoA(𝒫) = (𝑛 − ⋃︀𝒱U
2
(𝒫)⋃︀). With Lemma (4.7) in place,

we now argue that the size of 𝒱U
2
(𝒫) cannot be too large.

▷ Lemma 4.8 (Subcase 2.2). Under Subcase 2.2, ⋃︀𝒱U
2
(𝒫)⋃︀ ≤ 𝑛

2

Proof. (Sketch) Let 𝒴 ∶= {𝑦 ∈ 𝒱2(𝒫) ∖ 𝒱U2 (𝒫) ∶ 𝒩 (𝑦) ∩
𝒱U
2
(𝒫) ≠ ∅} be the set of type-2 integrated vertices which have at

least one non-integrated type-2 neighbor. We first note that Γ𝑦(𝒫)
(if not empty) are mutually disjoint for different 𝑦 ∈ 𝒴 . It follows
that IoA(𝒫) ≥ ⋃︀𝒴 ⋃︀ +∑𝑦∈𝒴 ⋃︀Γ𝑦(𝒫)⋃︀. Suppose we switch the types

between such a vertex 𝑥 and a vertex 𝑦 ∈ 𝒴 , and let 𝒫 ′ denote the
resulting new assignment. One can verify that the maximum loss of

objective after the swap is ⋃︀Γ𝑦(𝒫)⋃︀ + 1, whereas the minimum gain

is ⋃︀𝒩 (𝑦) ∩ 𝒱U
2
(𝒫)⋃︀. Since 𝒫 is a saturated assignment returned

by the algorithm, we must have IoA(𝒫) ≥ IoA(𝒫 ′). Therefore,
⋃︀𝒩 (𝑦) ∩ 𝒱U

2
(𝒫)⋃︀ ≤ ⋃︀Γ𝑦(𝒫)⋃︀ + 1, ∀𝑦 ∈ 𝒴 . Overall, we have that

⋃︀𝒱U
2
(𝒫)⋃︀ = ⋃︀ ⋃

𝑦∈𝒴
𝒩 (𝑦) ∩ 𝒱U

2
(𝒫)⋃︀ (7)

≤ ⋃︀𝒱1(𝒫)⋃︀ + ⋃︀𝒴 ⋃︀ (8)

≤ ⋃︀𝒱1(𝒫)⋃︀ + ⋃︀𝒱2(𝒫) ∖ 𝒱U2 (𝒫)⋃︀ (9)

= 𝑛 − ⋃︀𝒱U
2
(𝒫)⋃︀. (10)

It immediately follows that ⋃︀𝒱U
2
(𝒫)⋃︀ ≤ 𝑛

2
. ∎

Lastly, Since IoA(𝒫) = 𝑛 − ⋃︀𝒱U
2
(𝒫)⋃︀, by Lemma (4.8), we have

IoA(𝒫) = 𝑛 − ⋃︀𝒱U
2
(𝒫)⋃︀ ≥ 1

2
⋅ 𝑛 ≥ 1

2
⋅ IoA(𝒫∗), thereby establishing

a 1⇑2 approximation for Subcase 2.2. Overall, we have shown that

a saturated assignment 𝒫 returned by Algorithm (1) gives a 1⇑2-
approximation for IM-IoA. Thus:

▷ Theorem 4.9. Algorithm (1) gives a
1

2
-approximation for IM-

IoA.

Tightness of Analysis. We present a class of problem instances

where the approximation ratio of the solution produced by Algo-

rithm (1) can be made arbitrarily close to 1⇑2. Therefore, the ratio
1⇑2 in the statement of Theorem (4.9) cannot be improved, so our

analysis is tight. Due to the page limit, the proof appears in the full

version [31].

▷ Proposition 4.10. For every 𝜖 > 0, there exists a problem

instance of IM-IoA for which there is a saturated assignment 𝒫 such

that IoA(𝒫) ≤ ( 1
2
+ 𝜖) ⋅ OPT.

