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ABSTRACT
We study Stackelberg equilibria in finitely repeated games, where

the leader commits to a strategy that picks actions in each round

and can be adaptive to the history of play (i.e. they commit to

an algorithm). In particular, we study static repeated games with

no discounting. We give efficient algorithms for finding approx-

imate Stackelberg equilibria in this setting, along with rates of

convergence depending on the time horizonT . In many cases, these

algorithms allow the leader to do much better on average than they

can in the single-round Stackelberg. We give two algorithms, one

computing strategies with an optimal
1

T rate at the expense of an

exponential dependence on the number of actions, and another

(randomized) approach computing strategies with no dependence

on the number of actions but a worse dependence on T of
1

T 0.25 .

Both algorithms build upon a linear program to produce simple

automata leader strategies and induce corresponding automata

best-responses for the follower. We complement these results by

showing that approximating the Stackelberg value in three-player

finite-horizon repeated games is a computationally hard problem

via a reduction from balanced vertex cover.
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1 INTRODUCTION
The central solution concept in games is the Nash Equilibria (NE),

where each agent is playing optimally against the mixed strategy of

the other agents. NE are known to always exist in finite games [22],

and the problem of computing them has been widely studied, with

efficient algorithms developed for many special classes (See [23]),

and hardness results for general two player games (See [10], [12], [24]).

There are many natural variants of this problem. A solution con-

cept of particular interest is the Stackelberg Equilibrium (SE) [16],

in which one of the players, called the leader, is allowed to commit

to a strategy first, and communicates this strategy to the other play-

ers. This problem was first studied through a computational lens by

Conitzer and Sandholm [11], who showed efficient algorithms in

the case of two players, and hardness results for three player games,

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

and has since been the subject of many other works, including for

settings such as security games (See [1]).

In another parallel line of work, repeated games have been stud-

ied as a natural generalization of the single-shot, simultaneous

game — agents repeatedly play the same game over multiple rounds,

where the outcome in each round depends only upon the actions

played in that round. A critical point of interest about these games

is that the actions employed in each round may depend arbitrarily

upon the history of play and the internal state of each player.

Littman and Stone [20] gave an efficient algorithm for computing

finite automata Nash equilibrium strategies achieving any given

feasible payoff profile in infinitely repeated games. In more recent

work of Zhou and Tang [28], an analogous result was given for

infinitely repeated Stackleberg games, again providing an efficient

algorithm for computing finite automata strategies (and a gener-

alization to automata with infinite states) for both the leader and

follower.

Both of these works focus solely on infinitely repeated games.

Reasoning about equilibria in finite-horizon games introduces many

complexities not present in the infinite-horizon case. In infinite-

horizon equilibria, any finite prefix of play can be ignored, and

players can have threats of unbounded length. This is not true in

finite-horizon games, and furthermore finite-horizon equilibria are

sensitive to order of play and “final-round” complexities.

Benoit and Krishna [3] tackle the finite-horizon setting by pro-

viding a folk theorem for Subgame-Perfect Nash equilibria (SPNE)

for finitely repeated games. While the authors do not discuss Stack-

elberg games in their work, their results have an implicit connection

to SE computation. [3] shows that, for many static, finitely repeated

games, any individually rational and feasible payoff pair in the

game matrix can be approximated by an SPNE in the repeated

game. Given any such payoff pair, they give a method for construct-

ing a SPNE that converges to this payoff value. As we show in our

work, the payoff pair of any SE is indeed an individually rational

and feasible in the game matrix. Thus, for games which satisfy [3]’s

specifications, one could optimize over the convex set of feasible

and individually rational payoff pairs (for the payoff of the leader).

One could then use their method to construct a pair of algorithms

according to this value pair. The leader could then commit to their

side of the SPNE, which will converge to the Stackelberg value.

While this observation is a promising sign that SE computation

in finitely repeated games may be tractable, the above approach

leaves a few things open. First of all, it will only work for a sub-

set of repeated games; [3]’s construction requires that all players

have an equilibrium with a value above their minimax value. This

excludes a large class of games with interesting finitely-repeated

Session 2D: Behavioral and Algorithmic Game Theory
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

643



SE, such as Prisoner’s Dilemma
1
. Second, [3]’s result focuses on

characterizing the set of SPNE and does not provide any guarantee

on the rate of convergence. In particular, they prove that there

exists aT0 for which their construction will converge to the desired

approximation, but they provide no upper bound on how large this

T0 needs to be. Thus, there are no guarantees for the approximation

rate of their construction for any fixed horizon T , which makes it

infeasible to reason about any particular finite-horizon game.

In our work, we provide the first algorithm that computes SE

for all finitely repeated games, including games with nontrivial

SE which do not fulfill Benoit and Krishna’s specifications, such

as Prisoner’s Dilemma. In addition, our algorithm constructing

commitments has an approximation rate for every fixed T . Our
results specifically search beyond just the set of SPNE, and we

explicitly use the power of the leader to commit to playing sub-

optimally in later rounds, something which is not possible in a

SPNE (See Section 3.1 for an example).

