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ABSTRACT
Binary Networked public goods (BNPG) game consists of a network

𝐺 = (𝑉 , 𝐸) with n players residing as nodes in a network and mak-

ing a YES/NO decision to invest a public project. Examples of such

public projects include face mask wearing during a pandemic, crime

reporting and vaccination, etc. Most of the conventional modes of

BNPG games solely posit egoism as the motivation of players: they

only care about their own benefits. However, a series of real-world

examples show that people have a wide range of prosocial behav-

iors in making decisions. To address this property, we introduce

a novel extension of BNPG games to account for three kinds of

prosocial motivations: altruism, collectivism, and egalitarianism.

We revise utility functions to reflect different prosocial motivations

with respect to the welfare of others, mediated by a prosocial graph.

We develop computational complexity results to decide the exis-

tence of pure strategy Nash equilibrium in these models, for cases

where the prosocial graph is a tree, a clique or a general network.

We further discuss the Prosocial Network Modification (PNM) prob-

lem, in which a principal can change the network structure within a

budget constraint, to induce a given strategy profile with respect to

an equilibrium. For all three types of PNM problems, we completely

characterize their corresponding computational complexity results.
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1 INTRODUCTION
Public goods are non-excludable and non-rivalrous goods that ben-

efit all community members. Each individual can decide whether

or not to invest in a public good; several others will benefit from

the investment. Public goods broadly exist in various social sce-

narios, including vaccination, open-source software, and a clean

community environment. However, these public goods are often

under-invested from a societal standpoint: vaccination rate remains

low, source codes are rarely shared, and many public areas are

badly polluted. In these circumstances, self-interested individuals

cannot be motivated by the benefits they bring to others. One of

the fundamental reasons for such failure is that though individuals

are connected in the sense that one’s investment benefits others,

they are not “socially connected”, in the sense that one doesn’t

experience the gain or loss she causes to others. In economic terms,

individual decisions cause externality, which is not internalized.

Public goods’ investment in a community varies significantly

because of social factors, including social bonds, norms, and val-

ues [16, 28]. The greater sense of belonging people have to the

community, the more likely they are to invest in their relationships.

Similarly, more efforts will be spent on public affairs if individuals

are more willing to share, cooperate, and take responsibility. Such

intents to benefit others in socially accepted ways are encompassed

by the concept of prosociality. In social networks, prosociality in-

volves various types of beliefs and behaviors, including altruism,

collectivism, egalitarianism, and so on [3, 49]. Different types of

prosociality may internalize individual externality in different ways.

Promoting prosociality in social networks is thus an important ap-

proach to encouraging individual investment in public welfare. For

example, advertisements on vaccination and mask-wearing aim to

enhance people’s sense of responsibility, and reports on disadvan-

taged groups may raise people’s concern for charity and fairness.

The utilization of prosociality in social networks raises a series

of questions. First, what are the possible types of agent prosociality,

and their respective types of influence on individual actions? Fur-

ther, can prosociality be utilized to promote investment on public

good? The algorithmic feasibility of designing or modifying proso-

ciality to induce certain outcomes in a social network requires

in-depth discussion. These are the general social network problems

we are concerned about in this paper.
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Prosociality and its design can be a meaningful question in many

strategic settings. We focus on networked public good games with

binary decisions, namely binary networked public good (BNPG)

games. Each player decides to invest in public goods or not, and

receives the reward from the public goods invested by herself and

her neighbors. Public good games well models the scenarios in

which some kinds of public goods, such as herd immunity from

vaccination, may not contribute to all people in society, but only

benefits one’s neighbors. A player’s utility is a non-decreasing

function of the public goods, minus the cost of her own investment.

The binary variation further captures the social situations where

all players have to make binary decisions about whether or not to

invest in a public good, such as wearing a mask or not.

In this paper, we characterize three types of prosociality: altru-

ism, collectivism, and egalitarianism, which are different ways to

internalize a player’s externality, i.e., reforming the player’s util-

ity function by introducing neighborhood-related items. Under

different prosocial types, we provide algorithmic results for both

problems of computing an equilibrium and modifying prosociality

to induce a certain equilibrium. First, computing a pure strategy

Nash equilibrium (PSNE) in any game is a fundamental question,

as it helps social principles predict how players will act. Although

it is known that deciding the existence of PSNE in a BNPG game

(with altruism) is NP-Complete[47], we study the existence of PSNE

problem in BNPG games with other types of prosociality. We also

consider the problem on networks with special structures, includ-

ing trees and cliques, which are of both theoretical and practical

interest. Corresponding PSNE computational complexity results

are shown in Table 1.

Table 1: PSNE results (our results are in bold).

general tree clique

Egalitarianism NPC P P
Altruism NPC [48] P [35] P [35]

Collectivism PLS P [35] P [35]

Next, we study Prosociality Network Modification (PNM) prob-

lem in the BNPG game, where edges of the prosocial network can

be added or deleted subject to a cost of budget. The aim of the

modification is to induce a target strategy profile, in which all play-

ers invest or social welfare is maximal, to be a PSNE. We consider

both setting where prosocial network has undirected edges (corresp.

symmetric prosociality) and directed edges (corresp. asymmetric

prosociality). Corresponding results of PNM problem are shown

in Table 2. Our study on this problem theoretically supports pol-

icymakers to strategically design social campaigns to encourage

people to invest in public good. Our discussions on PNM cover

both symmetric and asymmetric prosociality, and different network

structures, including tree, clique, and general networks.

Table 2: PNM results (our results are in bold).

Symmetric Asymmetric

ALL OPT ALL OPT

Egalitarianism

General NP-hard NP-hard P P
Tree P P P P
Clique NP-hard NP-hard P P

Altruism

General NPC [47] NP-hard NPC [47] NP-hard
Tree NPC [35] NP-hard NPC [35] NP-hard
Clique NPC [47] NP-hard NPC [47] NP-hard

Collectivism General P P P P

2 RELATEDWORK
2.1 Prosocial Behaviors in Social Networks
In general, motivations for individual prosocial behaviors are di-

verse, although none of them can be identified as a dominant factor

[4]. For its influence on people’s decisions in public good games,

Kagel et al. [28] presented a framework of analysis by experiments.

It further discussed different ways of modeling social factors and

motivations. In addition, several pieces of literature modeled and

discussed the process of individual trade-offs between social re-

sponsibility and personal utility in various ways [10, 23, 24].

One classical type of prosociality is altruism. Kagel et al. [28],

Levine [33] used experimental methods to analyze the effect of

altruism on public good games and discussed possible models to

capture altruism in public good games. Fehr and Fischbacher [16]

described how altruism influences the interaction between individ-

uals in repeated games by experiments. Meier et al. [38] discussed

the efficiency of equilibrium with respect to altruism by analyzing

measure metrics like the price of anarchy. It was observed that

people make different decisions in public goods games because of

factors beyond self-regarding preference like incentive schemes

and others-regarding preference [15, 17].

Collectivism is a special type of prosociality, the ultimate goal

of which is to benefit a particular group as a whole. Dawes et al.

[13] put it succinctly: “Not me or thee but we”. Many studies have

explored the differences and connections between collectivism and

individualism. Dawes et al. [14] gave direct evidence from experi-

ments to prove that collectivism is independent of individualism,

illustrating the rich research value of collectivism. Brewer and

Chen [9] pointed out that individualists are no less collectivistic

than collectivists. Therefore, the concept of collectivism is cultur-

ally universal despite cultural differences among societies. Hui and

Triandis [25] also provided a review of the main findings concern-

ing the relationship between personality and cultural syndromes

of individualism and collectivism.

Egalitarianism, built from the concept of social fairness, is char-

acterized by the idea that people are equal in fundamental val-

ues. In social sciences, a broad range of studies with experiments

[22, 26, 41, 49] identified egalitarianism as an important factor in

social networks. Individuals with egalitarianism are those who pro-

mote the standards of fairness in their communities. In fairness

standards, our work is related to the economic discussions on the

definition of fair social states, including [20, 29]. Max-min fairness,

which we adopt in our model, relates the concept of fairness with an

optimal state where one cannot achieve utility gain without harm-

ing someone else whose utility is lower. This concept is widely used

for studying computational issues in fairness problems [6, 39, 42].

2.2 Networked Public Good Games
Bramoullé and Kranton [7] started the study on public good games

over networks. They focused on the traditional continuous invest-

ment model and assumed homogeneous concave utilities. An im-

portant variation of networked public good game treats player

decisions as binary [19]. Based on the binary networked public

goods (BNPG) game model, Yu et al. [48] initiated the algorithmic
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question of deciding the existence of pure-strategy Nash equilib-

rium (PSNE): Checking the existence of PSNE in the BNPG game is

NP-hard in both homogeneous and heterogeneous settings. Maiti

and Dey [36] discussed parameterized complexity of computing

PSNE in BNPG games. A series of tractability results are provided

when the network possesses certain properties, such as a tree or a

clique. Public good games were also studied for directed networks

[34, 40]. Our complexity results on BNPG games are also related

to the literature of graphical games [30]. Networked public good

games can be considered special graphical games where individual

utility is a function of its neighbors’ efforts. Closely related variants

of graphical games were also broadly discussed in [12, 32, 37].

Another related line of research is social network modification.

Some works studied how to modify social networks to influence

people’s opinions and achieve desired outcomes [2, 8, 11, 21, 44].

Several authors studied the effects of network modification on

equilibrium outcomes [18, 45] or other optimization problems [43,

46]. Moreover, some works also applied network modification to

BNPG games. Kempe et al. [31] initiated an algorithmic study of

targeted network modifications of BNPG games. Unlike our work,

it discussed modifying the relation graph rather than the prosocial

graph. Another related work [47] considered the Altruism Network

Modification (ANM) problem which discussed the possibility of

adding an altruism graph to the original graph. Maiti and Dey [35]

further considered parameter complexity of the ANM problem.

3 MODEL FORMULATION
This section formally introduces the definition of the BNPG games,

an important variant of public goods games; and three types of

BNPG games from the perspective of prosociality: altruism, col-

lectivism, and egalitarianism. Additionally, the prosocial network

modification (PNM) problem is introduced.

3.1 Binary Networked Public Goods Games
Networked public goods game is a game containing 𝑛 players, de-

fined on an undirected relation graph 𝐺 = (𝑉 , 𝐸), where 𝑉 =

{1, · · · , 𝑛} is the vertex set, representing the set of players. We

mainly focus on the BNPG games, in which each player only has

two strategies, that is, to invest in public goods or not. These two

strategies are denoted by 1 or 0, respectively. Therefore, given a

joint pure strategy profile x = (𝑥𝑖 )𝑖∈𝑉 ∈ {0, 1} |𝑉 | , we use 𝑛𝑖 to

denote the number of the investing neighbors of player 𝑖 in relation

graph 𝐺 , i.e., 𝑛
(x)
𝑖

= |{ 𝑗 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐸 |. Once all players make deci-

sions to invest or not, each one obtains egocentric utility, denoted

by 𝑔𝑖 (𝑥𝑖 +𝑛 (x)𝑖
), from the investments of herself and her neighbors,

and suffers a cost 𝑐𝑖 . The utility of the player is expressed as

𝑈𝑖 (x) = 𝑔𝑖 (𝑥𝑖 + 𝑛 (x)𝑖
) − 𝑐𝑖 · 𝑥𝑖 , (1)

where 𝑔𝑖 : 𝑁 → 𝑅+ ∪ {0} is a non-decreasing function, and 𝑐𝑖 ∈
𝑅+∪{0} is the cost of investing for player 𝑖 . We also denoteΔ𝑔𝑖 (𝑥) =
𝑔𝑖 (𝑥 +1) −𝑔(𝑥). In this paper, we are more interested in the solution

of pure strategy Nash equilibrium (PSNE).

Definition 1. (Pure Strategy Nash Equilibrium (PSNE)) A pure
strategy profile x = (𝑥1, ..., 𝑥𝑛) of BNPG game is a PSNE, if no player
can deviate to achieve a higher utility, that is,

𝑈𝑖 (𝑥𝑖 , x−𝑖 ) ≥ 𝑈𝑖 (1 − 𝑥𝑖 , x−𝑖 ),
where x−𝑖 = (𝑥 𝑗 ) 𝑗∈𝑉 \{𝑖 } .

From the perspective of the whole network, maximizing the

social welfare is important as well. Generally, the social welfare is

defined as the difference between the sum of all players’ egocentric

utilities and all investment costs, that is,

𝑆𝑊 (x) =
∑︁
𝑖∈𝑉

𝑔𝑖 (𝑥𝑖 + 𝑛 (x)𝑖
) −

∑︁
𝑖∈𝑉

𝑐𝑖 · 𝑥𝑖 . (2)

Clearly, the optimal strategy profile to maximize the social welfare

depends on the relation graph 𝐺 .

3.2 Prosocial Motivation in BNPG Games
In a prosocial setting, players consider their as well as part of their

neighbors’ benefits to make a decision. A natural way to model the

prosociality of participants is to let a player’s utility not only come

from her own egocentric utility 𝑔𝑖 , but also from the egocentric util-

ities of her neighbors. To formalize the definition of neighborhood

in a BNPG game with prosociality, a prosocial graph 𝐻 = (𝑉 , 𝐸′)
is additionally given, which may be undirected or directed, with

its underlying graph contained in 𝐺 . Specifically, if the prosocial

graph 𝐻 is undirected, then such a game is called to be symmetric;
otherwise, such a game is asymmetric. Referring to the notations in
[35], an undirected edge between 𝑖 and 𝑗 is denoted by {𝑖, 𝑗}, and
a directed edge from 𝑖 to 𝑗 is represented by (𝑖, 𝑗). Different from
the classical BNPG games, in which each player can only benefit

the goods from herself and her neighbors in 𝐺 , all players’ utili-

ties are formed by the egocentric utility from themselves and their

neighbors restricted in the prosocial network 𝐻 of BNPG games

with prosociality. Thus, we define the restricted neighborhood of

player 𝑖 as 𝑁𝑖 = { 𝑗 ∈ 𝑉 |{𝑖, 𝑗} ∈ 𝐸′}, if 𝐻 is undirected; otherwise,

𝑁𝑖 = { 𝑗 ∈ 𝑉 | ( 𝑗, 𝑖) ∈ 𝐸′}, i.e., the out-neighbors of 𝑖 .
This work focus on three types of prosociality: altruism, collec-

tivism and egalitarianism, which are detailedly introduced in the

following by distinguishing the utility function of players.