5 SUBGROUPS WITH SIMILAR SIZES
In this section, we study the problem instances where the number

of type-1 agents is a constant fraction of the total number of agents,

that is, 𝑘 = 𝛼 ⋅ 𝑛 for some constant 0 ≤ 𝛼 ≤ 1⇑2. We refer to this

problem as𝛼𝑛-IM-IoA. For example,𝛼 = 1⇑2 represents the bisection
constraint. We first show that 𝛼𝑛-IM-IoA remains computationally

intractable. See the full version [31] for the proof.

▷ Theorem 5.1. The problem 𝛼𝑛-IM-IoA is NP-hard.

5.1 A semidefinite programming approach
We now present an approximation algorithm for 𝛼𝑛-IM-IoA based

on semidefinite programming (SDP) relaxation [15]. The overall

scheme is inspired by the work of Frieze and Jerrum [13] on the

Max-Bisection problem. Given a graph 𝒢 = (𝒱,ℰ), each vertex

𝑖 ∈ 𝒱 has a binary variable 𝑥𝑖 ∈ {−1, 1} such that 𝑥𝑖 = −1 if 𝑖 is of
type-1, and 𝑥𝑖 = 1 if 𝑖 is of type-2. First, a valid quadratic program

(QP) for the problem is as follows (see the full version [31] for
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the proof): maximize∑𝑖∈𝒱 max𝑗∈𝒩 (𝑖) {
1−𝑥𝑖𝑥 𝑗

2
} s.t. ∑𝑖<𝑗 𝑥𝑖𝑥 𝑗 =

(1−2𝛼)2⋅𝑛2−𝑛
2

. It can be verified that the following SDP is a relaxation

of the QP:

SDP ∶ maximize ∑
𝑖∈𝒱

max

𝑗∈𝒩 (𝑖)
{
1 −𝑦𝑖 ⋅𝑦 𝑗

2

}

s.t. ∑
𝑖<𝑗

𝑦𝑖 ⋅𝑦 𝑗 ≤
(1 − 2𝛼)2 ⋅ 𝑛2 − 𝑛

2

𝑦𝑖 ⋅𝑦𝑖 = 1, ∀𝑖 ∈ 𝑉
Main idea of the algorithmand analysis.Our algorithm involves

two steps. We elaborate on these steps and the analysis below.

(1) The SDP solution 𝑦𝑖 , 𝑖 = 1, . . . , 𝑛 is not a feasible integral

solution. So we “round” it to get a partition (𝒱1,𝒱2) using
the hyperplane rounding [15] approach. We show that the ex-

pected number of integrated vertices is Ω(𝑂𝑃𝑇𝑆𝐷𝑃 ), where
𝑂𝑃𝑇𝑆𝐷𝑃 is the value of the SDP solution.

(2) {𝒱1,𝒱2} need not be a (𝛼𝑛, (1 − 𝛼)𝑛)-partition, so we fix

it by moving ⋃︀𝒱1⋃︀ − 𝛼𝑛 vertices from 𝒱1 to the other side.

In particular, we present a strategy that picks a vertex to

remove from 𝒱1 at each step, which minimizes the decrease

in IoA. Overall, to achieve the overall guarantees, we increase
the probability of success by running the rounding and size

adjustment step multiple times, and taking the best solution.

First step: Round the SDP. Let {𝑦1, ...,𝑦𝑛} be an optimal solution

to the SDP; letOPT𝑆𝐷𝑃 be the objective value of the SDP. We round

the SDP solution to a partition {𝒱1,𝒱2} of the vertex set such that

vertices in 𝒱𝑖 are of type-𝑖 , 𝑖 = 1, 2 by applying Goemans and

Williamson’s hyperplane rounding method [15]. In particular, we

draw a random hyperplane thought the origin with a normal vector

𝑟 , and then 𝒱1 = {𝑖 ∶ 𝑦𝑖 ⋅ 𝑟 ≥ 0} and 𝒱2 = {𝑖 ∶ 𝑦𝑖 ⋅ 𝑟 < 0}.
Consider an assignment 𝒫 generated by the above rounding

method (i.e., vertices in𝒱𝑖 are assigned to type-𝑖). Let 𝑓 (𝒱1) ∶ 2𝒱 →
N be the number of integrated vertices under 𝒫 . We establish the

following lemma. The detailed proof appears in the full version [31].