Like previous papers on repeated games, the players in our game

are allowed to employ a broad class of algorithms (essentially any

finite time algorithm) to decide their strategies in each round based

upon this history of play and their internal state. This allows for a

large space of commitment schemes; for example, the leader can

employ “threats" such as the grim-trigger strategy in the repeated

Prisoner’s Dilemma. We summarize our main results below:

• We give two efficient algorithms that find additively approxi-

mate Stackelberg strategies for the leader that trade off different

approximation factors. First, we show a

(
2
poly(n)

T

)
- additive ap-

proximate Stackelberg strategy where n is the number of actions.

This is constructed using an algorithm that runs in polynomial

time in the game size and logT . We also present an approach

using randomized sampling which gives a O( 1

T 0.25 )-additive ap-

proximation that runs in time polynomial in the game size and

T 2
. This second approach provides a slightly weaker approxi-

mation factor in T in exchange for entirely avoiding dependence

on n. Both constructions use simple automata (including states

that play distributions over actions) for the leader and also for

a corresponding follower best-response. We leave it as an open

question whether there is an algorithm combining the best of

both rates.

• Building upon a reduction of Conitzer and Sandholm [11] that

showed that finding the Stackleberg value of a three player game

is NP-hard, we show that even approximating the Stackelberg

value of a three player repeated game upto an additive factor

of
1

T 1/k is NP-hard (Theorem 3) for any integer k , ruling out

any extension of our results for two player repeated games. We

also use the same reduction to observe that approximating the

Stackelberg value of three-player infinitely repeated games is

NP-hard. These results can be found in Section 5.

We also show a sequence of auxiliary results, that we discuss

briefly here to help the reader to navigate through the paper.

1
The unique SPNE for Prisoner’s dilemma is both players defecting in every round of

play, via backward induction. Interestingly, we show in Section 3.1 that the Stackelberg

value of the finitely repeated Prisoner’s Dilemma is strictly larger than the value from

the unique SPNE

2
The approximation factors also depend upon the maximum number of bits needed to

represent a single payoff.

• We show that finding a follower’s best-response even to a poly-

time leader strategy is in general a computationally hard problem

However, our approximate Stackelberg leader algorithm (Theo-

rem 2) has an efficiently computable best-response We discuss

these results in the full version.

• We show that the optimal Stackelberg leader strategy may be

different from simply playing the single-shot game’s Stackelberg

strategy in each round of play, through the example of the well

known Prisoner’s Dilemma (Section 3.1).

• No-Regret algorithms are widely studied in the context of re-

peated games, due to their strong performance and strategic

properties (See [6], [13]). A natural question is whether no-regret

algorithms are in fact optimal leader algorithms in the Stackel-

berg setting. We show that, somewhat unsurprisingly, arbitrary

no-regret algorithms are in fact Stackelberg leader algorithms

in two player zero-sum games. In contrast, we show via a coun-

terexample that these properties do not hold when the zero-sum

condition is removed, necessitating the broadening of the search

to a more general class of algorithms. These results can be found

in the full version.

• Further, we generalize this result by showing that the class of

learning algorithms (i.e. those algorithms that do not assume

initial knowledge of the matrix, but learn the payoffs of each

action after each round of play) does not always contain the

optimal Stackelberg strategy for the leader. In the full version,

we show a simple pricing game where learning algorithms are

strictly sub-optimal for the leader to commit to.

Our Techniques. In proving our main result (Theorem 2) about

efficiently computing a near optimal Stackelberg leader algorithm,

we use a sequence of ideas. Our main workhorse is a linear program

(similar in spirit to that of [28]) that is used to upper bound the

average (per round) payoff that the leader can guarantee themselves

against a rational follower. This linear program additionally gives

us an “ideal" empirical distribution over the action pairs that the

transcript of play must follow to achieve the aforementioned value.

We then convert this ideal empirical distribution into a concrete

transcript of play for both the leader and follower. Akin to [20], [28]

and [3] we use the notion of “threats" to stabilize such a transcript

so as to force the follower to play along with it. Our construction

carefully choreographs the order of action pairs in this transcript to

ensure that the follower’s best response is to follow the prescribed

transcript.

One might ask why we explicitly prescribe these ordered pairs,

instead of allowing the leader to draw pairs from the LP distribution

i.i.d. each round. The problem is that even if the leader commits to

drawing from this distribution and playing their side of the strategy,

they have no way to signal to the follower what they should play

at any given round before play occurs. Our approach, in spirit,

involves the leader pre-committing to these signals at the start

of the game. However, this means that the follower can see the

payoffs of the specific move pairs they will be asked to play each

round (as opposed to an expected payoff over an i.i.d. draw), which

necessitates the ordering of pairs by increasing follower payoff. The

transcript we construct forces through the worst action pairs for

the follower first, and adds “treats" at the end to ensure that the

follower is incentivized to follow the prescription at each round
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of the game. The approximation to the upper bound comes from

“fitting” a probability distribution to a finite number of rounds T ,
and improves as T grows larger. While the average values of the

leader and follower in the transcript will approximate their value in

the LP distribution for large T , the ordering means that the actual

transcript will not look like a typical sequence of i.i.d. draws from

the distribution.