Definition 2. (Altruistic type)[47] Under the altruistic type,
player 𝑖’s utility function, after the deduction of investment cost, is the
linear combination of her and all her neighbors’ egocentric utilities,

𝑈
(𝐴)
𝑖
(x) = 𝑔𝑖 (𝑥𝑖 + 𝑛 (x)𝑖

) + 𝑎
∑︁
𝑗∈𝑁𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 (x)𝑗
) − 𝑐𝑖 · 𝑥𝑖 , (3)

where 𝑎 ∈ (0, 1) is a constant.
Definition 3. (Collectivistic type) For the collectivistic type,

each players are concerned about all her neighbors, and thus the
prosocial network is assumed to be the relation network, i.e., 𝐻 = 𝐺 .
Player 𝑖’s utility function, after the subtracting investment cost, is the
sum of her and all her neighbors’ egocentric utilities,

𝑈
(𝐶 )
𝑖
(x) = 𝑔𝑖 (𝑥𝑖 + 𝑛 (x)𝑖

) +
∑︁
𝑗∈𝑁𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 (x)𝑗
) − 𝑐𝑖 · 𝑥𝑖 . (4)

By Definition 2 and 3, it is not hard to see that the collectivism

type is a special case of the altruism type, making it has better

results on the equilibrium computation issues.

Definition 4. (Egalitarian type) For the egalitarian type, each
player is concerned with her neighbor, who has minimal egocentric
utility. Thus each player 𝑖’s utility function, after the deduction of
investment cost, is the linear combination of her and her neighbor’s
with the minimal egocentric utility,

𝑈
(𝐹 )
𝑖
(x) = 𝑔𝑖 (𝑥𝑖 + 𝑛 (x)𝑖

) + 𝑎 min

𝑗∈𝑁𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 (x)𝑗
) − 𝑐𝑖 · 𝑥𝑖 , (5)

where 𝑎 ∈ (0, 1) is a constant.
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Figure 1: Example (3,B2)-SAT Graph in Theorem 1.

By this definition we assume egalitarian players are promoters of

max-min fairness standards in their respective neighbourhoods. We

emphasize that, although both egocentric and prosociality terms

are included in individuals’ utility functions, the social welfare is

still defined as the sum of egocentric utilities of the players subtract

the total investment.

3.3 Prosocial Network Modification
In public goods games, a major challenge is that the equilibrium

may be far from desirable, because of players’ “free-riding” [1]

behaviors. Therefore, one of the reasonable methods is to induce a

target strategy profile x∗, for example a profile in which all players

invest or a profile maximizing the social welfare, to a PSNE. Thus

a principal can take a series of operations, such as community

meetings, introductions and advertising. Under these operations,

the participants are enforced to think more about others when they

are making decisions, and thus the target profile x∗ becomes a

PSNE. We formally model this problem as the Prosocial Network

Modification (PNM) problem, and an instance of PNM problem is

defined as

(𝐺 = (𝑉 , 𝐸), 𝐻 = (𝑉 , 𝐸′), (𝑔𝑖 )𝑖∈𝑉 , (𝑐𝑖 )𝑖∈𝑉 , 𝑎,𝐶, 𝐵, x∗) .
In a PNM problem, a principal can modify the prosocial network 𝐻

by adding or deleting edges, such that a target strategy profile is

induced to be a desirable equilibrium. Specifically, if the prosocial

network 𝐻 is undirected, then the corresponding problem is named

a symmetric PNM problem; otherwise, we call this problem an

asymmetric PNM problem. Each edge 𝑒 ∈ 𝐸 has an associated cost

𝐶 (𝑒). If edge 𝑒 ∈ 𝐸′, then 𝐶 (𝑒) represents the cost to remove edge

𝑒 from 𝐻 ; otherwise, 𝐶 (𝑒) is the cost for adding edge 𝑒 into 𝐻 . The

total cost of modification should not exceed a given budget 𝐵.

4 HARDNESS RESULTS FOR COMPUTING
PSNE

The computation complexity issue for computing PSNE has been

discussed for the classical BNPG games, introduced in Sec 2.1, by

[48]. The authors proved that the problem of checking the existence

of PSNE in BNPG games is NP-complete. For the BNPG games with

asymmetric altruism, [35] showed that checking the existence of

PSNE is polynomial time solvable if the input relation graph 𝐺 is

a tree or a clique. However, the hardness results for computing

equilibrium in other types of BNPG games have not been explored

yet. Thus the main task of this section is to characterize the com-

putation complexity of deciding the existence of PSNE in BNPG

games with egalitarianism and collectivism.

4.1 Computational complexity results for BNPG
games with egalitarianism

For the BNPG games with egalitarianism, we prove that the problem

of checking the existence of PSNE is NP-complete for any 𝑎 ∈ (0, 1),
even when the prosocial graph 𝐻 is the same as the relation graph

𝐺 . This hardness result is obtained by reducing the problem from

the NP-complete problem (3,B2)-SAT to existence of PSNE [5]. The

(3,B2)-SAT is a restricted 3-SAT problem, in which each clause

contains exactly three literals, and each variable occurs exactly

twice positively and twice negatively in the instance.

Theorem 1. For any 𝑎 ∈ (0, 1), deciding whether a PSNE exists in
BNPG games with egalitarianism is NP-complete, even if the prosocial
graph is equal to the relation graph, that is, 𝐻 = 𝐺 .

Proof. We reduce the PSNE finding problem from the (3,B2)-

SAT problem. Let (L = {𝑙𝑖 : 𝑖 ∈ [𝑛]}, C = {𝐶 𝑗 : 𝑗 ∈ [𝑚]} be an
arbitrary instance of (3,B2)-SAT problem, in which 𝑙𝑖 represents a

literal and𝐶 𝑗 is used to denote a clause. For convenience, a function

𝑓 : {𝑙𝑖 , ¯𝑙𝑖 : 𝑖 ∈ [𝑛]} → {𝑢𝑖 , 𝑢𝑖 : 𝑖 ∈ [𝑛]} is defined, such that

𝑓 (𝑙𝑖 ) = 𝑢𝑖 𝑎𝑛𝑑 𝑓 (¯𝑙𝑖 ) = 𝑢𝑖 for each 𝑖 ∈ [𝑛]. Then we construct an

instance of BNPG game with prosocial graph (𝐺 = (𝑉 , 𝐸), 𝐻 =

(𝑉 , 𝐸′), (𝑔𝑖 )𝑖∈𝑉 , (𝑐𝑖 )𝑖∈𝑉 , ) as follows:
𝑉 = {𝑢𝑖 ,𝑢𝑖 : 𝑖 ∈ [𝑛] } ∪ {𝑣𝑖 , 𝑣𝑖 : 𝑖 ∈ [𝑛] }
∪ {𝑦 𝑗 : 𝑗 ∈ [𝑚] } ∪ {𝑜 𝑗 : 𝑗 ∈ [𝑚] } ∪ {𝑧 𝑗 : 𝑗 ∈ [𝑚] } ∪ {𝐼1, 𝐼2};
𝐸′ = 𝐸 = {{𝑢𝑖 ,𝑢𝑖 }, {𝑢𝑖 , 𝑣𝑖 }, {𝑢𝑖 , 𝑣𝑖 } : 𝑖 ∈ [𝑛] }

∪ {{𝑦 𝑗 , 𝑓 (𝑙 𝑗
1
) }, {𝑦 𝑗 , 𝑓 (𝑙 𝑗

2
) }, {𝑦 𝑗 , 𝑓 (𝑙 𝑗

3
) } : 𝐶 𝑗 = (𝑙 𝑗

1
∨ 𝑙 𝑗

2
∨ 𝑙 𝑗

3
), 𝑗 ∈ [𝑚] }

∪ {{𝑦 𝑗1 , 𝑜 𝑗2 } : ∀ 𝑗1 ∈ [𝑚] 𝑎𝑛𝑑 𝑗2 ∈ [𝑚] } ∪ {{𝑜 𝑗 , 𝑧 𝑗 } : 𝑗 ∈ [𝑚] }
∪ {{𝐼1, 𝑦 𝑗 }, {𝐼2, 𝑧 𝑗 } : 𝑗 ∈ [𝑚] } ∪ {{𝐼1, 𝐼2}} .

Now let us define the utility function for the constructed BNPG

game. The node 𝑣𝑖 , 𝑣𝑖 , 𝑢𝑖 , 𝑢𝑖 correspond to the literals 𝑙𝑖 . The ego-

centric utility functions of 𝑣𝑖 and 𝑣𝑖 are defined as follow:

𝑔𝑣𝑖 (𝑘) = 𝑔𝑣𝑖 (𝑘) =
{
1000 𝑖 𝑓 𝑘 ≤ 1

1000𝑘 + 1000 𝑖 𝑓 𝑘 > 1

The costs are 𝑐𝑣𝑖 = 𝑐𝑣𝑖 = 500. Thus, it is not hard to deduce that 𝑣𝑖
and 𝑢𝑖 (𝑣𝑖 and 𝑢𝑖 ) always adopt the same strategy in an equilibrium.

Because the degree of each 𝑢𝑖 or 𝑢𝑖 is 4 in the constructed BNPG

game, the egocentric utility functions of all 𝑢𝑖 ancd 𝑢𝑖 are defined

as 𝑔𝑢𝑖 (𝑘) = 𝑔𝑢𝑖 (𝑘) = 0 (𝑖 𝑓 𝑘 ≤ 2), 𝑔𝑢𝑖 (3) = 𝑔𝑢𝑖 (3) = 3, 𝑔𝑢𝑖 (4) =
𝑔𝑢𝑖 (4) = 5 and 𝑔𝑢𝑖 (5) = 𝑔𝑢𝑖 (5) = 6. The investment costs are

𝑐𝑢𝑖 = 𝑐𝑢𝑖 = 2 + 2𝑎. The motivation of this construction is to force

𝑥𝑢𝑖 + 𝑥𝑢𝑖 = 1 in any equilibrium. We will prove it later.

Next we move on to constructing the utility function of nodes

𝑦 𝑗 , 𝑜 𝑗 , 𝑧 𝑗 for 𝑗 ∈ [𝑚], which corresponds to the clause 𝐶 𝑗 . We first

define 𝑔𝑦 𝑗
(𝑘) = 1000𝑘 + 1000𝑚 and 𝑐𝑦 𝑗

= 1000 + 2𝑎, so that a node

𝑦 𝑗 plays the strategy of 1 in an equilibrium only when one of her

neighbors 𝑢𝑖 plays strategy of 0. For each node 𝑜 𝑗 , we define:

𝑔𝑜 𝑗
(𝑘) =

{
10 𝑖 𝑓 𝑘 ≤ 𝑛 − 𝑗

2(𝑘 − 𝑛 + 𝑗 + 1) + 10 𝑖 𝑓 𝑘 > 𝑛 − 𝑗

and the investment cost 𝑐𝑜 𝑗
= 0. Under such a construction, 𝑜 𝑗

always invests, i.e., 𝑥𝑜 𝑗
= 1, in an equilibrium. For node 𝑧 𝑗 , let us

set 𝑔𝑧 𝑗 (𝑘) = 1000𝑚 and 𝑐𝑧 𝑗 = 𝑎. Under this setting, only when the

Session 2C: Fair Allocations + Public Goods Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

612



investment of 𝑜′
𝑗
𝑠 neighbors is large than 𝑗 − 1, node 𝑧 𝑗 plays the

strategy of 1 in equilibrium.

Finally, for both 𝐼1 and 𝐼2, we set

𝑔𝐼1 (𝑘) = 𝑔𝐼2 (𝑘) =
{
55𝑘 + 20 + 20𝑚 𝑖𝑓 𝑚 − 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛

55𝑘 + 65 + 20𝑚 𝑖𝑓 𝑚 − 𝑘 𝑖𝑠 𝑜𝑑𝑑

and 𝑐𝐼1 = 𝑐𝐼2 = 55 + 55𝑎. The purpose to introduce the pair of

nodes {𝐼1, 𝐼2} is to indicate whether the (3,B2)-SAT instance can be

satisfied. We will explain it later in detail.

Until now the instance construction of a BNPG game has been

completed. We claim that the above constructed BNPG game has a

PSNE if and only if the (3,B2)-SAT instance is a “YES” instance.

In one direction, if the (3,B2)-SAT instance is a “YES” instance,

then let us consider the strategy profile x∗ as follows:
• For 𝑖 ∈ [𝑛], if 𝑙𝑖 is TRUE, we set 𝑥𝑢𝑖 = 𝑥𝑣𝑖 = 0 𝑎𝑛𝑑 𝑥𝑢𝑖 =

𝑥𝑣𝑖 = 1; else, we set 𝑥𝑢𝑖 = 𝑥𝑣𝑖 = 1 𝑎𝑛𝑑 𝑥𝑢𝑖 = 𝑥𝑣𝑖 = 0.

• For each 𝑗 ∈ [𝑚], we set 𝑥𝑦 𝑗
= 𝑥𝑧 𝑗 = 𝑥𝑜 𝑗

= 1.

• For 𝐼1 and 𝐼2, we set 𝑥𝐼1 = 1 𝑎𝑛𝑑 𝑥𝐼2 = 0.

Note that 𝑔𝑢𝑖 ≪ 𝑔𝑜 𝑗
≪ 𝑔𝐼 ≪ 𝑔𝑣𝑖 ≪ 𝑔𝑧𝑖 ≪ 𝑔𝑦𝑖 , which helps

us to distinguish the neighbor with minimal egocentric utility. We

now claim x∗ is a PSNE, by showing that none of the nodes deviate:
• For 𝑥𝑢𝑖 = 1 and 𝑥𝑢𝑖 = 0, we have 𝑛𝑢𝑖 = 3 and 𝑛𝑢𝑖 = 2. Be-

cause Δ𝑔𝑢𝑖 (3) + 𝑎Δ𝑔𝑢𝑖 (2) = 2 + 3𝑎 > 𝑐𝑢𝑖 = 2 + 2𝑎, showing

the marginal utility of 𝑢𝑖 on investment is larger than the

investment cost, 𝑢𝑖 then would not like to deviate from strat-

egy of 1. Similarly, since Δ𝑔𝑢𝑖 (3) + 𝑎Δ𝑔𝑢𝑖 (4) = 2 + 𝑎 < 𝑐𝑢𝑖 ,

meaning the marginal utility of 𝑢𝑖 on investment cannot

cover the investment cost, not investing is a better strategy

for 𝑢𝑖 , and it has no incentive to deviate the strategy of 0.

We can use the symmetric analysis for 𝑥𝑢𝑖 = 0 and 𝑥𝑢𝑖 = 1.

• For each 𝑣𝑖 and 𝑣𝑖 , as 𝑥𝑣𝑖 = 𝑥𝑢𝑖 ,𝑥𝑣𝑖 = 𝑥𝑢𝑖 , they won’t deviate.

• For each 𝑦 𝑗 , because the (3, B2)-SAT instance is a “YES” in-

stance, there must exist one TRUE literal 𝑙
𝑗
𝑖
in clause 𝐶 𝑗 .