▷ Lemma 5.2. E(︀𝑓 (𝒱1)⌋︀ ≥ 𝛼𝐺𝑊 ⋅OPT𝑆𝐷𝑃 , where𝛼𝐺𝑊 ≥ 0.878567.

Proof. (Sketch) We first establish that Pr(︀𝑖 is integrated⌋︀ ≥
max𝑗∈𝒩 (𝑖){

arccos (𝑦𝑖 ⋅𝑦 𝑗 )
𝜋

} for any vertex 𝑖 . Further, as shown

in [15], arccos (𝑧)⇑𝜋 ≥ 𝛼𝐺𝑊 ⋅ (1 − 𝑧)⇑2 for any real 𝑧 ∈ (︀−1, 1⌋︀.
Thus,

E(︀𝑓 (𝒱1)⌋︀ ≥ ∑
𝑖∈𝒱

max

𝑗∈𝒩 (𝑖)
{
arccos (𝑦𝑖 ⋅𝑦 𝑗)

𝜋
} (11)

≥ 𝛼𝐺𝑊 ⋅∑
𝑖∈𝒱

max

𝑗∈𝒩 (𝑖)
{
1 −𝑦𝑖 ⋅𝑦 𝑗

2

} (12)

≥ 𝛼𝐺𝑊 ⋅OPT𝑆𝐷𝑃 (13)

This concludes the proof. ∎

Second step: Fix the size. In the previous step, we have shown that
given a partition {𝒱1,𝒱2} resulting fromhyperplane rounding, if all

vertices in 𝒱1 are of type-1, and all vertices in 𝒱2 are of type-2, then
the expected number of integrated vertices is at least 𝛼𝐺𝑊 of the

optimal. However, the partition is not necessarily an (𝛼𝑛, (1−𝛼)𝑛)-
partition. Thus, we present an algorithm to move vertices from one

subset to another such that (𝑖) the resulting new partition is an

(𝛼𝑛, (1 − 𝛼)𝑛)-partition, and (𝑖𝑖) the objective does not decrease
“too much” after the moving process.

Algorithm 2: Fix-the-Size. Without loss of generality, suppose

⋃︀𝒱1⋃︀ ≥ 𝛼𝑛. Overall, our algorithm consists of 𝑇 = ⋃︀𝒱1⋃︀ − 𝛼𝑛 iter-

ations, and in each each iteration, we move a vertex 𝑖 ∈ 𝒱1 to

𝒱2. Specifically, let 𝒱(𝑡)
1

be the subset at the 𝑡th iteration, with

𝒱(0)
1
= 𝒱1. To obtain 𝒱(𝑡+1)

1
, we choose 𝑖 ∈ 𝒱(𝑡)

1
to be a vertex that

maximizes 𝑓 (𝒱(𝑡)
1
∖ {𝑖}) − 𝑓 (𝒱(𝑡)

1
), and the move 𝑖 to the other

subset. Lemma 5.3 below establishes the performance of Algorithm

(2); a detailed proof appears in the full version [31].

▷ Lemma 5.3. We have

𝑓 (𝒱(𝑇 )
1

)
⋃︀𝒱(𝑇 )

1
⋃︀ ≥ 𝑓 (𝒱1)

⋃︀𝒱1⋃︀ where 𝒱(𝑇 )
1

, with

𝑇 = ⋃︀𝒱1⋃︀ − 𝛼𝑛, is returned by Algorithm (2).