While the above approach gives us a rate of convergence to op-

timality that depends, possibly exponentially badly, on the number

of actions for each player in the game, we show in the full version

how to eliminate the dependence upon the number of actions. The

main idea involved is a randomized sampling scheme that allows us

to simplify the ideal empirical distribution found by the linear pro-

gram. This process can also be viewed as randomized rounding of

the linear program’s solution to a more succinctly representable so-

lution. This rounding also introduces randomization in the leader’s

algorithm, and converts the absolute guarantee of near-optimality

into a high probability guarantee.

In Theorem 3, where we show the hardness of approximation of

computing the Stackelberg value of repeated three player games, we

demonstrate a gap-producing reduction from the balanced Vertex

Cover problem. This reduction builds upon [11], which showed

that finding the Stackelberg value of three-player games is NP-hard

also via reduction from balanced Vertex Cover. Their hard instance

does not directly extend to repeated games because of the richness

of new strategies available to the leader(s) in the repeated setting.

Most of the work in our reduction goes into proving a stronger

result about the single-shot case, which we do in the full version.

We can then lift this stronger result to the game with T repeated

rounds and prove hardness of approximation in Theorem 3. We also

observe that the same lemma can be used to show that finding the

approximate Stackelberg value of three-player infinitely repeated

games is NP-hard. In the interest of spaces, many proofs have been

deferred to the full version of the paper.

2 RELATEDWORK
The notion of Stackelberg Equilibria (SE) was first introduced by

von Stackelberg in [16], who observed the advantage of strategic

commitment in Cournot’s duopoly model. Some followup work

in the next decades did focus on applying the concept to repeated

games, but these works focused on proving necessary and suffi-

cient conditions for SE existence in various settings, rather than on

constructive algorithms. [26] explores SE in repeated games where

the payoff matrix is either static or dynamic. They consider games

where players have have an infinite number of moves (a setting

where even Nash Equilibria may not exist) and derive conditions for

SE existence. [8] consider sequential Stackelberg games, repeated

games where the state of the game matrix is affected by the moves

that the players play each round. This setting is distinct from our

own in that the leader makes a commitment each round instead of

committing to an algorithm at the start of the game.

[3] study Subgame Perfect Nash Equilibria (SPEs) in finitely

repeated games and show that for a subset of these games, any

feasible, individually rational pair of payoffs can be approximated

to arbitrary precision for large enough time horizons. As discussed

in the introduction, this work implies an algorithm for finding SE

in finitely repeated games, but only for a subclass of games and

without convergence bounds.

In [11], Conitzer and Sandholm gave a polynomial algorithm

for computing exact Stackelberg mixed strategies in single-shot,

two-player games, bringing new algorithmic interest to the study

of computing SE. Their method involves solving n linear programs,

with the ith program representing the best payoff that the leader

can get given that they are incentivizing the follower to play pure

strategy i . Picking the highest payoffs over all of these LPs gives

the leader their Stackelberg strategy for a single-shot game. They

go on to prove that computing an exact Stackelberg strategy in a

three-player game is NP-hard, via a reduction from Vertex Cover. A

closely related work is [27], which proves various properties about

single-shot SE games with convex strategy sets. These works led

to further research considering the complexity of computing SE in

various settings. The most closely related followup work involves

NP-hard results for stochastic and extensive-form games, which

are superclasses of finite-horizon repeated games, and a poly-time

algorithm for infinite-horizon repeated games. These results do not

imply our results; more discussion on this can be found in the full

version.

One recent and closely related line of work investigates learning
Stackelberg strategies in static repeated games. In the learning

setting, the Stackelberg leader begins with no knowledge of the

payoff matrix, and only gains information via seeing their own

payoff (and the opponent’s move) after each round. Most works

in this space assume that the opponent is responding myopically

each round [2], [21], [18], and thus the leader’s goal is to learn and

begin to play their single-round Stackelberg strategy. More similarly

to our work, [14] instead studies a non-myopic (but discounting)

follower and a learning leader, and develops a leader algorithm via

a reduction to bandit optimization in the presence of myopic agents.

As with previous papers in the learning setting, their algorithms

use the single-round Stackelberg value as a benchmark.

Like [14], our paper assumes a non-myopic follower, though

without discounting. In sharp contrast to their work, the leader in

our model has full access to the entire payoff matrix at the start

of the game. Stackelberg strategies in the full information setting

are substantially different from those in the learning setting. To

emphasize this point, we show a simple repeated pricing game

(with no discounting) in which the Stackelberg value of the leader

in the full information setting is strictly larger than the Stackelberg

value of a leader in the learning setting. This can be found in the

full version.