Therefore, each 𝑦 𝑗 must have at least one neighbor literal

node 𝑓 (𝑙 𝑗
𝑖
) playing strategy of 0, which we let be 𝑢 𝑗 without

loss of generality. So Δ𝑔𝑦 𝑗
(𝑛𝑦 𝑗
) + 𝑎Δ𝑔𝑢 𝑗

(2) = 1000 + 3𝑎 >

𝑐𝑦 𝑗
= 1000 + 2𝑎. Therefore, 𝑦 𝑗 will not deviate.

• For each 𝑜 𝑗 , as all 𝑥𝑦 𝑗
= 1, Δ𝑔𝑜 𝑗

(𝑛) > 𝑐𝑜 𝑗
, 𝑜 𝑗 will not deviate.

• For each 𝑧 𝑗 , its neighbor with minimal egocentric utility is

𝑜 𝑗 , and we have Δ𝑔𝑧 𝑗 (𝑚) + 𝑎Δ𝑔𝑜 𝑗
(𝑚 + 1) = 2𝑎 > 𝑎. So 𝑧 𝑗

will not deviate.

• For 𝐼1 𝑎𝑛𝑑 𝐼2, we have Δ𝑔𝐼1 (𝑚) +𝑎Δ𝑔𝐼2 (𝑚) = 100× (1+𝑎) >
𝑐𝐼1 = 55+55𝑎 and Δ𝑔𝐼2 (𝑚+1) +𝑎Δ𝑔𝐼1 (𝑚+1) = 10× (1+𝑎) <
𝑐𝐼2 = 55 + 55𝑎, so both 𝐼1 and 𝐼2 have no incentive to deviate.

So, the strategy profile x∗ is proved to be a PSNE.

In the other direction, let x∗ be a PSNE of the BNPG instance,

we claim that the corresponding (3,B2)-SAT instance is a “YES”

instance. Firstly, because 𝑐𝑜 𝑗
= 0, strategy of 1 is the best choice

for each 𝑜 𝑗 , 𝑗 ∈ [𝑚], and thus 𝑥∗𝑜 𝑗
= 1. Secondly, we will prove

that for all 𝑗 ∈ [𝑚], 𝑥𝑦 𝑗
must be 1 by contradiction. Therefore,

we assume some 𝑦 𝑗 nodes play the strategy of 0 and denote the

number of these nodes to be 𝑘 > 0. Based on this assumption, we

have 𝑛𝐼1 =𝑚 − 𝑘 + 𝑥𝐼2 .
(1) Observing that for each 𝑜 𝑗 , it has𝑚 − 𝑘 neighbors playing

strategy of 1. Hence, for 𝑗 ∈ [1, 𝑘 + 1], 𝑥𝑧 𝑗 = 1, meaning

𝑛𝐼2 =𝑚 − 𝑘 + 𝑥𝐼1 + 1.

(2) If 𝑘 is odd, we prove that any strategy of 𝐼1, 𝐼2 can not form

an equilibrium by distinguishing the following four cases.

• If 𝑥𝐼1 = 𝑥𝐼2 = 1, then Δ𝑔𝐼2 (𝑚 − 𝑘 + 2) + 𝑎Δ𝑔𝐼1 (𝑚 − 𝑘 + 1) =
10 + 100𝑎 < 55 + 55𝑎, then 𝐼2 will deviate from 1 to 0;

• If 𝑥𝐼1 = 1 𝑎𝑛𝑑 𝑥𝐼2 = 0, then Δ𝑔𝐼1 (𝑚−𝑘) +𝑎Δ𝑔𝐼2 (𝑚−𝑘 +1) =
10 + 100𝑎 < 55 + 55𝑎, then 𝐼1 will deviate from 1 to 0;

• If 𝑥𝐼1 = 0 𝑎𝑛𝑑 𝑥𝐼2 = 0, then Δ𝑔𝐼2 (𝑚−𝑘 +1) +𝑎Δ𝑔𝐼1 (𝑚−𝑘) =
100 + 10𝑎 > 55 + 55𝑎, then 𝐼2 will deviate from 0 to 1;

• If𝑥𝐼1 = 0𝑎𝑛𝑑 𝑥𝐼2 = 1, thenΔ𝑔𝐼1 (𝑚−𝑘+1)+𝑎Δ𝑔𝐼2 (𝑚−𝑘+2) =
100 + 10𝑎 > 55 + 55𝑎, then 𝐼1 will deviate from 0 to 1.

(3) Similarly, if 𝑘 is even, we also can prove that any strategy

of 𝐼1, 𝐼2 can not form an equilibrium by distinguishing the

following four cases.

• If𝑥𝐼1 = 1𝑎𝑛𝑑 𝑥𝐼2 = 1, thenΔ𝑔𝐼1 (𝑚−𝑘+1)+𝑎Δ𝑔𝐼2 (𝑚−𝑘+2) =
10 + 100𝑎 < 55 + 55𝑎, then 𝐼1 will deviate from 1 to 0;

• If 𝑥𝐼1 = 0 𝑎𝑛𝑑 𝑥𝐼2 = 1, then Δ𝑔𝐼2 (𝑚−𝑘 +1) +𝑎Δ𝑔𝐼1 (𝑚−𝑘) =
10 + 100𝑎 < 55 + 55𝑎, then 𝐼2 will deviate from 1 to 0;

• If 𝑥𝐼1 = 0 𝑎𝑛𝑑 𝑥𝐼2 = 0, then Δ𝑔𝐼1 (𝑚−𝑘) +𝑎Δ𝑔𝐼2 (𝑚−𝑘 +1) =
100 + 10𝑎 > 55 + 55𝑎, then 𝐼1 will deviate from 0 to 1;

• If𝑥𝐼1 = 1𝑎𝑛𝑑 𝑥𝐼2 = 0, thenΔ𝑔𝐼2 (𝑚−𝑘+2)+𝑎Δ𝑔𝐼1 (𝑚−𝑘+1) =
100 + 10𝑎 > 55 + 55𝑎, then 𝐼2 will deviate from 0 to 1.

So, in strategy profile x∗, a PSNE of the BNPG game, 𝑥∗𝑦 𝑗
= 1, for

each 𝑦 𝑗 , 𝑗 ∈ [𝑚]. It means that at least one neighbor in the node

of clause {𝑓 (𝑙 𝑗
1
), 𝑓 (𝑙 𝑗

2
), 𝑓 (𝑙 𝑗

3
)} playing strategy of 0. Meanwhile,

we note that for each 𝑢𝑖 and 𝑢𝑖 , the neighbor is greater than 2.

On the one hand, if both 𝑥𝑢𝑖 and 𝑥𝑢𝑖 plays strategy of 1, then

Δ𝑔𝑢𝑖 (4) + Δ𝑔𝑢𝑖 (4) = 1 + 𝑎 < 𝑐𝑢𝑖 = 2 + 2𝑎, 𝑢𝑖 will deviate from 1 to

0. On the other hand, if both 𝑥𝑢𝑖 and 𝑥𝑢𝑖 plays strategy of 0, then

Δ𝑔𝑢𝑖 (2) + Δ𝑔𝑢𝑖 (2) = 3 + 3𝑎 > 𝑐𝑢𝑖 = 2 + 2𝑎, 𝑢𝑖 will deviate from 0

to 1. Therefore, we prove that in any equilibrium, 𝑥𝑢𝑖 + 𝑥𝑢𝑖 = 1 for

each 𝑖 ∈ [𝑛]. For each 𝑥𝑢𝑖 = 0, we set 𝑙𝑖 yo be true; otherwise, 𝑙𝑖

is set to be false. Then each clause 𝐶 𝑗 = {𝑙 𝑗
1
, 𝑙
𝑗

2
, 𝑙
𝑗

3
} must contain at

least one literal, which is true, and thus the (3,B2)-SAT problem is

a “YES” instance. It completes the proof of this claim. □

Since determining the existence of a PSNE is hard in general

BPNG games with egalitarianism by Theorem 1, it is possible for us

to discuss tractable special cases. Let us consider the case in which

𝐺 is a tree, and prove that the problem of checking the existence of

PSNE in the BNPG game with egalitarianism is polynomial time

solvable if 𝐺 is a tree.

Theorem 2. When the relation graph 𝐺 is a tree, the problem of
checking the existence of PSNE in BNPG game with egalitarianism
can be solved in 𝑂 (𝑑5

𝑚𝑎𝑥 log(𝑑𝑚𝑎𝑥 ) · |𝑉 |) time, where 𝑑𝑚𝑎𝑥 is the
maximum degree of 𝐺 .

proof sketch. We design a bottom-up traversal algorithm to

solve this problem. In our algorithm, each leaf or internal node

passes a conditional satisfiable table to its parent. This table contains
all satisfiable situations subject to its parent’s strategy. For example,

consider a node 𝑣 and its parent 𝑢. A tuple (𝑥𝑢 , 𝑛𝑢 , 𝑥𝑣, 𝑛𝑣) is in the

conditional satisfiable table 𝑇𝑣 , demonstrating that there exists an

equilibrium in which the strategies of 𝑢 and 𝑣 are 𝑥𝑢 and 𝑥𝑣 , and

the number of the investing neighbors of 𝑢 and 𝑣 are 𝑛𝑢 and 𝑛𝑣 ,

respectively. When any node’s table is empty, we can conclude that

the PSNE does not exist in this game. Otherwise, a PSNE exists.

The full proof is presented in Appendix A. □
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We then prove the existence of PSNE in BNPG game with egali-

tarianism is also tractable if𝐺 is a clique, with proof in Appendix B.

Theorem 3. When the relation graph 𝐺 is a clique, the problem
of checking the existence of PSNE in BNPG game with egalitarianism
can be solved in 𝑂 ( |𝑉 |2) time.

4.2 Equilibrium computation in BNPG games
with collectivism

BNPG game with collectitivsm is a special kind of the game with

altruism, as the coefficient 𝑎 = 1 and 𝐻 = 𝐺 . For this kind of BNPG

game, we prove that the PSNE always exists by showing that this

game is a potential game. We also prove that the PSNE finding

problem is in PLS complexity [27] in this scenario. Furthermore, we

propose a heuristic algorithm to compute a PSNE of BNPG game

with collectivism.

Lemma 1. BNPG games with collectivism is a potential game,
whose potential function is exactly the social welfare function.

Proof. We prove this claim based on the fact that for any player

𝑖 , when 𝑖 changes her strategy, only the egocentric utilities of 𝑖’s

neighbors are affected. So we have

𝑆𝑊 (1, x−𝑖 ) − 𝑆𝑊 (0, x−𝑖 )

=
∑︁

𝑗∈𝑁𝑖∪𝑖
𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 ) −

∑︁
𝑗∈𝑁𝑖∪𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 − 1) − 𝑐𝑖

= {𝑔𝑖 (1 + 𝑛𝑖 ) +
∑︁
𝑗∈𝑁𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 ) − 𝑐𝑖 }

− {𝑔𝑖 (𝑛𝑖 ) +
∑︁
𝑗∈𝑁𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 − 1)}

= 𝑈
(𝐶 )
𝑖
(1, x−𝑖 ) −𝑈 (𝐶 )𝑖

(0, x−𝑖 ),
implying the game is a potential game. □

Theorem 4. In BNPG game with collectivism, the PSNE maximiz-
ing the social welfare always exists.

Proof. In a potential game, since the value of function𝑈
(𝐶 )
𝑣𝑖 for

each player 𝑣𝑖 ∈ 𝑉 is finite, the potential function must has a maxi-

mal value. In addition, when the potential function is maximized

under a strategy profile x∗, each player can not increase her utility

by deviating her strategy, proving that x∗ is a PSNE. □

Theorem 4 ensures the existence of PSNE.We continue to explore

the complexity of the PSNE finding problem. Following theorem

proves this problem is in the complexity class Polynomial Local

Search (PLS) [27], which is the class of function problems that are

guaranteed to have an answer, and this answer can be checked in

polynomial time.

Theorem 5. For the BNPG game with collectivism, the complexity
of the PSNE finding problem is in PLS.

Proof. Aswe proved BNPG gamewith collectivism is a potential

game, we define 𝐿 as a PSNE finding problem. the set of instances𝐷𝐿

denote PSNE finding problem in all BNPG game with collectivism.

Consider the instance 𝐼 ∈ 𝐷𝐿 with𝐺 = (𝑉 , 𝐸), |𝑉 | = 𝑛. A solution 𝑠

for that instance is a strategy profile, that each player 𝑖 playing 0 or

1. Thus, a solution consists of 𝑛 bits. The set of solutions 𝐹𝐿 (𝐼 ) is the

set of all 2
𝑛
number of strategy profiles. The cost of each solution

is the social welfare in this profile. The neighbor of a solution 𝑠

is reached by flipping one player’s strategy. By the definition of

PSNE and potential game, when a strategy profile is an equilibrium,

anyone deviating from her strategy can not increase social welfare.

So that when 𝑠 is a PSNE, the cost of 𝑠 is locally optimal. Then the

PSNE finding problem has the following properties:

• The size of a strategy profile is 𝑛 bits, thus every solution

𝑠 ∈ 𝐹𝐿 (𝐼 ) is bounded and polynomial time verifiable.

• The social welfare of a strategy profile can be calculated in

𝑂 (𝑛2) time, thus the cost of all 𝑠 ∈ 𝐹𝐿 (𝐼 ) can be computed

in polynomial time.

• The “neighbors” of a strategy profile x can be found in𝑂 (𝑛)
time by flipping each player’s strategy, thus for each solution

𝑠 , the set of neighbors can be found in polynomial time.

• A PSNE can be verified in 𝑂 (𝑛2) time. Therefore for each 𝑠 ,

we can check if it is locally optimal in polynomial time.

• Theorem 4 has proved that the PSNE maximizing social

welfare always exists. Thus for every instance 𝐼 , there exactly

exists some 𝑠 such that 𝑠 is a locally optimal solution of 𝐼 .

Therefore, we conclude that the PSNE finding problem in BNPG

game with collectivism is in PLS-complexity. □

We provide Algorithm 1, i.e., the best-response dynamic algo-

rithm, to compute a PSNE, which also can maximize the social wel-

fare. Particularly, if all 𝑈
(𝐶 )
𝑣𝑖 (𝑘) are assumed to be integer-valued

and bounded by poly(𝑘), then the potential function is still poly-

nomial. It means that the best-response dynamics eventually con-

verges to a PSNE within polynomial iterations.