The final algorithm. We have defined the two steps (i.e., (𝑖)
round the SDP and (𝑖𝑖) fix the sizes of the two subsets) needed to

obtain a feasible solution for the problem. Let 𝜖 ≥ 0 be a small con-

stant, and let 𝐿 = [︂log𝑎( 1𝜖 )⌉︂where 𝑎 = (︀(1+𝛽)−(1−𝜖)2𝛼𝐺𝑊 ⌋︀⇑(1+
𝛽 − 2𝛼𝐺𝑊 ), 𝛽 = 1⇑(4(𝛼 − 𝛼2)). Note that 𝐿 is a constant w.r.t. 𝑛.

The final algorithm consists of 𝐿 iterations, where each iteration

performs the two steps defined above. This gives us 𝐿 feasible so-

lutions. The algorithm then outputs a solution with the highest

objective among the 𝐿 feasible solutions.

▷ Theorem 5.4. The final algorithm gives a factor

𝛼 ((1 − 𝜖) ⋅ 2𝛼𝐺𝑊 − 𝛾−𝛾2

𝛼−𝛼2
)

𝛾
⋅ (1 − 𝜖)

approximation with high probability, where 𝛼𝐺𝑊 ≥ 0.878567, 𝜖 ≥ 0
is an arbitrarily small positive constant, 𝛼 = 𝑘⇑𝑛 is the fraction of

minority agents in the group, and 𝛾 =
⌈︂
𝛼(1 − 𝛼)(1 − 𝜖) ⋅ 2𝛼𝐺𝑊 .

See the full version [31] for detailed proof. For small enough 𝜖 ,

say 𝜖 = 10−3, the approximation ratio is greater than 1⇑2 for 𝛼 in

range (︀0.403, 0.5⌋︀. For example, 𝛼 = 0.45 gives a ratio of 0.5781, and
𝛼 = 0.5 gives a ratio of 0.6492.

6 TREE-WIDTH BOUNDED GRAPHS AND
PLANAR GRAPHS

In this section, we show that IM-IoA can be solved in polynomial

time on treewidth bounded graphs. Using this result, we obtain a

polynomial time approximation scheme (PTAS) for the problem on

planar graphs.

6.1 A dynamic programming algorithm for
treewidth bounded graphs

The concept treewidthwas introduced in the seminal work of Robert-

son and Seymour [32]. Many NP-hard graph problems are known

to be solvable in polynomial time when the underlying graphs

have bounded treewidth. In this section, we present a polynomial-

time dynamic programming algorithm for IM-IoA for the class of
treewidth bounded graphs. We refer readers to the full version [31]

for the definition of a tree decomposition and treewidth.

Dynamic programming setup. Given an instance of IM-IoA
with graph 𝒢 = (𝒱,ℰ) and the number 𝑘 of minority agents, let
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𝒯 = (ℐ,ℱ) be a tree decomposition of 𝒢 with treewidth 𝜎 . For

each 𝒳𝑖 ∈ ℐ , let 𝒴𝑖 be the set of vertices in the bags in the subtree

rooted at 𝒳𝑖 . Let 𝒢(︀𝒴𝑖⌋︀ denote the subgraph of 𝒢 induced on 𝒴𝑖 .
For each bag 𝒳𝑖 , we define an array 𝐻𝑖 to keep track of the optimal

objectives in 𝒢(︀𝒴𝑖⌋︀. In particular, let 𝐻𝑖(𝑆, 𝑆′,𝛾) be the optimal

objective value for 𝒢(︀𝒴𝑖⌋︀ such that (𝑖) vertices in the subset 𝑆 ⊆ 𝒳𝑖
are of type-1 and vertices in 𝒳𝑖 ∖ 𝑆 are of type-2; (𝑖𝑖) vertices in
𝑆
′ ⊆ 𝒳𝑖 are to be treated as integrated; and (𝑖𝑖𝑖) 𝒢(︀𝒴𝑖⌋︀ has a total of

𝛾 type-1 vertices and ⋃︀𝒴𝑖 ⋃︀−𝛾 type-2 vertices. For space reasons, the
update scheme for 𝐻𝑖 for each bag 𝒳𝑖 and the proof of correctness

appear in the full version [31].