There is also work which reasons directly about the repeated-

game setting, but considers the substantially distinct case of infinite-

horizon repeated games. Zuo and Tang give a poly-time algorithm

for computing SE in the space of machine strategies, which are

automata that may have infinite states [28], and generalize their

results to probability distributions over subclasses of these machine

strategies. Similar to our work, [28] solve an LP which optimizes the

leader’s payoff when constrained to offer the follower better than

their safety value (called a security level in their paper). However,

their proof heavily relies upon the infinite nature of the game. They

present a Folk Theorem for infinite-horizon repeated games using

machine strategies and use this to construct optimal commitments

in the form of state machines. These state machines may have an
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infinite number of states, and therefore they do not explicitly rep-

resent them but rather show the existence of a Turing Machine

which can do so. They also show additional results that examine

how limiting the memory level of the leader and follower’s machine

strategies can affect game outcomes. Their work can be seen as

a Stackelberg analogue of Littman and Stone’s paper, [20]. Both

works examine infinite-horizon repeated games, and both utilize

constructive versions of Folk Theorems in order to construct strate-

gies (in the space of algorithms) that are in (the respective type of)

equilibrium.

Work in finding equilibria in infinite-horizon repeated games

cannot be directly applied to finite-horizon repeated games, as the

algorithms for these two settings are structurally incomparable.

While algorithms for infinite-horizon games have no sense of game

length or game ending, algorithms for finite-horizon games can

be constructed with the game length in mind. An algorithm for a

finite-horizon repeated game can therefore behave differently, for

example, in the final move of a game, or operate entirely differently

depending on the initial game length.

From a hardness perspective, Conitzer and Sandholm [11] showed

that finding the Stackelberg value of a three player game isNP-hard.

Conitzer and Letchford [19] showed that finding the Stackelberg

value of a three player extensive-form game is NP-Hard. We extend

the former and generalize the latter result by proving hardness

of approximation for finite-horizon repeated three-player games.

Borgs et al. [7] showed that no efficient algorithms exist for finding

Nash Equilibrium in three player infinite-horizon repeated games

unless PPAD is in P when players use algorithms that depend only

upon the history of play (and not upon internal state). Halpern et.

al. [15] later showed that this hardness result can be surmounted

if the players are allowed to use (probabilistic polynomial time)

algorithms that depend both upon the history of play as well as

internal state (by demonstrating an efficient algorithm that finds a

ε-approximate equilibrium). Their model is an infinite-round ana-

logue of our model (and that of [19] for EFGs), which also allows the

player’s algorithms to generate actions using randomness, history

of play and internal state.

In the context of playing repeated games using algorithms, we

also mention no-regret algorithms, which were developed for deci-

sion making in online environments with experts (See [9]). Multiple

papers (See [13], [4]) observed that these algorithms can be used

by self interested agents to play repeated games due to the guar-

antees associated with them. In particular, in two player zero-sum

games, the transcript of play converges to a Nash Equilibrium if all

players use a no-regret algorithm, and to coarse correlated equilib-

ria in general games. For special classes of games, such as atomic

routing games/ congestion games ([5], [17]) these are particularly

compelling algorithms to use, since they guarantee convergence

to Nash Equilibria and stability. However, as we show in the full

version, no-regret algorithms are not in general good algorithms

for a leader to commit to in the Stackelberg setting.

We summarize the main results in the field of finding equilibria

in single-shot games, finite-horizon repeated games, and infinite-

horizon repeated games in Table 1. Our new contributions are

bolded and in blue.

3 NOTATION AND PRELIMINARIES
Definition 1 (Bimatrix Games). A bimatrix game G is defined

by two n ×n matricesM1 andM2 that respectively denote the payoffs
for Player 1 and Player 2 for each combination of actions chosen by the
two players. We assume, without loss of generality, that both players
have the same number of actions, and that their respective action sets
are both indexed by the set {1, 2, · · ·n} denoted as [n]. If Player 1 plays
action i and Player 2 plays action j , then they get payoffsM1(i, j) and
M2(i, j). In the asymmetric Stackelberg setting, Player 1, or the row
player, is assumed to go first and is referred to as the leader while
Player 2, or the column player, is called the follower. The strategies
for Players 1 and 2 are points x,y in ∆n := {x ∈ Rn+ :

∑
i xi = 1}

denoting the weights they place on the actions in their respective
action sets. A pure strategy i ∈ [n] is represented by the standard basis
vector ei . The expected payoff of Player 1 (respectively 2) is x⊺M1y
(respectively x⊺M2y). We assume that each entry in the payoff matrix
is in [−1, 1] and is additionally an integer multiple of 1

A , where A is a
sufficiently large integer.A can be seen as a measure of the granularity
of the payoff values and will become relevant when defining our
approximation guarantees.

Definition 2 (Nash Eqilibria in Single-Shot Games). A
pair of strategies x,y ∈ ∆n form a Nash Equilibrium for the game G
if there is no incentive for either player to deviate unilaterally, i.e. for
all pure strategies ei (ej ) of Player 1 (2), we have x⊺M1y ≥ e

⊺
i M1y (

x⊺M2y ≥ x⊺M2ej ).

Definition 3 (Stackelberg Eqilibria in Single-ShotGames).