Algorithm 1: Best-Response Dynamics

Input: 𝐺 = (𝑉 , 𝐸),𝑈 (𝐶 )𝑣1
, · · · ,𝑈 (𝐶 )𝑣𝑛

Output: Nash equilibrium profile x
for 𝑖 ∈ [𝑛] do

𝑥𝑖 ← 0

end
𝑆 ← 0 ;

while 𝑆 = 0 do
𝑆 ← 1 ;

for 𝑖 ∈ [𝑛] do
if 𝑈 (𝐶 )𝑣𝑖 (1 − 𝑥𝑖 , 𝑥−𝑖 ) > 𝑈

(𝐶 )
𝑣𝑖 (𝑥𝑖 , 𝑥−𝑖 ) then

𝑥𝑖 ← 1 − 𝑥𝑖 ;
𝑆 ← 0 ;

end
end

end
return x;

5 RESULTS FOR PROSOCIAL NETWORK
MODIFICATION

This section mainly studies the computational complexity issue of

PNM problem in both symmetric and asymmetric settings, with the

task of computing whether a target strategy profile can be induced

as a PSNE through certain modifications on the network.
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5.1 Results for PNM problem with
egalitarianism

For PNM problem with symmetric egalitarianism, we begin with a

intractability result, showing it is NP-complete to induce a target

profile in the general case. We consider the target where all players

invest, and use reduction from (3, B2)-SAT.

Figure 2: Example (3,B2)-SAT Graph in Theorem 6.

Theorem 6. For the target strategy profile x∗ = (1, · · · , 1), the
PNM problem with symmetric egalitarianism is NP-complete, even
when the relation graph is a clique.

Proof. To obtain this hardness result, we reduce the PNM prob-

lem with symmetric egalitarian from the (3,B2)-SAT instance (L =

{𝑙𝑖 : 𝑖 ∈ [𝑛]}, C =
{
𝐶 𝑗 : 𝑗 ∈ [𝑚]

}
). Let us define a function 𝑓 :

{𝑙𝑖 , ¯𝑙𝑖 : 𝑖 ∈ [𝑛]} → {𝑢𝑖 , 𝑢𝑖 : 𝑖 ∈ [𝑛]}, such that 𝑓 (𝑙𝑖 ) = 𝑢𝑖 and

𝑓 (¯𝑙𝑖 ) = 𝑢𝑖 , 𝑖 ∈ [𝑛]. We now create an instance of PNM with sym-

metric egalitarian as follows. Let the initial prosocial network 𝐻 be

empty and 𝑎 = 1. The relation network 𝐺 = (𝑉 , 𝐸) (demonstrated

on the left of Fig. 2) for the input BNPG game is constructed as:

𝑉 = {𝑢𝑖 , 𝑢𝑖 , 𝑏𝑖 , 𝑑𝑖 : 𝑖 ∈ [𝑛]} ∪
{
𝑦 𝑗 : 𝑗 ∈ [𝑚]

}
;

𝐸𝑎 = {{𝑢𝑖 , 𝑏𝑖 }, {𝑏𝑖 , 𝑢𝑖 } : 𝑖 ∈ [𝑛]} ∪ {{𝑢𝑖 , 𝑑𝑖 }, {𝑑𝑖 , 𝑢𝑖 } : 𝑖 ∈ [𝑛]} ∪

{{𝑦 𝑗 , 𝑓 (𝑙 𝑗
1
)}, {𝑦 𝑗 , 𝑓 (𝑙 𝑗

2
)}, {𝑦 𝑗 , 𝑓 (𝑙 𝑗

3
)} : 𝐶 𝑗 = (𝑙 𝑗

1
∨ 𝑙 𝑗

2
∨ 𝑙 𝑗

3
), 𝑗 ∈ [𝑚]};

𝐸𝑖 = {{𝑢, 𝑣} : ∀𝑢, 𝑣 ∈ 𝑉 𝑎𝑛𝑑 {𝑢, 𝑣} ∉ 𝐸𝑎};
𝐸 = 𝐸𝑎 ∪ 𝐸𝑖 ;
where 𝐸𝑎 is the set of addable edges in 𝐻 , whereas each edge in 𝐸𝑖
has infinite cost. Define (𝑑𝑣)𝑣∈𝑉 and (𝑔𝑣)𝑣∈𝑉 for each player:

• For all 𝑖 ∈ [𝑛] and ∀𝑘 ∈ N ∪ {0}, set 𝑔𝑢𝑖 (𝑘) = 𝑔𝑢𝑖 (𝑘) = 30𝑘 ,

𝑐𝑢𝑖 = 𝑐𝑢𝑖 = 45.

• For all 𝑖 ∈ [𝑛], ∀𝑘 ∈ N ∪ {0}, set 𝑔𝑏𝑖 (𝑘) = 30𝑘 + 2000𝑛 and

𝑔𝑑𝑖 (𝑘) = 20𝑘 , 𝑐𝑏𝑖 = 𝑐𝑑𝑖 = 45.

• For all 𝑗 ∈ [𝑚] and ∀𝑘 ∈ N ∪ {0}, set 𝑔𝑦 𝑗
(𝑘) = 10𝑘 + 1000𝑛,

𝑐𝑦 𝑗
= 30.

Let the initial prosocial network 𝐻 be empty, and the target

profile x∗ = (1, · · · , 1) has all the players invest. The cost of adding
an edge from set {{𝑦 𝑗 , 𝑓 (𝑙 𝑗

1
)}, {𝑦 𝑗 , 𝑓 (𝑙 𝑗

2
)}, {𝑦 𝑗 , 𝑓 (𝑙 𝑗

3
)} : 𝐶 𝑗 = (𝑙 𝑗

1
∨

𝑙
𝑗

2
∨ 𝑙 𝑗

3
), 𝑗 ∈ [𝑚]} and {{𝑢𝑖 , 𝑑𝑖 }, {𝑑𝑖 , 𝑢𝑖 } : 𝑖 ∈ [𝑛]} is 1. The cost of

adding an edge from set {{𝑢𝑖 , 𝑏𝑖 }, {𝑏𝑖 , 𝑢𝑖 } : 𝑖 ∈ [𝑛]} is 𝑐 = 2𝑛 + 1.

The cost of adding edges in 𝐸𝑖 is +∞, meaning it can not be added

in 𝐻 . The modification budget 𝐵 is set to be (𝑛𝑐 + 𝑛 +𝑚).
Next we prove that the instance of (3, B2)-SAT is a “YES” instance

if and only if the instance of PNM with symmetric egalitarian is a

“YES” instance, that is the target strategy profile x∗ can be induced

to be a PSNE by modification.

In one direction, let (3, B2)-SAT be a “YES” instance and its

satisfying assignment be 𝐹 : {𝑙𝑖 , ¯𝑙𝑖 : 𝑖 ∈ [𝑛]} → {TRUE, FALSE }.
We construct 𝐻 in following steps:

(1) For each 𝑖 , if 𝑙𝑖 is TRUE, then we add edges {𝑢𝑖 , 𝑑𝑖 }, {𝑢𝑖 , 𝑏𝑖 }
to 𝐻 .

(2) For each 𝑖 , if 𝑙𝑖 is FALSE, then we add edges {𝑢𝑖 , 𝑏𝑖 }, {𝑢𝑖 , 𝑑𝑖 }
to 𝐻 .

(3) For each 𝑦 𝑗 , as (3, B2)-SAT be a “YES” instance, there must

exist a literal 𝐹 (𝑙 𝑗 ) = TRUE in the clause 𝐶 𝑗 . We add edge

{𝑓 (𝑙𝑖 ), 𝑦 𝑗 } to 𝐻 .

The total cost of adding the above edges is 𝑛𝑐 + 𝑛 +𝑚. An example

is shown on the right side of Fig. 2.

In the following, we prove that the target profile x∗ is a PSNE.

• For each 𝑖 , if 𝑙𝑖 is TRUE, then {𝑢𝑖 , 𝑏𝑖 } ∈ 𝐻 . So Δ𝑈
(𝐹 )
𝑏𝑖
(𝑘) =

60 > 𝑐𝑏𝑖 = 45, Δ𝑈
(𝐹 )
𝑢𝑖
(𝑘) = 60 > 𝑐𝑢𝑖 = 45. It means that

𝑏𝑖 and 𝑢𝑖 do not deviate from the strategy of 1. Also, as

{𝑢𝑖 , 𝑑𝑖 } ∈ 𝐻 and 𝑔𝑦 𝑗
(𝑘) > 𝑔𝑑𝑖 (𝑘), we have Δ𝑈

(𝐹 )
𝑑𝑖
(𝑘) =

50 > 𝑐𝑑𝑖 = 45, Δ𝑈
(𝐹 )
𝑢𝑖 (𝑘) = 50 > 𝑐𝑢𝑖 = 45, 𝑑𝑖 and 𝑢𝑖 also do

not deviate. The analysis is similar when 𝑙𝑖 is FALSE, and we

can conclude that 𝑏𝑖 , 𝑢𝑖 , 𝑑𝑖 and 𝑢𝑖 also do not deviate their

strategies.

• For each 𝑗 , because the (3, B2)-SAT instance is a “YES” in-

stance, there must exist one TRUE literal 𝑙 𝑗 in clause 𝐶 𝑗 .

Therefore, each 𝑦 𝑗 must have a neighbor literal node 𝑓 (𝑙 𝑗 ),
denoted by 𝑢 𝑗 w.l.o.g. We have Δ𝑈

(𝐹 )
𝑦 𝑗
(𝑘) = 40 > 𝑐𝑦 𝑗

= 30,

𝑦 𝑗 does not deviate from playing 1.

Hence the instance of PNM with symmetric egalitarianism is a

“YES” instance.

In the other direction, let PNM with symmetric egalitarianism be

a “YES” instance. Then we can characterize the ultimate prosocial

network 𝐻 as:

(1) First, because Δ𝑔𝑏𝑖 (𝑘) < 𝑐𝑏𝑖 for each 𝑏𝑖 , thus at least one of

{𝑢𝑖 , 𝑏𝑖 } and {𝑢𝑖 , 𝑏𝑖 } in𝐻 . Meanwhile, note that𝐶 ({𝑏𝑖 , 𝑢𝑖 }) =
2𝑛+1 and the total budget𝐵 = 𝑛(2𝑛+1)+𝑛+𝑚 < (𝑛+1) (2𝑛+1).
Thus for each 𝑏𝑖 , only one of {𝑢𝑖 , 𝑏𝑖 } and {𝑢𝑖 , 𝑏𝑖 } is in 𝐻 .

(2) Second, because the rest of the budget is 𝑛 +𝑚, and there are

exactly 𝑛 number of 𝑑𝑖 and𝑚 number of 𝑦 𝑗 which should be

adjacent to the edges in𝐻 . Otherwise, they will deviate from

playing 1. Hence, each 𝑑𝑖 and 𝑦 𝑗 must exactly be adjacent to

one edge in 𝐻 .

(3) Finally, if {𝑢𝑖 , 𝑦 𝑗 } is added in 𝐻 , then {𝑢𝑖 , 𝑑𝑖 } must be added

in 𝐻 too. Otherwise 𝑢𝑖 will deviate from playing 1. Mean-

while, 𝑢𝑖 will also deviate from playing 1 when she has

no neighbors in 𝐻 . Hence, for each {𝑢𝑖 , 𝑏𝑖 } ∉ 𝐻 , we have

{𝑢𝑖 , 𝑑𝑖 } ∈ 𝐻 .

Now consider the following assignment 𝐹 :

{
𝑙𝑖 , ¯𝑙𝑖 : 𝑖 ∈ [𝑛]

}
→ {

TRUE, FALSE } of (3,B2)-SAT instance. For all {𝑢𝑖 , 𝑑𝑖 } ∈ 𝐻 we

have 𝐹 (𝑙𝑖 ) = TRUE and for all {𝑢𝑖 , 𝑏𝑖 } ∈ 𝐻 , we have 𝐹 (𝑙𝑖 ) =

FALSE. We claim that 𝐹 is a satisfying assignment. If there is a

clause 𝐶 𝑗 = (𝑙 𝑗
1
∨ 𝑙 𝑗

2
∨ 𝑙 𝑗

3
) which is not satisfied, meaning that all

{𝑓 (𝑙 𝑗
1
), 𝑦 𝑗 }, {𝑓 (𝑙 𝑗

1
), 𝑦 𝑗 }, {𝑓 (𝑙 𝑗

1
), 𝑦 𝑗 } are not in 𝐻 . It forces 𝑦 𝑗 to devi-

ate from playing 1, contradicting the assumption that x∗ is a PSNE .

Hence 𝐹 is a satisfying assignment, and the instance of (3,B2)-SAT

is a “YES” instance. □

Session 2C: Fair Allocations + Public Goods Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

615



Note that in the above proof, the target profile where all players

invest is the only optimizer of social welfare 𝑆𝑊 (x). This implies

that inducing strategies to optimize social welfare is also, in general,

NP-complete.

Although the general PNM problem with symmetric egalitarian-

ism is NP-complete, we next show that PNM is tractable when the

underlying relation graph 𝐺 has the special structure of a tree.

Theorem 7. For any fixed target profile, if the relation graph 𝐺
is a tree, then the PNM problem with symmetric egalitarianism is
polynomial-time solvable.

Proof sketch. We also design a dynamic algorithm in a bottom-

up manner to solve this PNM problem. In this algorithm, each leaf

or internal node passes aminimum cost table to its parent. Consider
a node 𝑣 with its parent 𝑢. A pair related to edge {𝑣,𝑢} in minimum

cost table 𝑇𝑣 is denoted by (𝑏{𝑣,𝑢} , 𝑐 {𝑣,𝑢} ), where 𝑏{𝑣,𝑢} ∈ {0, 1},
representing edge {𝑣,𝑢} is in 𝐻 ′ or not, and 𝑐 {𝑣,𝑢} representing the
minimum cost of the subtree rooted at 𝑣 , which makes the nodes

in this subtree not deviate from strategy profile x∗. The minimum

cost table only contains the pairs whose 𝑐 {𝑣,𝑢} ≤ 𝐵. Once a vertex 𝑣

is processed, if the cost 𝑐 {𝑣,𝑢} > 𝐵, then we conclude that the PSNE

does not exist in this game. Otherwise, we can get a modification

scheme to change𝐻 into𝐻 ′ and such that the target strategy profile
becomes a PSNE. The full proof is in Appendix C. □

For the case where egalitarianism is asymmetric, it is proven

to be polynomial-time solvable, because a modification on edge is

one-way, only affecting one player’s extent of egalitarianism. We

present the following theorem and its proof is in Appendix D.

Theorem 8. For any fixed target profile, the PNM problem with
asymmetric egalitarianism is polynomial-time solvable.

5.2 Results for PNM problem with altruism
For the PNM problem with altruism, previous works mainly focus

on the target strategy profile where all players invest. [47] and [35]

respectively proved that the PNM problem is NP-complete even

when the relation graph is a clique or a tree. However, for the target

strategy profile maximizing social welfare, the hardness results for

the PNM problem with altruism have not been explored yet. We

first prove that this PNM problem is intractable when the relation

graph is a tree by reducing the PNM problem from the KNAPSACK

problem. The full proof of this result is in Appendix E.