▷ Theorem 6.1. IM-IoA can be solved in polynomial time on

treewidth bounded graphs.

6.2 PTAS for planar graphs
Using the proof presented in [1], it is easy to verify that IM-IoA
remains hard on planar graphs. Given a planar graph 𝒢 and for any

fixed 𝜖 > 0, based on the technique introduced in [2], we present

a polynomial time approximation scheme that achieves a (1 − 𝜖)
approximation for IM-IoA.
PTAS Outline. Let 𝑞 = 2 ⋅ [︂1⇑𝜖⌉︂. We start with a plane embedding

of 𝒢, which partitions the set of vertices into ℓ layers for some

integer ℓ ≤ 𝑛. Let 𝒱𝑖 be the set of vertices in the 𝑖th layer, 𝑖 =
1, ..., ℓ . For each 𝑟 = 1, ..., 𝑞, observe that we may partition the vertex

set into 𝑡 + 1 subsets, where 𝑡 = [︂(ℓ − 𝑟)⇑𝑞⌉︂, such that (𝑖) the

first subset𝒲(1,𝑟) consists of the first 𝑟 layers, (𝑖𝑖) the last subset
𝒲(𝑡+1,𝑟) consists of the last ((𝑙 − 𝑟) mod 𝑞) layers, and (𝑖𝑖𝑖) each
𝑖th subset𝒲(𝑖,𝑟) in the middle contains 𝑞 layers in sequential order.

Let𝒲𝑟 = {𝒲(1,𝑟), ...,𝒲(𝑡+1,𝑟)} be such a partition. Let 𝒢(𝑖,𝑟) be
the subgraph induced on𝒲(𝑖,𝑟), 𝑖 = 1., , , 𝑡 +1. It is known that each

𝒢(𝑖,𝑟) is a 𝑞-outerplanar graph with treewidth 𝑂(𝑞) [5], which is

bounded. Let 𝒢𝑟 = ⋃𝑖 𝒢(𝑖,𝑟). By Theorem (6.1), we can solve the

problem optimally on each 𝒢𝑟 , 𝑟 = 1, ..., 𝑞, in polynomial time. The

algorithm then returns the solution with the largest objective over

all 𝑟 = 1, ..., 𝑞. Using the fact that 𝑞 is fixed, one can verify that the

running time of the overall scheme is polynomial in 𝑛.

▷ Theorem 6.2. The PTAS algorithm gives a factor (1 − 𝜖) ap-
proximation on planar graphs for any fixed 𝜖 > 0.

Proof. (Sketch) Let 𝑞 = 2 ⋅ [︂1⇑𝜖⌉︂. We show that the algorithm

gives a 1 − 2⇑𝑞 ≥ 1 − 𝜖 approximation. Let 𝒫∗ be an assignment of

agents on 𝒢 that gives the maximum number of integrated agents.

Fix an integer 𝑟 ∈ (︀1 .. 𝑞⌋︀, and let𝒲𝑟 = {𝒲(1,𝑟), ...,𝒲(𝑡+1,𝑟)} be

a partition of the vertex set as described above. Let 𝒫𝑟 be an as-

signment on 𝒢𝑟 that is obtained from the proposed algorithm. We

now look at the assignments 𝒫𝑟 and 𝒫∗, restricted to vertices in

𝒲𝑟 . Specifically, let 𝒫(𝑖,𝑟) and 𝒫∗(𝑖,𝑟) be the assignment of agents

restricted to the subset𝑊(𝑖,𝑟) under 𝒫𝑟 and 𝒫∗, respectively. Fur-
ther, let IoA(𝒫(𝑖,𝑟)) be the number of integrated agents in 𝒢(𝑖,𝑟)
under 𝒫𝑟 , and IoA(𝒫∗(𝑖,𝑟)) be the number of integrated agents in