A strategy x ∈ ∆n is said to be a Stackelberg strategy for the leader if
it maximizes x⊺M1y where y ∈ ∆n is a best response for the follower
to x . Note that it suffices for the follower to play a pure strategy ej
as a best response. The induced play (x,y) is called the Stackelberg
Equilibria (SE) of the game. For the purposes of this paper, we assume
that the follower selects a best possible best response for the leader if
there are multiple best response strategies, a common assumption in
Stackelberg literature. SE with this sort of tiebreaking assumption are
known as Strong Stackelberg equilibria, but for simplicity we will
simply refer to SE throughout this paper.

Definition 4 (Repeated Bimatrix Game). A repeated bima-
trix game is defined by a bimatrix game G and a time horizon T ,
both of which are known to all players. Players will play the game
G for exactly T rounds, and their payoffs will be the sum of their
payoffs over all rounds. The payoff matrix will remain static through-
out all rounds. However, players may play different mixed strate-
gies on different rounds and dynamically update their strategies
based upon previous rounds of play. We refer to the pairs of actions
(i1, j2); (i2, j2), · · · (iT , jT ) played in the T rounds as the transcript of
the game and use T to represent this transcript. The values of in-
terest to us are the expected average per-round payoffs of the two
players where the expectation is over the random bits used by the
players. If T = ∞, then we call this an infinite-horizon game. For
much of this paper, we will consider finite T , in which case we call
this a finite-horizon game.

It is obvious that players in a finite-horizon repeated game have

a much richer action space than in a single-shot game, since their

actions can depend upon the outcomes of the previous rounds, and

even upon their internal states (possibly influenced by the random
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Table 1: Summary of known results

Single-shot Finite Horizon Infinite Horizon

2-player NE Hardness of o(1) -

approximation [24]

Poly-time algorithm for Conver-

gence to every SPNE [3], Hard-

ness of o
(
1

T

)
- approximation

1

Poly-time algorithm for exact so-

lution [20]

3-player NE Hardness of o(1)-
approximation [24]

Hardness of o
(
1

T

)
-

approximation
1

Hardness of exact solu-

tion [7], hardness of
1

poly(n) -

approximation with no internal

states [7]

2-player SE Poly-time algorithm for exact so-

lution [11]

Poly-time
min

((
2
poly(n)

T

)
, 1

T 0.25

)
-

approximation algorithm
(Thm 2)

Poly-time algorithm for exact so-

lution [28]

3-player SE Hardness of o(1)- approxima-

tion [11]
2

Hardness of
(

1

T
1

c

)
-

approximation (Thm 3)

Hardness of
(

1

poly(n)

)
-

approximation (Full Version)
3

1
These results come from the fact that, in finite-horizon repeated games, any pair of NE strategies must involve always playing a single-shot NE

on the final round. The single-shot hardness result can therefore be used to implies that getting a o( 1T ) approximation overT rounds is PPAD-hard.

2
While their paper does not explicitly claim such a result in a lemma, their proof for hardness of finding an exact SE is in fact a hardness result for

finding any approximate SE.

3
We do not provide a complete proof of this result, as the model we developed for this paper only makes sense for the finite-horizon case, but we

provide a proof sketch and intuition.

coins flipped in previous rounds). Therefore, we need to formalize

exactly what this action spaces consists of – in our paper, the

players are assumed to delegate their play to algorithms, possibly

randomized, that make their choices for them. We offer a general

definition below.

Definition 5 (Game Playing Algorithm). AGame Playing Al-
gorithm or GPA for a finite-horizon repeated game (G, T ) is defined
as a randomized algorithm that, in each round, takes as input the
previous round’s action pair and outputs an action for the current
round. We allow this algorithm to have memory; in particular, it re-
members what it needs to of the previous history of play as well as
the random bits used to come up with actions in previous rounds. 3.
Implicitly, it computes a distribution in ∆n over the n actions to be
played in the t-th round, and then uses the randomness to select and
play a particular action.

We say that a Game Playing Algorithm is deterministic if it does
not use any random bits. It is worth noting that each deterministic
GPA can be rewritten as/ shown to be equivalent to a look-up table ,
implying that operationally, the set of deterministic GPAs is finite.

To give further intuition for the richness of GPAs, consider some

arbitrary game where the leader player has two moves, i1 and i2,
and the follower player has two moves, j1 and j2. We provide some

mechanics that GPAs support, along with (informal) descriptions

of example leader GPAs exhibiting these mechanics:

3
The fact that the algorithm can store previously used random bits allows for correla-

tions in the probabilistic decisions made across rounds.

• History-dependency: play i1 as long as the follower plays j1; if
the follower ever plays j2, play i2 for all remaining rounds.

• Time-dependency: play i2 on the final round, and i1 on all other

rounds.

• Randomness: flip a new coin each round; play i1 if heads, and i2
if tails.

• Correlated randomness: flip a coin at the start of the game. If

heads, in all T rounds of the game, flip a new coin, and play i1 if
heads and i2 if tails. Otherwise, in all T rounds of the game, play

i1.

Observation 1. The set of GPAs can equivalently be seen to be
probability distributions over deterministic look-up tables. However,
we keep this definition, since it offers a framework for succinct repre-
sentations for these algorithms (for example - no-regret algorithms).