Theorem 9. For the target profile where the social welfare is maxi-
mized, PNM with symmetric or asymmetric altruism is NP-hard when
the input network is a tree.

For the casewhere the relation graph is a clique, we also show it is

intractable by similarly reducing the problem from the KNAPSACK

problem. We present the following theorem, and its proof is in

Appendix F.

Theorem 10. For the target profile where the social welfare is
maximized, PNM with symmetric or asymmetric altruism is NP-hard
when the input network is a clique.

Based on the above theorems, we know that when the target

profile is the optimal solution for social welfare, PNM problem with

altruism is intractable in many scenarios. However, the following

result shows that for any target profile x∗ in which all players invest

or maximize the social welfare, once it can be induced to a PSNE in

polynomial time for PNM problem with egalitarianism, then it is

also solvable in polynomial time for PNM problem with altruism.

Theorem 11. Given a target strategy profile x∗ in which all players
invest or maximize the social welfare, if we can induce x∗ to be a
PSNE for PNM problem with egalitarianism in a polynomial time,
then x∗ also can become to be a PSNE for PNM problem with altruism
in a polynomial time.

proof sketch. To obtain this claim, we shall prove that the

modification solution for the PNM problem with egalitarianism is

just the solution for the PNM problem with altruism. The full proof

is in Appendix G. □

5.3 Results for PNM problem with collectivism
For the PNM problem with collectivism, we begin by showing that

the problem is tractable for the target profile where all players

invest.

Theorem 12. For the target strategy profile x∗ = (1, · · · , 1),
the PNM problem with symmetric and asymmetric collectivism is
polynomial-time solvable.

proof skecth. As 𝐻 = 𝐺 , we can not add edges into 𝐻 for

the PNM problem, while deleting edges cannot increase player

willingness to invest. Therefore, solving the PNM problem with

symmetric collectivism is equivalent to checkingwhether all players

invest is a PSNE in the original BNPG game. The full proof is in

Appendix H. □

By Theorem 4, that the strategy profile maximizing social wel-

fare is also a PSNE, we can conclude that the PNM problem with

collectivism is also tractable.

Theorem 13. For the target strategy profile maximizing social wel-
fare, the PNM problem with symmetric and asymmetric collectivism
is polynomial-time solvable.

6 CONCLUSION AND FUTUREWORK
In this paper, we study the BNPG games from the perspective of

prosociality. Three types of prosociality, altruism, collectivism, and

egalitarianism, are discussed in detail. For these models, we first

develop the computational complexity issues of deciding the exis-

tence of PSNE. We prove the hardness of the problem for general

networks, but for some special networks like tree and clique, we

show tractability results and provide polynomial time algorithms.

We also spend a lot of effort studying the PNM problem with proso-

ciality. For this problem, we are more interested in inducing the

target strategy profile where all players invest or maximize the so-

cial welfare to be a PSNE by modifying the prosocial graph. For all

three types, we completely characterize their corresponding com-

putational complexity results. These results enable policymakers

to strategically run campaigns to encourage people’s participation.

Our work also leaves some questions open. One important re-

search direction is to study the computational complexity of finding

mixed strategy equilibrium. Since [35] proved PPAD-hardness in

BNPG games with altruism, we are more interested in the computa-

tional complexity of other prosocial types in BNPG games. Another

interesting future work is to explore the parameterized complexity

of BNPG games with different prosocial types.
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APPENDIX
A PROOF OF THEOREM 2

Proof. We give a constructive proof for this theorem. Given a

tree 𝐺 , we denote its root by 𝑅 (the choice of the root is arbitrary).

Nodes in 𝐺 are categorized into three classes: leaf nodes, internal

nodes, and the root. Our algorithm run in the backward pass, mean-

ing that we traverse the nodes in a depth-first order (start with the

leaves and end at the root). Each leaf or internal node passes a table

to its parent. We call the table conditional satisfiable table since it
contains all satisfiable situation conditioned on its parent’s strategy.

Our algorithm have the following three parts:

Leaf Nodes: Suppose 𝑣 is a leaf node and 𝑢 is its parent. The

algorithm compute all tuple (𝑥𝑢 , 𝑛𝑢 , 𝑥𝑣, 𝑛𝑣) satisfied:
(1) 𝑛𝑣 = 𝑥𝑢 : since 𝑣 does not have any child, its only neighbor

is parent 𝑢.

(2) When {𝑢, 𝑣} ∈ 𝐻 : if 𝑥𝑣 = 0, the tuple should satisfied

Δ𝑔𝑣 (𝑛𝑣) + 𝑎Δ𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 ) < 𝑐𝑣 ; else if 𝑥𝑣 = 1, the condi-

tion is Δ𝑔𝑣 (𝑛𝑣) + 𝑎Δ𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 − 1) > 𝑐𝑣 : therefore 𝑣 will

not deviate from 𝑥𝑣 .

(3) When {𝑢, 𝑣} ∉ 𝐻 , if 𝑥𝑣 = 0, the tuple should satisfied

Δ𝑔𝑣 (𝑛𝑣) < 𝑐𝑣 ; else if 𝑥𝑣 = 1, the condition is Δ𝑔𝑣 (𝑛𝑣) > 𝑐𝑣 :

such that 𝑣 will not deviate too.

(4) 𝑥𝑣 ≤ 𝑛𝑢 ≤ 𝑥𝑣 + 𝑑𝑢 − 1: the limiting condition of possible

neighbor number for node 𝑢.

The algorithm then put the satisfied tuples into the table 𝑇𝑣 . Com-

puting the table of leaf nodes take 𝑂 (2𝑑𝑚𝑎𝑥 ∗ |𝑉 |) time since there

are at most |𝑉 | − 1 numbers of leaf nodes and each node have at

most 2𝑑𝑚𝑎𝑥 satisfiable tuple. If 𝑇𝑣 = ∅ for some leaf 𝑣 , we conclude

a PSNE does not exist for this game.

Internal Nodes: Now we consider a internal node 𝑣 . Suppose its

parent is𝑢 and it has 𝑝 children𝑤1, ...,𝑤𝑝 . For the purpose of induc-

tion, suppose the conditional best-response tables 𝑇𝑤1
, ...,𝑇𝑤𝑝

from

𝑤1, ...,𝑤𝑝 have been passed to 𝑣 . We define 𝑁𝑣 = {𝑤𝑖 : {𝑤𝑖 , 𝑣} ∈
𝐻 } ∪ {𝑢 : {𝑢, 𝑣} ∈ 𝐻 } be the set of all 𝑣 ’s neighbor in the prosocial

grape. Now we traverse each tuple (𝑥𝑣, 𝑛𝑣, 𝑥𝑢 , 𝑛𝑢 ): 𝑥𝑣, 𝑥𝑢 ∈ {0, 1},
𝑛𝑣, 𝑛𝑢 ∈ {0, 1, ..., 𝑑𝑚𝑎𝑥 }. To simplify our proof, we define a tempo-

rary table 𝑇𝑢 = {(𝑥𝑢 , 𝑛𝑢 , 𝑥𝑣, 𝑛𝑣)}. Then we divide the children into

three categories:

𝛼𝑣 (𝑛𝑣) := {𝑤𝑖 : ∃(1, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) ∈ 𝑇𝑤𝑖

𝑎𝑛𝑑 ∀(0, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) ∉ 𝑇𝑤𝑖

}
𝛽𝑣 (𝑛𝑣) := {𝑤𝑖 : ∀(1, 𝑛𝑤𝑖

, 𝑥𝑣, 𝑛𝑣) ∉ 𝑇𝑤𝑖
𝑎𝑛𝑑 ∃(0, 𝑛𝑤𝑖

, 𝑥𝑣, 𝑛𝑣) ∈ 𝑇𝑤𝑖
}

𝛾𝑣 (𝑛𝑣) := {𝑤𝑖 : ∃(1, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) ∈ 𝑇𝑤𝑖

𝑎𝑛𝑑 ∃(0, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) ∈ 𝑇𝑤𝑖

}
The conditional satisfiable table should contain tuples satisfy fol-

lowing conditions:

(1) |𝛼 (𝑣) | +𝑥𝑢 ≤ 𝑛𝑣 ≤ |𝛼 (𝑣) | + |𝛾 (𝑣) | +𝑥𝑢 : the limiting condition

of possible neighbor for node 𝑣 .

(2) Exist one possible equilibrium in the subtree of 𝑣 , such that

𝑣 will not deviate from 𝑥𝑣 . When 𝑥𝑣 = 1, it can be check

with Algorithm 5, which is a traversal algorithm run in

𝑂 (𝑑3

𝑚𝑎𝑥 log(𝑑𝑚𝑎𝑥 )) times.

(3) When 𝑥𝑣 = 0, the algorithm is almost the same with al-

gorithm 5, while for all 𝑖 = {𝑣,𝑢,𝑤1, ...,𝑤𝑝 }, the function

𝑔𝑖 (𝑘) should be replaced by 𝑔𝑖 (𝑘 + 1), and the final condition
𝑎(𝑀𝑎𝑥_𝑚𝑖𝑛+𝐴𝑑𝑑) ≥ 𝑐𝑣 should be replaced by 𝑎(𝑀𝑎𝑥_𝑚𝑖𝑛+
𝐴𝑑𝑑) ≤ 𝑐𝑣 .

There are three important component in Algorithm 5:

• Tuple Sorting: In this phase, on condition with the same 𝑥𝑤𝑖
,

we sort 𝑛𝑤𝑖
for each𝑤𝑖 . The full process is in Algorithm 2.

Algorithm 2: Tuple Sorting
Input: {𝑇𝑤1

, ...,𝑇𝑤𝑝
}

Output: {𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 }𝑖∈[𝑝 ]
for 𝑖 ∈ [𝑝] and𝑤𝑖 ∈ 𝑁𝑣 do

if 𝑤𝑖 ∉ 𝛾𝑣 (𝑛𝑣) then
sort all (𝑥𝑤𝑖

, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) ∈ 𝑇𝑤𝑖

by 𝑛𝑤𝑖
in decending

order and get array 𝐴𝑖

end
if 𝑤𝑖 ∈ 𝛾𝑣 (𝑛𝑣) then

sort all (0, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) ∈ 𝑇𝑤𝑖

by 𝑛𝑤𝑖
in decending

order and get array 𝐵𝑖 ;

sort all (1, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) ∈ 𝑇𝑤𝑖

by 𝑛𝑤𝑖
in decending

order and get array 𝐶𝑖
end

end
return {𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 }𝑖∈[𝑝 ]

• Min Children: In this phase, we consider the case when 𝑥𝑣 de-

viate from 1, calculating the minimum utility of 𝑣 ’s children

in this situation. The full process is in Algorithm 3.

Algorithm 3: Min Children

Input: {𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 }𝑖∈[𝑝 ] , 𝑁𝑣 , {𝑔𝑤1
, ..., 𝑔𝑤𝑝

}
Output: {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 }𝑖∈[𝑝 ]
for 𝑖 ∈ [𝑝] and𝑤𝑖 ∈ 𝑁𝑣 do

if 𝑤𝑖 ∉ 𝛾𝑣 (𝑛𝑣) then
get (𝑥𝑤𝑖

, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) which is the last element in 𝐴𝑖

and calculate 𝑎𝑖 = 𝑔𝑤𝑖
(𝑥𝑤𝑖
+ 𝑛𝑤𝑖

− 1)
end
if 𝑤𝑖 ∈ 𝛾𝑣 (𝑛𝑣) then

get (0, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) which is the last element in 𝐵𝑖

and calculate 𝑏𝑖 = 𝑔𝑤𝑖
(𝑛𝑤𝑖
− 1) ;

get (1, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) which is the last element in 𝐶𝑖

and calculate 𝑐𝑖 = 𝑔𝑤𝑖
(𝑛𝑤𝑖
)

end
end
return {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 }𝑖∈[𝑝 ]

• MaxAdd: In this phase, we come back to𝑥𝑣 = 1, and checking

if there exist and equilibrium in the subtree of 𝑣 , such that 𝑥𝑣
also will not deviate from 1. The full process is in Algorithm 4.

Root:As the properties introduced above, there exists a PSNE for
the whole tree if and only if the conditional satisfiable table for root

𝑟 is not empty. Therefore, we add a imaginary parent node 𝑟∗ for r
and calculate the conditional satisfiable table for 𝑟 in Algorithm 5.

Finally, if the table of root 𝑟 is not empty, we claim that there

exist a PSNE in this game. Otherwise, we conclude a PSNE does

not exist for this game. □
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Algorithm 5: Tuple Stable Determination

Input: (𝑥𝑣, 𝑛𝑣, 𝑥𝑢 , 𝑛𝑢 ), 𝑁𝑣, 𝛼𝑣 (𝑛𝑣), 𝛽𝑣 (𝑛𝑣), 𝛾𝑣 (𝑛𝑣),
{𝑔𝑣, 𝑔𝑢 , 𝑔𝑤1

, ..., 𝑔𝑤𝑝
}, {𝑇𝑤1

, ...,𝑇𝑤𝑝
}

Output: YES / No
{𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 }𝑖∈[𝑝 ] ← Tuple Sorting(𝑇𝑤1

, ...,𝑇𝑤𝑝
) ;

while ∀𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 is not empty do
{𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 }𝑖∈[𝑝 ] ← Min children({𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 }𝑖∈[𝑝 ] );
𝐴𝑑𝑑 ← min({𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 }𝑖∈[𝑝 ] ) ;
𝑤 𝑗 = arg min({𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 }𝑖∈[𝑝 ] ) ;
𝑀𝑎𝑥_𝑚𝑖𝑛 ← +∞ ;

𝑁1 ← 𝑛𝑣 − (|𝛾 (𝑣) | − |𝛾 (𝑣) ∩ 𝑁𝑣 |) − |𝛼 (𝑣) | − 𝑥𝑢 ;

𝑁2 ← 𝑛𝑣 − |𝛼 (𝑣) | − 𝑥𝑢 ;

if 𝑤 𝑗 ∈ 𝛾𝑣 (𝑛𝑣) and 𝑥𝑤𝑗
= 1 then

𝑁1 ← 𝑁1 − 1 and 𝑁2 ← 𝑁2 − 1;

if 𝑁2 < 0 then
delete (𝑥𝑤𝑖

, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) in {𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 } ;

continue ;
end

end
for 𝑖 ∈ [𝑝]/{ 𝑗} and𝑤𝑖 ∈ 𝑁𝑣/𝛾𝑣 (𝑛𝑣) do
(𝑥𝑤𝑖

, 𝑛𝑤𝑖
, 𝑥𝑣, 𝑛𝑣) = 𝑝𝑜𝑝 (𝐴𝑖 ) ;