𝒢(𝑖,𝑟) under 𝒫∗.
Define Δ𝑟 = IoA(𝒫∗) −∑𝑡+1

𝑖=1 IoA(𝒫∗(𝑖,𝑟)). Integrated vertices

that are left uncounted can only exist on the two adjacent layers

between each pair of subgraphs 𝒢(𝑖,𝑟) and 𝒢(𝑖+1,𝑟), 𝑖 = 1, ...𝑡 . Let

𝒱∗ be the set of integrated vertices under 𝒫∗. We then have, Δ𝑟 ≤
∑𝑡

𝑗=0 (𝒱∗ ∩ 𝒱𝑗 ⋅𝑞+𝑟 ) + (𝒱∗ ∩ 𝒱𝑗 ⋅𝑞+𝑟+1). It follows that
min𝑟=1,...,𝑞{Δ𝑟} ≤ 2

𝑞
⋅IoA(𝒫∗). One can then verify that IoA(𝒫𝑟∗) ≥

(1− 2

𝑞
) ⋅ IoA(𝒫∗) where 𝑟∗ = argmin𝑟=1,...,𝑞{Δ𝑟}. Lastly, let ˆ𝒫 be

an assignment returned by the algorithm,
ˆ𝒫 = argmax𝑟 IoA(𝒫𝑟 ).

It follows that IoA( ˆ𝒫) ≥ (1 − 2

𝑞
) ⋅ IoA(𝒫∗). ∎

7 EXPERIMENTAL EVALUATION
We evaluate the empirical performance of the proposed local im-

provement algorithm for IM-IoA under several scenarios. Our re-
sults demonstrate the high effectiveness of the algorithm on both

synthetic and real-world networks.

7.1 Experimental setup
Networks.We select networks based on their sizes and applica-

tion domains, as shown in Table 1. Specifically, Gnp and Power-law
are synthetic networks generated using the Erdős-Rènyi [11] and

Barabási-Albert [3] models, respectively. City is a synthetic net-

work of a residential area in Charlottesville, obtained from the

Biocomplexity Institute at the University of Virginia. In this net-

work, vertices are houses, and any pair of houses within 100 yards

are considered as neighbors. Arena and Google+ are mined social

networks obtained from a public repository [21].

Network Type 𝑛 𝑚 Max deg

Gnp Random 1, 000 4, 975 36

Power-law Random 1, 000 5, 015 355

City Residential 7, 444 238, 802 165

Arena Social 10, 680 24, 316 205

Google+ Social 23, 613 39, 182 2, 761

Table 1: List of networks

Algorithms.We evaluate the performance of Local-Improvement
algorithm using the following baselines: (1) Greedy: Initially, all
vertices are occupied by type-2 agents; then iteratively 𝑘 of these

are replaced by type-1 agents in a greedy manner. Specifically, in

each iteration, a replacement that causes the largest increase in

the objective value is chosen. (2) Random: a random subset of 𝑘

vertices are chosen for type-1 agents, and the remaining vertices

are assigned to type-2 agents.

Evaluation metrics. We use two metrics to quantify the per-

formance: (𝑖) the integration ratio ` = 𝑜𝑏 𝑗⇑𝑛 (i.e., the fraction of

integrated agents) and (𝑖𝑖) the empirical approximation ratio 𝛾 =
𝑜𝑏 𝑗⇑𝑂𝑃𝑇 where 𝑂𝑃𝑇 is the optimal value. The value 𝑂𝑃𝑇 is com-

puted by solving an integer linear program (ILP) using Gurobi [29].
Reproducibility. The source code and selected datasets are at

https://github.com/bridgelessqiu/Integration_Max.

7.2 Experimental results
We present an overview of the results under the following experi-

mental scenarios.

Empirical ratio across networks.We first study the empirical

approximation ratio 𝛾 of the algorithms on different networks. For

the three large networks, namely City, Arena and Google+, the
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ILP solver didn’t terminate even though it was run for 24 hours.