We are almost ready to define a notion of SE for repeated bimatrix

games. However, it is not a priori obvious that there exists a well

defined best-response Game Playing Algorithm for the follower

given a fixed GPA for the leader. We show that a best-response

GPA is in fact well defined, and that, in fact, it can be found among

the set of deterministic (though potentially adaptive) GPAs. This

result is analogous to the result in single-shot games that there

always exists a best response pure strategy, and in fact uses this

connection to work backward from the last round of play. Another

way of seeing this result is to observe that finite-horizon repeated

games can be rewritten as a large normal form game, implying the

result. The proof can be found in the full version.
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Lemma 1. For any leader GPA by Player 1, there exists a best
response Game Playing Algorithm by Player 2 within the set of de-
terministic lookup table GPAs, which is a finite set. Therefore, a best
response is well-defined in the GPA space.

It is even less apparent that an optimal leader algorithm to com-

mit to is well defined – we provide a constructive proof of existence.

Theorem 1. There exists an optimal GPA P for the leader such
that no other GPA, when paired up with its corresponding follower
best response, gives the leader a better payoff than P does against the
corresponding follower best response.

The key idea behind this proof is to observe that finite-horizon

repeated games can be rewritten as normal form games, albeit at

the cost of an exponential blow-up in the number of actions. This

is not a new idea; [19] makes the same observation in the context

of Extensive-form games, which generalize finite-horizon repeated

games. For sake of completeness, we sketch out the proof of this

result in the full version.

Definition 6 (Approximate Stackelberg GPA). Let Pmax be
the payoff that an optimal leader GPA obtains against a best-responding
follower. Then a leader GPA P is a c-approximate Stackelberg GPA
for any c > 0 if it obtains payoff at least Pmax + c . Note that the
approximation definition only allows slack in the leader’s payoff–we
still require that the follower is exactly best-responding.

The precise computational question that we answer affirmatively

in this paper is thus as follows: given a two player game G (param-

eterized by the number of actions n and the granularity A), and a

time horizon T , does there exist an efficient algorithm to find an

approximate Stackelberg GPA for the leader?

3.1 Separation of Repeated SE from
Single-Round SE

Even in a single-shot game, the Stackelberg leader can often expect

value higher than that of their best Nash equilibrium. As being a

leader in a single-shot game is so powerful, a natural question to

ask is if repeated rounds can really strengthen the leader’s hand. In

particular, one might observe that simply committing to play the

single-shot Stackelberg strategy in each round will guarantee the

leader the Stackelberg value of the single-shot game on average.

We address this question by showing an example where a leader

in a finite-horizon repeated game can do strictly better on average

than getting their single-shot Stackelberg value each round. For

our example, we focus on the simple and well-studied Prisoner’s

Dilemma game PD. We will set the row player to be the leader

and the column player to be the follower. The first move for both

players represents cooperating, while the second move represents

defecting. [
(3, 3) (0, 5)

(5, 0) (1, 1)

]
Lemma 2. The gamePD repeated forT rounds withT ≥ 3 exhibits

a constant separation between the Stackelberg value and the leader
value obtained by playing the single-shot game’s Stackelberg strategy
in each round.

The intuition is as follows: in the single-round case, a Stackelberg

leader can do no better than get payoff 1, as the follower has a

dominant strategy of defecting. However, in a multi-round game,

the leader can incentivize the follower to cooperate a majority of

the time by promising to occasionally cooperate themselves, and

threatening to defect if the follower does not play along. We include

a full proof of the above lemma, along with further discussion,

in the full version.We also include an explicit construction of an

approximate Stackelberg GPA for PD using our techniques in the

full version.

4 ALGORITHMS FOR APPROXIMATE
STACKELBERG EQUILIBRIUM

We state the main result of our paper, which gives efficient algo-

rithms for computing approximate Stackelberg GPAs.

Theorem 2. We give two different efficient algorithms to compute
approximate Stackelberg GPAs for a given bimatrix game repeated
for T rounds:

• An algorithm with running time polynomial in n, logA, logT that

finds a
(
2
poly(n) ·poly(A)

T

)
-approximate Stackelberg GPA.

• A randomized algorithmwith running time polynomial inn, logA, T

that finds a O
( √

A
T 0.25

)
-approximate Stackelberg GPA (with high

probability).

The proof begins by describing an LP for any bimatrix game

which upper bounds the value guaranteed by any leader GPA for

any T . Then, we describe a way to construct a GPA using the

LP solution such that a best-response by the follower results in a

leader payoff closely approximating the LP value. We observe that,

while the setup of our LP is different than that in [28], the optimal

value is always the same (for a certain regime in their paper). The

value of the LP solution in [28] is equal to the value of the optimal

SE strategy in infinite-horizon repeated games. Thus, in finding

an approximation to the LP upper bound here, we are not only

approximating the best Stackelberg strategy for any finite T but

also the best Stackelberg straetgy for an infinite-horizon repeated

game.

An LP Upper Bound. We describe the construction of the

linear program for any bimatrix game. First, we precompute the

“threat" value V of the column player along with the associated

strategy for the row player x∗, which we call the threat strategy.