𝑀𝑎𝑥_𝑚𝑖𝑛 ← min(𝑀𝑎𝑥_𝑚𝑖𝑛,𝑔𝑤𝑖
(𝑥𝑤𝑖
+ 𝑛𝑤𝑖

))
end
𝑀𝑎𝑥 ← {} ;
for 𝑖 ∈ [𝑝]/{ 𝑗} and𝑤𝑖 ∈ 𝑁𝑣 ∩ 𝛾𝑣 (𝑛𝑣) do
(0, 𝑛𝑤𝑖

, 𝑥𝑣, 𝑛𝑣) = 𝑝𝑜𝑝 (𝐵𝑖 ) ;
(1, 𝑛′𝑤𝑖

, 𝑥𝑣, 𝑛𝑣) = 𝑝𝑜𝑝 (𝐶𝑖 ) ;
Append (0, 0,𝑤𝑖 , 𝑔𝑤𝑖

(𝑛𝑤𝑖
)) to𝑀𝑎𝑥 ;

Append (0, 1,𝑤𝑖 , 𝑔𝑤𝑖
(𝑛′𝑤𝑖
+ 1)) to𝑀𝑎𝑥 ;

end
Sort𝑀𝑎𝑥 by the third component in abscending order ;

𝑀𝑎𝑥_𝑎𝑑𝑑 ← Max Add(𝑁1, 𝑁2, 𝑀𝑎𝑥_𝑎𝑑𝑑,𝑀𝑎𝑥) ;
𝑀𝑎𝑥_𝑚𝑖𝑛 ← min(𝑀𝑎𝑥_𝑚𝑖𝑛,𝑔𝑢 (𝑛𝑢 + 𝑥𝑢 ), 𝑀𝑎𝑥_𝑎𝑑𝑑) ;
𝐴𝑑𝑑 ← min(𝐴𝑑𝑑,𝑔𝑢 (𝑛𝑢 + 𝑥𝑢 − 1)) ;
if a(Max_min + Add) ≥ 𝑐𝑣 then

return TRUE
end

end
return FALSE

Algorithm 4: Max Add

Input: 𝑁1, 𝑁2, 𝑀𝑎𝑥_𝑎𝑑𝑑, {𝑀𝑎𝑥}
Output:𝑀𝑎𝑥_𝑎𝑑𝑑

for 𝑁1 ≤ 𝑛 ≤ 𝑁2 do
𝑛𝑢𝑚 ← 0 ;

for (𝑠𝑤𝑖
, 𝑥𝑤𝑖

,𝑤𝑖 , 𝑔𝑤𝑖
) ∈ 𝑀𝑎𝑥 do

if 𝑠𝑤𝑖
= 1 or 𝑛𝑢𝑚 == 𝑛 then

𝑀𝑎𝑥_𝑎𝑑𝑑 ← max(𝑀𝑎𝑥_𝑎𝑑𝑑,𝑔𝑤𝑖
) ;

break ;

end
if 𝑥𝑤𝑖

= 1 then
num += 1 ;

end
Find (𝑠′𝑤𝑖

, 1 − 𝑥𝑤𝑖
,𝑤𝑖 , 𝑔

′
𝑤𝑖
) ∈ 𝑀𝑎𝑥 and set 𝑠′𝑤𝑖

= 1.

end
end
return𝑀𝑎𝑥_𝑎𝑑𝑑

B PROOF OF THEOREM 3
Proof. Let us consider an equilibrium profile in which there are

exactly 𝑝 players investing the public goods. Under this equilibrium,

we have𝑥𝑣𝑖+𝑛𝑣𝑖 = 𝑝 for each 𝑖 ∈ [𝑛], as the relation graph is a clique.
Then, for each player 𝑣𝑖 , define Δ𝑈

(𝐹 )
𝑣𝑖 (𝑘) = 𝑔𝑣𝑖 (𝑘 + 1) − 𝑔𝑣𝑖 (𝑘).

Now we can divide the players into the following four categories:

𝛼 (𝑝) := {𝑣𝑖 ∈ 𝑉 : Δ𝑈
(𝐹 )
𝑣𝑖 (𝑝 − 1) ≥ 𝑐𝑣𝑖 𝑎𝑛𝑑 Δ𝑈

(𝐹 )
𝑣𝑖 (𝑝) > 𝑐𝑣𝑖 }

𝛽 (𝑝) := {𝑣𝑖 ∈ 𝑉 : Δ𝑈
(𝐹 )
𝑣𝑖 (𝑝 − 1) < 𝑐𝑣𝑖 𝑎𝑛𝑑 Δ𝑈

(𝐹 )
𝑣𝑖 (𝑝) ≤ 𝑐𝑣𝑖 }

𝛾 (𝑝) := {𝑣𝑖 ∈ 𝑉 : Δ𝑈
(𝐹 )
𝑣𝑖 (𝑝 − 1) ≥ 𝑐𝑣𝑖 𝑎𝑛𝑑 Δ𝑈

(𝐹 )
𝑣𝑖 (𝑝) ≤ 𝑐𝑣𝑖 }

𝛿 (𝑝) := {𝑣𝑖 ∈ 𝑉 : Δ𝑈
(𝐹 )
𝑣𝑖 (𝑝 − 1) < 𝑐𝑣𝑖 𝑎𝑛𝑑 Δ𝑈

(𝐹 )
𝑣𝑖 (𝑝) > 𝑐𝑣𝑖 }

As the marginal utility of 𝑣𝑖 is larger than the investment cost, each

player in 𝛼 (𝑝) does not deviate from the strategy of “investing”

when there are 𝑝 − 1 or 𝑝 other players invest. We can get the

similar observations for the sets 𝛽 (𝑝), 𝛾 (𝑝) and 𝛿 (𝑝). Based on

these observations, we claim that there exists a PSNE if and only if

|𝛼 (𝑝) | ≤ 𝑝, |𝛽 (𝑝) | ≤ 𝑛 − 𝑝 , and |𝛿 (𝑝) | = 0.

In one direction, suppose there is an equilibrium profile x∗ in
which exactly 𝑝 players invest. First we conclude that no player

in 𝛼 (𝑝) would like to play 0. Otherwise, the player who does not

invest can obtain more utility by deviating from strategy 0, since

Δ𝑈
(𝐹 )
𝑣𝑖 (𝑝) > 𝑐𝑣𝑖 for all 𝑣𝑖 ∈ 𝛼 (𝑝). This contradicts the assumption

that x∗ is an equilibrium profile. Thus all players in 𝛼 (𝑝) invest and
|𝛼 (𝑝) | ≤ 𝑝 . Similarly, we can conclude that all players in 𝛽 (𝑝) play
0. Otherwise, any player who invests in 𝛽 (𝑝) can benefit more by

deviating from strategy 1. Therefore x∗ is not a PSNE. As there are
exactly 𝑝 players playing 1 in x∗, implying the number of players

not investing is 𝑛 − 𝑝 , we have |𝛽 (𝑝) | ≤ 𝑛 − 𝑝 . Finally, if there is
a player in 𝛿 (𝑝), then whatever she invests or not, deviating her

current strategy can bring her more utility, and thus x∗ is not an
equilibrium. So |𝛿 (𝑝) | = 0.

In the other direction, consider the case in which |𝛼 (𝑝) | ≤
𝑝, |𝛽 (𝑝) | ≤ 𝑛 − 𝑝 , and |𝛿 (𝑝) | = 0. Let us construct an equilib-

rium profile x∗ = (𝑥𝑣𝑖 )𝑣𝑖 ∈𝑉 as follows. First, set 𝑥𝑣𝑖 = 1, for all

𝑣𝑖 ∈ 𝛼 (𝑝), and set 𝑥𝑣𝑖 = 0, for all 𝑣𝑖 ∈ 𝛽 (𝑝). The rest of players are
all in 𝛾 (𝑝), because |𝛿 (𝑝) | = 0. As |𝛼 (𝑝) | ≤ 𝑝 and |𝛽 (𝑝) | ≤ 𝑛 − 𝑝 ,
we arbitrary select some players to constitute a subset I ⊆ 𝛾 (𝑝),
such that |I | = 𝑝 − |𝛼 (𝑝) | ≥ 0. Then for each 𝑣 ∈ I, we set 𝑥𝑣 = 1

and for others 𝑣 ∈ 𝛾 (𝑘)\I, we set 𝑥𝑣 = 0. By the construction of

x∗, we claim that x∗ is a PSNE. For each 𝑣𝑖 who plays 0, she may

be in 𝛽 (𝑝) or in 𝛾 (𝑝), then Δ𝑈
(𝐹 )
𝑣𝑖 (𝑝) ≤ 𝑐𝑣𝑖 , implying that 𝑣𝑖 won’t

deviate. Similarly, for any 𝑣𝑖 who invests, she may be in 𝛼 (𝑝) or in
𝛾 (𝑝), thus Δ𝑈 (𝐹 )𝑣𝑖 (𝑝 − 1) ≥ 𝑐𝑣𝑖 , and 𝑣𝑖 also won’t deviate. Hence,

under the strategy profile x∗, nobody would like to deviate her

current strategym and thus x∗ is a PSNE.
In all, we now present a polynomial time algorithm to check

the existence of PSNE. First, for 𝑝 = 0, let us compute Δ𝑈
(𝐹 )
𝑣𝑖 . If

Δ𝑈
(𝐹 )
𝑣𝑖 ≤ 𝑐𝑣𝑖 for all 𝑣𝑖 ∈ 𝑉 , then x∗ = (0, 0, · · · , 0) is an equilibrium.
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Algorithm 6: Compute minimum cost table for leaf 𝑣

Input: Δ𝑔𝑣,Δ𝑔𝑢 , 𝑐𝑣, 𝑎, 𝐶 ({𝑣,𝑢}), 𝐵, 𝐻 , x*
Output: 𝑇𝑣
𝑇𝑣 ← {} ;
if 𝑥𝑣 = 0 then

if {𝑣,𝑢} ∈ 𝐻 then
if Δ𝑔𝑣 (𝑥𝑣 + 𝑥𝑢 ) + 𝑎Δ𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 ) ≤ 𝑐𝑣 then

put (1, 0) into 𝑇𝑣 ; // Retain {𝑣,𝑢} ∈ 𝐻 ′
end
else if Δ𝑔𝑣 (𝑥𝑣 + 𝑥𝑢 ) ≤ 𝑐𝑣 and 𝐶 ({𝑣,𝑢}) ≤ 𝐵 then

put (0,𝐶 ({𝑣,𝑢})) into 𝑇𝑣 ; // Delete {𝑣,𝑢}
end

end
if {𝑣,𝑢} ∉ 𝐻 then

if Δ𝑔𝑣 (𝑥𝑣 + 𝑥𝑢 ) ≤ 𝑐𝑣 then
put (0, 0) into 𝑇𝑣 ; // Maintain {𝑣,𝑢} ∉ 𝐻 ′

end
end

end
if 𝑥𝑣 = 1 then

if {𝑣,𝑢} ∈ 𝐻 then
if Δ𝑔𝑣 (𝑥𝑢 ) + 𝑎Δ𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 − 1) ≥ 𝑐𝑣 then

put (1, 0) into 𝑇𝑣 ; // Retain {𝑣,𝑢} ∈ 𝐻 ′
end

end
if {𝑣,𝑢} ∉ 𝐻 then

if Δ𝑔𝑣 (𝑥𝑢 ) ≥ 𝑐𝑣 then
put (0, 0) into 𝑇𝑣 ; // Maintain {𝑣,𝑢} ∉ 𝐻 ′

end
else if Δ𝑔𝑣 (𝑥𝑢 ) + 𝑎Δ𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 − 1) ≥ 𝑐𝑣 and
𝐶 ({𝑣,𝑢}) ≤ 𝐵 then

put (1,𝐶 ({𝑣,𝑢})) into 𝑇𝑣 ; // Add {𝑣,𝑢}
end

end
end
if 𝑇𝑣 = ∅ then

return No PSNE exists ;
end
else

return 𝑇𝑣 ;

end

Algorithm 7: Inevitable Cost
Input: 𝑇𝑤1

, ...,𝑇𝑤𝑝

Output: 𝐶𝑖𝑛𝑖𝑡
𝐶𝑖𝑛𝑖𝑡 ← 0 ;

for𝑤𝑖 ∈ 𝛼 (𝑣) ∪ 𝛽 (𝑣) do
for {𝑐𝑥 : (., 𝑐𝑥 ) ∈ 𝑇𝑤𝑖

} do
𝐶𝑖𝑛𝑖𝑡 = 𝐶𝑖𝑛𝑖𝑡 + 𝑐𝑥

end
end
return 𝐶𝑖𝑛𝑖𝑡

Algorithm 8: Compute minimum cost table for a internal

node

Input: 𝑔𝑣, 𝑔𝑢 , 𝑔𝑤1
, ..., 𝑔𝑤𝑝

, 𝑐𝑣, 𝑎, 𝐶 (𝑒), 𝐵, 𝐻 , 𝑇𝑤1
, ...,𝑇𝑤𝑝

,x*
Output: 𝑇𝑣
𝑀0 ← min

𝑤𝑖 ∈𝛼 (𝑣)
𝑔𝑤𝑖
(𝑥𝑤𝑖
+ 𝑛𝑤𝑖

) ;

𝑀1 ← min

𝑤𝑖 ∈𝛼 (𝑣)
𝑔𝑤𝑖
(𝑥𝑤𝑖
+ 𝑛𝑤𝑖

+ 1) ;

𝐶𝑖𝑛𝑖𝑡 ← Inevitable Cost(𝑇𝑤1
, ...,𝑇𝑤𝑝

) ;
𝐶0

𝑚𝑖𝑛
← 𝐵 + 1 ;

for𝑤𝑖 ∈ 𝛾 (𝑣) do
𝑀0

𝑏
= min (𝑔𝑤𝑖

(𝑥𝑤𝑖
+ 𝑛𝑤𝑖

), 𝑀0) ;
𝑀1

𝑏
= min (𝑔𝑤𝑖

(𝑥𝑤𝑖
+ 𝑛𝑤𝑖

+ 1), 𝑀1) ;
if Δ𝑔𝑣 (𝑥𝑣 + 𝑛𝑣) + 𝑎(𝑀1

𝑏
−𝑀0

𝑏
) ≤ 𝑐𝑣 then

𝐶𝑠𝑢𝑚 ← 0 ;

for𝑤 𝑗 ∈ 𝛾 (𝑣) and 𝑖 ≠ 𝑗 do
if 𝑀0

𝑏
≤ 𝑔𝑤𝑗

(𝑥𝑤𝑗
+ 𝑛𝑤𝑗

) then
𝐶𝑠𝑢𝑚+ = min(𝑐0

𝑤𝑗
, 𝑐1

𝑤𝑗
)

end
else

𝐶𝑠𝑢𝑚+ = 𝑐0

𝑤𝑗

end
end

end
else

𝐶𝑠𝑢𝑚 ← 𝐵 + 1 ;