Therefore, we restricted our focus to smaller subgraphs of these

networks. For each subgraph, we fixed the number 𝑘 of minority

agents to be 10% of 𝑛, where 𝑛 is the number of vertices in the

network. The empirical ratio for each algorithm is then averaged

over 100 repetitions.

Gnp Power-law City* Arena* Google+*

Network
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Figure 3: The empirical approximation ratio 𝛾 for algorithms.
The number of vertices and edges (𝑛,𝑚) for each subgraph are
as follows. City*: (1607, 50112), Arena*: (1981, 9132), Google+*:
(2000, 5042).

Representative results for the empirical ratio are shown in Fig. 3.

Overall, we observe that the performance of Local-Improvement
and Greedy are close to the optimal value, with Local-Improvement
outperforming Greedy by a small margin. Specifically, the empir-

ical ratio of Local-Improvement is greater than 0.85 on all tested

instances. As one would expect, the empirical ratio of Random is

much lower than its counterparts. Overall, we note that the empiri-

cal ratio of Local-Improvement is much higher than its theoretical

guarantee of 1⇑2. Recall from Section 4 that there are instances

where Local-Improvement produces solutions that are of 1⇑2 of the
optimal value. Our experimental findings indicate such worst-case

instances did not occur in these experiments. We also note that

empirically Greedy is comparable to Local Improvement. However,
no known performance guarantee for Greedy has been established.

In contrast, as shown in Section 4, Local Improvement provides a
guarantee of 1⇑2.
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(a) Gnp network
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Figure 4: The change of the fraction of integrated agents as
the fraction of minority agents increases. The networks are
Gnp and City shown in Table (1).

Variations on the number of minority agents. Next, we
study the integration ratio ` (i.e., the fraction of integrated agents)

obtained by the algorithms under the scenario where the fraction of

minority agents (𝑘) increases from 0.01 to 0.25. The representative

results for Gnp and City networks are shown in Fig. 4. Overall,

we observe that as the fraction of minority agents increases, the

integration ratio ` grows monotonically for all algorithms. Similar

results are observed for all the chosen networks. Despite the mono-

tonicity observed in the experiments, we remark that the objective

value that an algorithm can obtain is general non-monotone as 𝑘

increases. (A simple example is a star where the objective is maxi-

mized for 𝑘 = 1 when the type-1 agent is placed at the center. It is

easy to verify that as 𝑘 increases, the optimal objective decreases.)

Change of objective as local improvement proceeds. Lastly,
we study the increase in the objective value as the number of swaps

used in Local-Improvement is increased. Results are shown in Fig. 5

for gnp networks with 1000 nodes and average degrees varying

from 10 to 30. Overall, we observe a linear relationship between

the objective value and the number of swaps.
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Figure 5: The change in the number of integrated agents as
Local-Improvement proceeds. The underlying gnp networks
have 1, 000 vertices; the average degree varies from 10 to 30.

8 CONCLUSIONS
We considered an optimization problem that arises in the context

of assigning agents to the nodes of a network to maximize the inte-

gration level. Since the general problem is NP-hard, we presented
approximation algorithms with provable performance guarantees

for several versions of the problem. Our work suggests several di-

rections for further research. First, it is of interest to investigate

approximation algorithms with better performance guarantees for

the general problem. One possible approach is to consider local

improvement algorithms that, instead of swapping just one pair of

vertices to increase the number of integrated vertices, swap up to

𝑗 pairs, for some fixed 𝑗 ≥ 2 in each iteration. One can also study

the problem under network-based extensions of other integration

indices proposed in the social science literature [25]. Another direc-

tion is the scenario where the total number of agents is less than

the number of vertices (so that some vertices remain unoccupied

by agents). In addition, one can also study the variant where there

are agents of three or more types, and the notion of integration

is defined by requiring the neighborhood of an agent to include

a certain number of agents of the other types. Overall, this topic

offers a variety of interesting new problems for future research.
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