This is defined as the minimum payoff that the column player can

receive by best responding to the row player’s strategy in the static

setting i.e.V := minx ∈∆n maxj x
⊺M2ej (recall thatM2 is the payoff

matrix of the follower/ column player). Note that this is equal to

the value of a hypothetical zero-sum game between the two players

where the row player’s payoff is changed to be the negative of

the payoff of the column player, and can hence be computed in

polynomial time, as can the associated strategy x∗ of the row player.

The reason we call this the threat value is that the row player could

find a strategy that ensures the column player can do no better than

V against this strategy in any given round of play.

Next, we compute the solution of a linear program whose vari-

ables are weights {αi , j }i , j attached to each action pair in {i, j}2.
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Intuitively, the point of the linear program is to find a prescribed

probability distribution over the action pairs that maximizes the

payoff of the leader subject to the follower receiving at least their

threat value.

max

∑
i , j

M1(i, j)αi , j α ∈ Rn

subject to

∑
i , j

M2(i, j)αi , j ≥ V∑
i , j

αi , j = 1

αi , j ≥ 0 for i, j ∈ [n]2

We observe that the above LP is feasible. In particular, the distri-

bution over action pairs induced by the threat strategy x∗ of the
leader and the best response of the follower is by construction a

feasible point. Additionally, since the objective describes the payoff

generated for the leader by some distribution over the action pairs,

the LP is bounded above by the maximum payoff of the leader in the

game. Consequently, the LP has a well defined optimum solution,

which we also call α with value OPTLP .

Lemma 3. The optimum value OPTLP of the LP upper bounds the
expected per-round payoff of a Stackleberg GPA for any T .

The key intuition for this proof is that, no matter how intricate

GPA behavior may be thanks to randomness or adaptability, every

pair of leader and follower GPAs induces some distribution over

sequences of move pairs. This distribution, which is analogous to

the frequencies we solve for in our LP, determines the expected

payoff for both players. If the expected payoff for the follower

from this move pair distribution is less than their safety value, they

are certainly not best responding; thus, for this distribution to be

feasible, it must adhere to our LP constraint. Given this constraint,

our LP maximizes the payoff for the leader. Therefore, any induced

distribution which corresponds to expected payoff for the leader

cannot get value above our LP. A full proof is given in Appendix ??.

Construction of a Stackelberg GPA from the LP. A short

description of our candidate Stackelberg GPA is as follows — the

leader prescribes a sequence A = a1,a2, · · ·aT of action pairs for

both leader and follower to adhere to. In case the follower ever

deviates from this prescribed sequence, the leader then plays the

threat strategy x∗ for the remaining rounds. This sequence is built

based upon the LP solution α and has two key properties — first,

that the empirical distribution over action pairs in this sequence

approximates the distribution α and second, that at any point in

the sequence, the follower never gains more by deviating from the

sequence than following it.

The LP solution gives us the optimal distribution over action

pairs that the follower would be incentivized to play. If the leader

and follower had a shared source of randomness, they could draw

from this joint distribution each round and preserve both optimality

for the leader and incentive compatibility for the follower. However,

in our setting, there is no shared source of randomness or any

mechanism for the leader to pre-signal to the follower what to play

before each round. Therefore in our GPA the leader will prescribe

a T -round sequence inspired by the LP solution, which preserves

follower rationality while approximating optimality. We call this

GPA P∗(α).
To aid with explicitly describing this sequence, we introduce

some notation. We know that there is a polynomial time algorithm

for solving a linear program with rational coefficients that outputs

a rational solution( [25]). All coefficients in our linear program are

rational — in addition, the threat value V is also a rational number,

since it is itself the optimum of a linear program with rational

coefficients. Therefore, we can assume that each αi , j can be written

in canonical form as

pi , j
qi , j where pi , j ,qi , j ∈ N and дcd(pi , j ,qi , j ) =

1. For the next step, we re-index the action pairs from 1 to n2

such that for any two action pair k1,k2 ∈ [n2] with k1 < k2, we
have M2(k1) ≤ M2(k2). We use this indexing for the action pairs

henceforth. Let N = LCM(q1,q2 · · ·qn2 ) and letT = c ·N +r where
c is a natural number and r ∈ {1, 2, · · ·N − 1,N }. We assume T is

large enough to ensure c ≥ 1. Additionally, we refer to N as the

cycle length, for reasons that will be clear from the full description

of the GPA P∗(α).
For each action pair k , we calculate the number of times nk to

prescribe playing this action pair in the first c · N rounds, nk :=

αk · cN = c
pk
qk

N . By definition, N is divisible by qk and hence

nk is a natural number. Further, note that

∑
k nk =

∑
k αk · cN =

(
∑
k αk )·cN = cN . The prescribed sequence for the first cN moves is

to play action pair 1 for the first n1 rounds, action pair 2 for the next

n2 rounds and so on until the end of cN rounds. For all the remaining

rounds, the GPA prescribes the action pair that maximizes the

follower’s payoff.

The intuition behind this ordering is that the GPA forces through

the more ‘painful’ action pairs for the follower at the beginning

while promising rewards for cooperation and threats for defection.