𝑙 ← 𝑖 ;

for𝑤 𝑗 ∈ 𝛾 (𝑣) and 𝑗 ≠ 𝑖 do
if 𝑀0

𝑏
≤ 𝑔𝑤𝑗

(𝑥𝑤𝑗
+ 𝑛𝑤𝑗

) and
Δ𝑔𝑣 (𝑥𝑣 +𝑛𝑣) +𝑎(𝑔𝑤𝑗

(𝑥𝑤𝑗
+𝑛𝑤𝑗

+ 1) −𝑀0

𝑏
) ≤ 𝑐𝑣

then
𝐶𝑠𝑢𝑚 ← min(𝐶𝑠𝑢𝑚, 𝑐1

𝑤𝑗
) ;

𝑙 ← 𝑗 ;

end
end
for𝑤 𝑗 ∈ 𝛾 (𝑣) and 𝑗 ≠ 𝑖 , 𝑗 ≠ 𝑙 do

if 𝑀0

𝑏
≤ 𝑔𝑤𝑗

(𝑥𝑤𝑗
+ 𝑛𝑤𝑗

) then
𝐶𝑠𝑢𝑚+ = min(𝑐0

𝑤𝑗
, 𝑐1

𝑤𝑗
)

end
else

𝐶𝑠𝑢𝑚+ = 𝑐0

𝑤𝑗

end
end

end
𝐶𝑚𝑖𝑛 = min(𝐶𝑚𝑖𝑛,𝐶𝑖𝑛𝑖𝑡 +𝐶𝑠𝑢𝑚)

end
if 𝐶𝑚𝑖𝑛 ≤ 𝐵 then

put (0,𝐶𝑚𝑖𝑛) to 𝑇𝑣 ;
end
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For each 𝑝 = 1, · · · , 𝑛, we compute Δ𝑈
(𝐹 )
𝑣𝑖 (𝑝), and construct 𝛼 (𝑝),

𝛽 (𝑝), 𝛾 (𝑝) and 𝛿 (𝑝), respectively. If there exists one 𝑝 , such that

|𝛼 (𝑝) | ≤ 𝑝 , |𝛽 (𝑝) | ≤ 𝑛 − 𝑝 and |𝛿 (𝑝) | = 0, then a PSNE is obtained.

Otherwise, we conclude that no PSNE exists in this BNPG game

with egalitarianism. As for the time complexity of this algorithm,

it takes 𝑂 ( |𝑉 |) time to compute all Δ𝑈
(𝐹 )
𝑣𝑖 (𝑝) for a given 𝑝 . So the

problem of checking the existence of PSNE in the BNPG game with

egalitarianism is 𝑂 ( |𝑉 |2) time solvable, if 𝐺 is a clique. □

C PROOF OF THEOREM 7
Theorem 14. For any fixed target profile, PNM problem with

symmetric egalitarian is polynomial-time solvable when the input
network is a tree.

Proof. We show a recursive algorithm for this theorem. For a

target profile x∗, each player 𝑣𝑖 ’s strategy is denoted by 𝑥𝑣𝑖 and

each 𝑣𝑖 ’s investing neighbor number is denoted by 𝑛𝑣𝑖 . Our goal

is to modify the prosocial graph 𝐻 to a graph 𝐻 ′ within budget

𝐵, and make x∗ be an equilibrium. For the tree 𝐺 , we denote its

root by node 𝑅 (the root is chosen arbitrary). The nodes in 𝐺 are

categorized into three classes: leaf nodes, internal nodes, and the

root. Our algorithm traverse the nodes in a depth-first order, leafs

are the first and root is the final. Each leaf or internal node 𝑣𝑖 passes

a table 𝑇𝑣𝑖 to its parent. We call the table minimum cost table since
it record the minimum cost of adding or removing edges into the

subtree. A pair in minimum cost table is denoted by (𝑥{𝑣,𝑢} , 𝑐 {𝑣,𝑢} ),
where 𝑥{𝑣,𝑢} ∈ {0, 1}, representing the edge {𝑣,𝑢} added in 𝐻 ′

or not, and 𝑐 {𝑣,𝑢} representing the minimum cost in the subtree

which make the node in subtree not deviate from x∗. To simplify

our proof, we also define Δ𝑔𝑣𝑖 (𝑘) = 𝑔𝑣𝑖 (𝑘 + 1) − 𝑔𝑣𝑖 (𝑘).
Leaf node: Suppose 𝑣 is a leaf node and 𝑢 is its parent. Since 𝑣

does not have any child, there are only two possible scenarios in

the equilibrium: {𝑣,𝑢} ∈ 𝐻 ′ or {𝑣,𝑢} ∉ 𝐻 ′. Thus, computing the

table is equivalent to calculate the minimum cost such that node 𝑣

will not deviate from 𝑥𝑣 . The procedure to compute the minimum

cost table for a leaf node 𝑣 is summarized in Algorithm 6.

Internal node: For each internal node 𝑣 with parent 𝑢, suppose

it has 𝑝 children𝑤1, ...,𝑤𝑝 . For the purpose of induction, suppose

the minimum cost tables 𝑇𝑤1
, ...,𝑇𝑤𝑝

have been passed to 𝑣 . Now

we can divide the children into the following three categories:

𝛼 (𝑣) := {𝑤𝑖 : (1, .) ∈ 𝑇𝑤𝑖
𝑎𝑛𝑑 (0, .) ∉ 𝑇𝑤𝑖

}
𝛽 (𝑣) := {𝑤𝑖 : (0, .) ∈ 𝑇𝑤𝑖

𝑎𝑛𝑑 (1, .) ∉ 𝑇𝑤𝑖
}

𝛾 (𝑣) := {𝑤𝑖 : (1, .) ∈ 𝑇𝑤𝑖
𝑎𝑛𝑑 (0, .) ∈ 𝑇𝑤𝑖

}

For the convenience of algorithm description, we define 𝑐0

𝑤𝑖
, 𝑐1

𝑤𝑖
to

denote the minimum cost of 𝑤𝑖 , i.e., (0, 𝑐0

𝑤𝑖
), (1, 𝑐1

𝑤𝑖
) ∈ 𝑇𝑤𝑖

for all

𝑤𝑖 ∈ 𝛾 (𝑣). The algorithm that compute the minimum cost table for

the internal node 𝑣 when 𝑥𝑣 = 0 is showed in Algorithm 8. When

𝑥𝑣 = 0, the algorithm is almost the same with algorithm 8, while

for all 𝑖 = {𝑣,𝑢,𝑤1, ...,𝑤𝑝 }, the function 𝑔𝑖 (𝑘) should be replaced

by 𝑔𝑖 (𝑘 −1). Meanwhile all “If” condition (except𝐶𝑚𝑖𝑛 ≤ 𝐵) should

negate the judgment symbol.

Root: As the properties introduced above, there exists a PSNE

for the game if and only if there exists (0, 𝑐0

𝑟 ) in the minimum cost

table of 𝑟 . Therefore, we add a imaginary parent node 𝑟∗ for root 𝑟 ,
and also run algorithm 8. Finally, if the table of root 𝑟 is not empty,

we claim that the PNM problem is solvable. Otherwise, we conclude

that PNM is not solvable. □

D PROOF OF THEOREM 8
Proof. Let (𝐺,𝐻, (𝑔𝑖 )𝑖∈𝑉 , (𝑐𝑖 )𝑖∈𝑉 , 𝑎,𝐶, 𝐵, x∗) be a instance of

PNM problem with asymmetric egalitarian. Let 𝑁𝑣 denote the set

of 𝑣 ’s neighbors in 𝐺 . Because 𝐻 is a directed graph, when we

add/remove an edge (𝑢, 𝑣) in 𝐻 , only the utility of 𝑣 will change,

while the utility of any other nodes will not change. Thus, we

can discuss the edge’s modification for each node, calculate the

minimum cost, and finally determine if total costs exceed budget.

Now we consider for each player 𝑣𝑖 ∈ 𝑉 . When the target strat-

egy 𝑥𝑖 = 0, 𝑣𝑖 will not deviate from playing 0 only if

𝑔𝑣 (1 + 𝑛𝑣) + 𝑎 min

(𝑢,𝑣) ∈𝐻
𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 + 1) − 𝑐𝑣

≤ 𝑔𝑣 (𝑛𝑣) + 𝑎 min

(𝑢′,𝑣) ∈𝐻
𝑔𝑢′ (𝑥𝑢′ + 𝑛𝑢′ ) .

Because 𝑛𝑣, 𝑥𝑢 , 𝑛𝑢 , 𝑐𝑣 are constants, this condition can be written

as

min

(𝑢,𝑣) ∈𝐻
𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 + 1) − min

(𝑢′,𝑣) ∈𝐻
𝑔𝑢′ (𝑥𝑢′ + 𝑛𝑢′ ) (6)

≤ 1

𝑎
(𝑔𝑣 (𝑛𝑣) − 𝑔𝑣 (1 + 𝑛𝑣) + 𝑐𝑣) (7)

Thus, we should only find the minimum cost modifying sets, such

that the neighbors’ utility gap between 𝑥𝑣 = 0 and 𝑥𝑣 = 1 is less

than (7). We propose a traverse algorithm 9 to solve this problem.

When 𝑥𝑣 = 1, the algorithm is almost the same with algorithm 9,

while for all 𝑖 = 𝑣 ∈ 𝑁𝑣 , the function 𝑔𝑖 (𝑘) should be replaced

by 𝑔𝑖 (𝑘 − 1). and the “If” determinate condition 𝑔𝑣𝑘 (𝑥𝑣𝑘 + 𝑛𝑣𝑘 +
1) ≤ 𝑀𝑏 + 1

𝑎 (𝑐𝑣𝑖 − 𝑔𝑣𝑖 (1 + 𝑛𝑣𝑖 ) + 𝑔𝑣𝑖 (𝑛𝑣𝑖 )) should be reverse to

𝑔𝑣𝑘 (𝑥𝑣𝑘 + 𝑛𝑣𝑘 + 1) ≥ 𝑀𝑏 + 1

𝑎 (𝑐𝑣𝑖 − 𝑔𝑣𝑖 (1 + 𝑛𝑣𝑖 ) + 𝑔𝑣𝑖 (𝑛𝑣𝑖 )).
Finally, if

∑
𝑣∈𝑉 𝐶𝑣 ≤ 𝐵, we conclude that this PNM problem

have a solution modification ⋓𝑣∈𝑉 𝐸𝑣 . Otherwise, we conclude that
the PNM problem is not solvable.

□

E PROOF OF THEOREM 9

Figure 3: Example Graph for KNAPSACK in Theorem 9

Proof. We reduce the PNM problem with asymmetric altruism

from the KNAPSACK problem. Given a knapsack of capacity𝑊 ,

a targeted value 𝑉 , a set of items 1, · · · , 𝑛 with values 𝑣1, · · · , 𝑣𝑛
and weights𝑤1, · · · ,𝑤𝑛 , our aim is to check whether there exists a

subset 𝑆 of items such that

∑
𝑖∈𝑆 𝑤𝑖 ≤𝑊 and

∑
𝑖∈𝑆 𝑣𝑖 ≥ 𝑉 .
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Algorithm 9: Compute edge modification for 𝑣

Input: 𝑔𝑣1
, ..., 𝑔𝑣𝑛 , 𝑐𝑣, 𝑎, 𝐶 (𝑒), 𝐵, 𝐻 , ,x*, 𝑉

Output: 𝐶𝑣 , 𝐸𝑣
𝐶𝑣 ← 𝐵 + 1 ;

𝐸𝑣 ← {} ;
for 𝑣 𝑗 ∈ 𝑁𝑣𝑖 do

𝐸 𝑗 ← {} ;
𝑒 𝑗 ← 𝑛𝑢𝑙𝑙 ;

𝑀𝑏 = 𝑔𝑣𝑗 (𝑥𝑣𝑗 + 𝑛𝑣𝑗 ) ;
𝐶𝑚𝑖𝑛 ← 𝐵 + 1 ;

𝐶𝑠𝑢𝑚 ← 0 ;

if (𝑣 𝑗 , 𝑣𝑖 ) ∈ 𝐻 then
𝐶𝑠𝑢𝑚 = 𝐶 ((𝑣 𝑗 , 𝑣𝑖 )) ;

end
for 𝑣𝑘 ∈ 𝑁𝑣𝑖 /{ 𝑗} do

if 𝑔𝑣𝑘 (𝑥𝑣𝑘 + 𝑛𝑣𝑘 ) < 𝑀𝑏 then
if (𝑣𝑘 , 𝑣𝑖 ) ∈ 𝐻 then

𝐶𝑠𝑢𝑚 = 𝐶𝑠𝑢𝑚 +𝐶 ((𝑣𝑘 , 𝑣𝑖 )) ;
append (𝑣𝑘 , 𝑣𝑖 ) to 𝐸 𝑗 ;

end
end
else if 𝑔𝑣𝑘 (𝑥𝑣𝑘 + 𝑛𝑣𝑘 + 1) ≤
𝑀𝑏 + 1

𝑎 (𝑐𝑣𝑖 − 𝑔𝑣𝑖 (1 + 𝑛𝑣𝑖 ) + 𝑔𝑣𝑖 (𝑛𝑣𝑖 )) then
if (𝑣𝑘 , 𝑣𝑖 ) ∈ 𝐻 then

𝐶𝑚𝑖𝑛 ← 0 ;

𝑒 𝑗 ← 𝑛𝑢𝑙𝑙 ;

end
else

if 𝐶 ((𝑣𝑘 , 𝑣𝑖 )) < 𝐶𝑚𝑖𝑛 then
𝐶𝑚𝑖𝑛 ← 𝐶 ((𝑣𝑘 , 𝑣𝑖 )) ;
𝑒 𝑗 ← (𝑣𝑘 , 𝑣𝑖 ) ;

end
end

end
end
if 𝐶𝑠𝑢𝑚 +𝐶𝑚𝑖𝑛 < 𝐶𝑣 then

𝐶𝑣 ← 𝐶𝑠𝑢𝑚 +𝐶𝑚𝑖𝑛 ;

𝐸𝑣 ← 𝐸 𝑗 ∪ {𝑒 𝑗 } ;
end

end
return 𝐶𝑣, 𝐸𝑣

Construct an instance of PNM with asymmetric altruism. The

relation network 𝐺 = (𝑉 , 𝐸) is defined as follows:

𝑉 = {𝑢𝑖 : 𝑖 ∈ [2𝑛 + 2]}
𝐸 = {{𝑢𝑖 , 𝑢𝑛+𝑖 } : 𝑖 ∈ [𝑛]} ∪ {{𝑢𝑖 , 𝑢2𝑛+1} : 𝑖 ∈ [𝑛]} ∪ {𝑢2𝑛+1, 𝑢2𝑛+2}
Let 𝑎 = 1 and the prosocial graph 𝐻 (𝑉 , 𝐸′) be empty. Set the

target profile x∗ to be the one where all players invest. This target

profile turns out to be the only maximizer of social welfare in our

construction. We will show the equivalence in later proof. Now we

define the functions 𝑔𝑢 (.). Set 𝑔𝑢2𝑛+1 (𝑥) = 0 and 𝑔𝑢2𝑛+2 (𝑥) = 𝑥 · 2𝑉
for all 𝑥 ⩾ 0. For all 𝑖 ∈ [𝑛], 𝑔𝑢𝑖 (𝑥) = 𝑥 · 𝑣𝑖 for all 𝑥 ⩾ 0. For all

𝑖 ∈ [𝑛], 𝑔𝑢𝑛+𝑖 (𝑥) = 𝑥 ·𝑉 for all 𝑥 ⩾ 0. For all 𝑖 ∈ [2𝑛 + 2], 𝑐𝑢𝑖 = 𝑉 .

The cost of introducing the edge (𝑢2𝑛+1, 𝑢𝑖 ) is 𝑤𝑖 for 𝑖 ∈ [𝑛]. The
cost of introducing the edge (𝑢2𝑛+1, 𝑢2𝑛+2) and (𝑢2𝑛+2, 𝑢2𝑛+1) is 2𝑊 .

For remaining edges 𝑒 , cost of adding 𝑒 is 0. Let the total budget be

𝑊 . The reduction clearly can be constructed in polynomial time.

Now we prove that in the construction above, the profile where

all players invest maximizes social welfare. To maximize the social

welfare, for 𝑖 ∈ [𝑛], as 𝑢𝑖 is connected to 𝑢𝑛+𝑖 and 𝑢2𝑛+1, so if 𝑢𝑖
invests, the social welfare is changed by 𝑉 + 𝑣𝑖 −𝑉 > 0, so 𝑢𝑖 must

invest; Similarly, for 𝑖 ∈ [𝑛], as 𝑢𝑛+𝑖 is connected to 𝑢𝑖 , so if 𝑢𝑛+𝑖
invests, the social welfare is changed by𝑉 +𝑣𝑖 −𝑉 > 0, so𝑢𝑛+𝑖 must

invest; For 𝑢2𝑛+2, as 𝑢2𝑛+2 is connected to 𝑢2𝑛+1, so if 𝑢2𝑛+2 invests,

the social welfare is changed by 2𝑉 −𝑉 > 0, so 𝑢2𝑛+2 must invest.

For 𝑢2𝑛+1, as 𝑢2𝑛+1 is connected to 𝑢2𝑛+2 all 𝑢𝑖 for 𝑖 ∈ [𝑛] , so if

𝑢2𝑛+1 invests, the social welfare is changed by
∑𝑛
𝑖=1

𝑣𝑖 + 2𝑉 −𝑉 > 0,

so𝑢𝑛+𝑖 must invest. Then the target profile where the social welfare

is maximized is equal to the target profile where all players invest.

Now we show that KNAPSACK Problem is a “YES” instance if

and only if PNM with asymmetric altruism is a “YES” instance.

First, suppose that there is a set 𝑆 of items that solves the KNAP-

SACK problem. Then, we introduce all the edges (𝑢2𝑛+1, 𝑢𝑖 ) for
𝑖 ∈ 𝑆 . Each node 𝑢𝑖 will invest and the cost of introducing these

edges will not exceed the budget𝑊 .

For the converse direction, let the PNMwith asymmetric altruism

be a “YES” instance. Set the set of edges introduced as 𝑆 ′. Let 𝑆 :=

{𝑖 : (𝑢2𝑛+1, 𝑢𝑖 ) ∈ 𝑆 ′}. Hence if the subset 𝑆 of items is chosen then

we have

∑
𝑖∈𝑆 𝑣𝑖 ⩾ 𝑉 and

∑
𝑖∈𝑆 𝑤𝑖 ⩽ 𝑊 . Hence the KNAPSACK

problem is “YES” instance.

The prove of PNM with symmetric altruism is almost the same.

We reduce it to the same KNAPSACK problem, with the only differ-

ence being the definition of edge adding / removing. We now rede-

fine it for this situation. The cost of introducing the edge {𝑢2𝑛+1, 𝑢𝑖 }
is 𝑤𝑖 ; The cost of introducing the edge {𝑢2𝑛+1, 𝑢2𝑛+2} is 2𝑊 ; For

remaining edges 𝑒 , cost of adding 𝑒 is still 0. The remainder of the

proof is identical. □

F PROOF OF THEOREM 10
Proof. We reduce the PNM problem with asymmetric altruism

from the KNAPSACK problem. The instance of KNAPSACK is the

same as the proof of theorem 9.

We then construct an instance of PNMwith asymmetric altruism.

The relation network 𝐺 = (𝑉 , 𝐸) is defined as follows:

𝑉 = {𝑢𝑖 : 𝑖 ∈ [𝑛 + 2]}
𝐸 = {(𝑢𝑖 , 𝑢 𝑗 ) : 𝑖 , 𝑗 ∈ [𝑛 + 2], 𝑖 < 𝑗}

Let 𝑎 = 1 and the prosocial graph 𝐻 (𝑉 , 𝐸′) be empty. Let the target

profile 𝑥∗ be the one where all players invest. It is equivalent to
the profile that maximizes social welfare, which we will prove later.

Now we define the functions 𝑔𝑢 (.) for all 𝑢 ∈ V . Set 𝑔𝑢𝑛+1 (𝑥) = 0

and 𝑔𝑢𝑛+2 (𝑥) = 𝑥 · 2𝑉 for all 𝑥 ⩾ 0. For all 𝑖 ∈ [𝑛], 𝑔𝑢𝑖 (𝑥) = 𝑥 · 𝑣𝑖
for all 𝑥 ⩾ 0. Set 𝑐𝑢2𝑛+1 = 𝑉 and for any other 𝑖 ∈ [𝑛 + 2], 𝑐𝑢𝑖 = 0.

The cost of introducing the edge (𝑢𝑛+1, 𝑢𝑖 ) is 𝑤𝑖 for 𝑖 ∈ [𝑛]. For
remaining edges 𝑒 , cost of adding 𝑒 is 2𝑊 . Let the total budget be

𝑊 . The reduction clearly can be constructed in polynomial time.

We then prove that in the construction above, the profile where

all players invest maximizes social welfare. Since the relation graph

is a clique, for all 𝑖 ∈ [𝑛+2], if𝑢𝑖 invest, the positive change of social
welfare from the contribution of 𝑔𝑢𝑛+2 is 2𝑉 and the cost is only 𝑉 .
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Then the target profile where the social welfare is maximized is

equal to the target profile where all players invest.

Now we show that KNAPSACK Problem is a “YES” instance if

and only if PNM with asymmetric altruism is a “YES” instance.

First, suppose that there is a set 𝑆 of items that solves the KNAP-

SACK problem. Then, we introduce all the edges (𝑢𝑛+1, 𝑢𝑖 ) for 𝑖 ∈ 𝑆 .
Each node 𝑢𝑖 will invest and the cost of introducing these edges

will not exceed the budget𝑊 .

For the converse direction, let the PNMwith asymmetric altruism

be a “YES” instance. Set the set of edges introduced as 𝑆 ′. Let 𝑆 :=

{𝑖 : (𝑢𝑛+1, 𝑢𝑖 ) ∈ 𝑆 ′}. Hence if the subset 𝑆 of items is chosen then

we have

∑
𝑖∈𝑆 𝑣𝑖 ⩾ 𝑉 and

∑
𝑖∈𝑆 𝑤𝑖 ⩽ 𝑊 . Hence the KNAPSACK

problem is a “YES” instance.

The prove for PNM with symmetric altruism is similar. We re-

duce the problem to the same KNAPSACK problem, with the only

difference being the definition of adding / removing edges: The cost

of introducing the edge {𝑢𝑛+1, 𝑢𝑖 } is𝑤𝑖 . For other edges 𝑒 , cost of

adding 𝑒 is still 2𝑊 . The remainder of the proof is identical. □

G PROOF OF THEOREM 11
Proof. To prove this claim, we shall prove that the modification

solution for PNM problem with egalitarianism is just the solution

for PNM problem with altruism.

For the target x∗ in which all 𝑥𝑣 = 1, we have:

𝑈
(𝐹 )
𝑣 (1, x−𝑖 ) = 𝑔𝑣 (1 + 𝑛𝑣) + 𝑎 min

𝑢′∈𝑁𝑣

𝑔𝑢′ (𝑥𝑢′ + 𝑛𝑢′ ) − 𝑐𝑣 ≥ (8)

𝑔𝑣𝑛𝑣 + 𝑎 min

𝑢∈𝑁𝑣

𝑔𝑢𝑥𝑢 (𝑥𝑢 + 𝑛𝑢 − 1) = 𝑈
(𝐹 )
𝑣 (0, x−𝑖 ).

Let𝑤 = arg min

𝑢∈𝑁𝑣

𝑔𝑢𝑥𝑢 (𝑥𝑢 + 𝑛𝑢 − 1).

𝑈
(𝐴)
𝑣 (1, x−𝑖 ) = 𝑔𝑣 (1 + 𝑛𝑣) + 𝑎

∑︁
𝑢∈𝑁𝑣

𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 ) − 𝑐𝑣

= 𝑔𝑣 (1 + 𝑛𝑣) + 𝑎𝑔𝑤 (𝑥𝑤 + 𝑛𝑤) − 𝑐𝑣 + 𝑎
∑︁

𝑢∈𝑁𝑣/𝑤
𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 )

≥ 𝑔𝑣 (1 + 𝑛𝑣) + 𝑎 min

𝑢′∈𝑁𝑣

𝑔𝑢′ (𝑥𝑢′ + 𝑛𝑢′ ) − 𝑐𝑣 + 𝑎
∑︁

𝑢∈𝑁𝑣/𝑤
𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 )

≥ 𝑔𝑣 (𝑛𝑣) + 𝑎𝑔𝑤 (𝑥𝑤 + 𝑛𝑤 − 1) + 𝑎
∑︁

𝑢∈𝑁𝑣/𝑤
𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 − 1)

= 𝑔𝑣 (𝑛𝑣) + 𝑎
∑︁
𝑢∈𝑁𝑣

𝑔𝑢𝑥𝑢 (𝑥𝑢 + 𝑛𝑢 − 1) = 𝑈
(𝐴)
𝑣 (0, x−𝑖 ) .

The first inequality is correct because 𝑔𝑤 (𝑥𝑤 + 𝑛𝑤) ≥ 𝑎 min𝑢∈𝑁𝑣

𝑔𝑢′ (𝑥𝑢′ + 𝑛𝑢′ ). Eq. (8) ensures the second inequality. Thus, 𝑣 won’t

deviate from playing 1 in PNM with altruism.

For the target x∗ maximizing the social welfare, if 𝑥𝑣 = 0, then

𝑔𝑣 (𝑛𝑣 ) − 𝑔𝑣 (1 + 𝑛𝑣 ) + 𝑎
∑︁

𝑢∈𝑁𝑣

[𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 ) − 𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 + 1) ] + 𝑐𝑣

≥ 𝑔𝑣 (𝑛𝑣 ) − 𝑔𝑣 (1 + 𝑛𝑣 ) +
∑︁

𝑢∈𝑁𝑣

[𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 ) − 𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 + 1) ] + 𝑐𝑣

= 𝑆𝑊 (0, 𝑥−𝑣 ) − 𝑆𝑊 (1, 𝑥−𝑣 ) ≥ 0,

where the first inequality is from the non-decreasing property of

𝑔, and the last inequality is from the assumption that x∗ maximizes

the social welfare. So

𝑈
(𝐴)
𝑣 (0, x−𝑖 ) = 𝑔𝑢 (𝑛𝑢 ) + 𝑎

∑︁
𝑢∈𝑁𝑣

𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 )

≥ 𝑔𝑣 (1 + 𝑛𝑣) + 𝑎
∑︁
𝑢∈𝑁𝑣

𝑔𝑢 (𝑥𝑢 + 𝑛𝑢 + 1) − 𝑐𝑣 = 𝑈
(𝐴)
𝑣 (1, x−𝑖 ).

Obviously, 𝑣 won’t deviate from playing 0 in PNM with altruism. A

similar analysis can be used to prove the case that 𝑥𝑣 = 1. □

H PROOF OF THEOREM 12
Proof. Let us discuss the BNPG game on original network 𝐺 =

𝐻 and suppose this game has a PSNE x. In this PSNE, if 𝑥𝑖 = 0,

𝑈
(𝐶 )
𝑖
(0, x−𝑖 ) = 𝑔𝑖 (𝑛𝑖 ) +

∑︁
𝑗∈𝑁𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 ) ≥

𝑈
(𝐶 )
𝑖
(1, x−𝑖 ) = 𝑔𝑖 (1 + 𝑛𝑖 ) +

∑︁
𝑗∈𝑁𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 + 1) − 𝑐𝑖 . (9)

Because 𝐻 = 𝐺 , we can not add edges into 𝐻 for PNM problem.

However, deleting edges cannot increase player 𝑖’s willingness to

invest, as the operations of deleting edges reduce 𝑁𝑖 .

𝑈
(𝐶 )
𝑖
(0, x−𝑖 ) = 𝑔𝑖 (𝑛𝑖 ) +

∑︁
𝑗∈𝑁 ′

𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 )

≥ 𝑔𝑖 (𝑛𝑖 ) +
∑︁
𝑗∈𝑁𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 ) −
∑︁

𝑗∈𝑁𝑖/𝑁 ′𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 + 1)

≥ 𝑔𝑖 (1 + 𝑛𝑖 ) +
∑︁
𝑗∈𝑁𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 + 1) − 𝑐𝑖 −
∑︁

𝑗∈𝑁𝑖/𝑁 ′𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 + 1)

= 𝑔𝑖 (1 + 𝑛𝑖 ) +
∑︁
𝑗∈𝑁 ′

𝑖

𝑔 𝑗 (𝑥 𝑗 + 𝑛 𝑗 + 1) = 𝑈
(𝐶 )
𝑖
(1, x−𝑖 ),

where the second inequality is from Eq.(9). By the similar analysis,

we also can conclude that player 𝑖 would not like to change her

strategy 1 if some edges are deleted, for the case of 𝑥𝑣 = 1.

Based on the above analysis, we claim that if target strategy

profile x∗ = (1, 1, · · · , 1) changes to be a PSNE after deleting edges,

then it must be a PSNE in original BNPG game. So, solving the PNM

problem with symmetric collectivism is equivalent to checking

whether x∗ = (1, 1, · · · , 1) is a PSNE in original BNPG game. □
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