As we have required r ≥ 1, the final round will always allow the

follower to get their optimal possible payoff if they have obeyed the

sequence up to this point, which resolves any “last-round” incentive

concerns.

This completes the description of the candidate Stackelberg

GPA’s prescribed sequence. The logic of the GPA itself will be to

play according to the prescribed sequence, as long as the follower

has played according the the prescribed sequence in all previous

rounds. If the follower has ever deviated from the sequence, instead

play x∗, the threat strategy, for all remaining rounds. This logic

is enforced by the functions the GPA is comprised of. A detailed

example construction, which includes explicitly constructing the

functions for the GPA, is shown in the full version.

The following lemma uses backward induction and the ordering

of the action pairs in the prescribed transcript to show that it is in

the follower’s best interest to follow the prescription. The proof of

this lemma can be found in the full version.

Lemma 4. Following the prescribed sequence for all T rounds of
play is a best-response GPA (for the follower) to the candidate leader
GPA described above.

Next, we show a lower bound on the payoff of the leader if the

follower follows the prescribed transcript.

Lemma 5. If the follower obeys the prescribed sequence, the re-
sulting payoff for the leader will get a 2N /T approximation to the
optimum value OPTLP of the LP.
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Proof. In the first cN rounds, the empirical frequencies of the

action pair in the resulting transcript (when the follower obeys the

prescribed sequence) exactly equals the probability distribution α .
Therefore, the average payoff of the leader in the first cN rounds

equals

∑
i , j M1(i, j)αi , j , which is the objective of the LP for the opti-

mal solution. In the remaining rounds, the difference in the average

payoff and the LP’s optimum objective is at most 2 — therefore,

the total payoff is at least OPTLP .(cN + r ) − 2r . Thus, we have a
2r/T ≤ 2N /T - approximation to the LP optimum, where the last

inequality comes from r ≤ N . □

Putting together Lemmas 3 and 5, our candidate GPA is shown

to guarantee a payoff to the leader that is a
2N
T -approximation

to the value generated by any GPA against a rational follower
4
.

More generally, our approximation factor can be rewritten as
f (n,b)
T

where f (n,b) = 2
poly(n,b) = 2

poly(n) · poly(A) since the number of

bits used to represent N is polynomial in n and b (recall that b is

the number of bits used to represent each payoff value). Addition-

ally, the algorithm to construct the GPA solves a linear program

that is polynomial in the size of the game, and only does count-

ing operations on T , and is therefore a polynomial in n,b, logT
algorithm

5
.

We complement this result by showing in the full versionthat it

is impossible to exactly achieve the LP upper bound. Specifically, we

show that a
1

T -approximation to the LP upper bound is inevitable,

showing that we have reached the limits of the LP based approach

with respect to the dependence upon the time horizon T . We com-

plete the proof of the theorem by showing that the judicious use

of randomization can guarantee convergence to optimality which

is independent of the number of actions n. This part is deferred to

the full version.

5 HARDNESS OF COMPUTING AN
APPROXIMATE STACKELBERG GPA IN
3-PLAYER GAMES

While we have thus far considered only two-player Stackelberg

games, the notion of an n-player Stackelberg game is also well-

defined. In an n-player Stackelberg game, there is a strict ordering

among all players. The first player in order makes a commitment,

which all players get to see. Then the second player in order makes

a commitment, and so on until the final player. In a single-shot

game, this commitment is a (possibly mixed) strategy, while in

the repeated games setting this commitment is a GPA. The SE

is achieved when the first player in order commits to something

which maximizes their expected value, given that all the remaining

players best-respond in turn. The added complexity with more than

two players is that, when making commitments, players must now

reason about not just how a single follower might respond to them

but how the follower might try to affect players further down the

line.Whenwe discuss additive approximations, we are still referring

4
The follower may choose some other equally good best response GPA – however in

the definition of Stackleberg equilbria/ GPA, the follower always picks the best possible

option from the leader’s perspective while breaking ties, so the leader’s candidate GPA

is in fact guaranteed this approximation factor

5
Finding an implicit representation of GPA can be done in time polynomial in logT ,

by, say, using a for loop. However, explicitly writing the GPA as T -functions, one for

each round, would still take time linear in T

only to the approximation to the payoff of the very first player in

line. All followers are assumed to be perfectly best-responding.

Wemust be careful when discussing hardness in algorithm space;

we cannot simply say that constructing an optimal GPA is hard

just because finding the optimal move commitments in a GPA is

hard. This is because GPAs are composed of algorithms, so the hard

computational work could be delegated to the GPA itself. Thus, our

hardness result for three-player approximation tells us two things:

1) finding the approximate value of a Stackleberg equilibrium in

the three-player setting is hard, and 2) finding an approximately

optimal GPA for Player 1 in the three-player setting is hard, as long

as all GPAs are restricted to run in poly-time. The proof of this

result has been deferred to the full version.

Theorem 3. In three-player finite-horizon repeated games over T
rounds, there exists no polynomial inn,A,T time algorithm computing

a
(
Ak

T
1

k

)
-additive approximationto the Stackelberg value of the game

unless P = NP . Here, k is any natural number.
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