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ABSTRACT
Affect understanding capability is essential for social robots to au-
tonomously interact with a group of users in an intuitive and re-
ciprocal way. However, the challenge of multi-person affect un-
derstanding comes from not only the accurate perception of each
user’s affective state (e.g., engagement) but also the recognition of
the affect interplay between the members (e.g., joint engagement)
that presents as complex, but subtle, nonverbal exchanges between
them. Here, we present a novel hybrid framework for identifying
a parent-child dyad’s joint engagement by combining a deep learn-
ing framework with various video augmentation techniques. Us-
ing a dataset of parent-child dyads reading storybooks together
with a social robot at home, we first train RGB frame- and skeleton-
based joint engagement recognition models with four video aug-
mentation techniques (General Aug, DeepFake, CutOut, and Mixed)
applied datasets to improve joint engagement classification perfor-
mance. Second, we demonstrate experimental results on the use of
trained models in the robot-parent-child interaction context. Third,
we introduce a behavior-based metric for evaluating the learned
representation of the models to investigate the model interpretabil-
ity when recognizing joint engagement. This work serves as the
first step toward fully unlocking the potential of end-to-end video
understanding models pre-trained on large public datasets and aug-
mented with data augmentation and visualization techniques for
affect recognition in the multi-person human-robot interaction in
the wild. Our code and detailed experimental results are available
at https://github.com/ybkim95/multi_person_joint_engagement
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1 INTRODUCTION
Affective communication is essential for human-human interac-
tion [42] and has strong links to learning [43], persuasion [25], and
a variety of other functions. The ability of a socially interactive ro-
bot to perceive human nonverbal cues, social signals, and emotions
is critical for engaging with humans in an intuitive, natural, and
reciprocal manner [7, 51]. This affect understanding capacity has
been identified as a basic robot capability required for higher-level
competencies in human-robot interactions [56] and contributes to
a robot’s user profiling and behavior adaptability capabilities [45].
Consequently, the objective of our research is not only to improve
the affective recognition and understanding capabilities of social
robots in multi-person human-robot interaction (HRI) scenarios but
also to assess the quality of the model for deployment.

Given the impact of parent-child affective exchanges in children’s
development and growth, parent-child interaction will be the pri-
mary application domain for our research. High-quality, reciprocal
relationships between parents and children promote children’s so-
cial, emotional, cognitive, and linguistic development [54]. However,
not all children have equal access to socially and emotionally rich
dialogic interactions, such as being prompted by open-ended ques-
tions and back-and-forth conversations [46]. Social robots have a
compelling potential to facilitate human-human connection and
conversation [29], and they can be designed to mediate parent-child
dialogic interactions by encouraging and demonstrating best ped-
agogical practices. In order to reach such capacity, affect under-
standing in amulti-person interaction context should support
robots to comprehend the interpersonal dynamics between a parent
and a child and provide timely and appropriate actions to mediate
the flow of the interaction andmaintain the engagement of the dyad.

The nonverbal cues people display in a group interaction present
excellent data sources for the development of contact-free, unob-
trusive affect recognition systems that can comprehend human-
human affective dynamics. In parent-child interactions, the parent
and child’s nonverbal behaviors, such as head/body movement, ges-
tures, and postures, are particularly important indicators to gauge
interaction quality including synchronization, engagement, attach-
ment, and shared affect [12, 23, 33]. However, automatic perception
of these affective dynamics between the members of a group via
nonverbal indicators is still much underexplored.

In an effort to further this field of study,we propose a novel hybrid
method for identifying parent-child joint engagement by combining
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a deep learning frameworkwith a range of video augmentation tech-
niques – General Aug [40], DeepFake [10], CutOut [15], and Mixed
[67]). Using the state-of-the-art action recognition algorithms such
as SlowFast [20] as basemodels,we applied video augmentation tech-
niques to improve the pre-trainedmodel’s representation learning in
order to raise its sensitivity to capture the subtle social cues that leads
to understanding the joint engagement states of parent-child dyads.
Even though SlowFast and other basemodels have been largely used
to detect human activity and motion in prior works [32, 62, 70], we
show that they also produce high performance in social cue under-
standing tasks by fine-tuning with video augmentation techniques.

Using our novel evaluation metric, we also demonstrate the in-
terpretability of the model’s learned representation. The model in-
terpretability is particularly crucial for humans to understand how
the model learns the continuous dynamics of human social cues. In
order to visualize where our model attends to in the video frames
to identify joint engagement, we compare Gradient-weighted Class
Activation Mapping (Grad-CAM) results to the social cues humans
attend to gauge joint engagement, i.e., annotation guidelines given
to human annotators.

In summary, our work contributes the following :

(1) Adapt end-to-end and skeleton-based deep learning models to
joint engagement recognition task in multi-person HRI setting.
Themodels are pre-trained on large public datasets of human ac-
tion and activity recognition task and fine-tunedwith video aug-
mentation techniques for recognitionofpsychologicalprocesses,
i.e., joint engagement, that involves changes in subtle social cues;

(2) Conduct a comprehensive analysis with experimental results to
demonstrate the use of pre-trained models in an affective com-
municationcontext, andprovidea competitive affect recognition
baseline for future multi-person affect understanding;

(3) Implement a newmetric for evaluating the learned representa-
tion that compares human annotation guidelines and the visual
regions the model attends to.

2 RELATEDWORKS
2.1 Social-Affective cue understanding

inHuman-Robot Interaction (HRI)
Developing affect signal perception systems for social robots has
been extensively investigated [4, 37, 66] and shown to have empiri-
cal significance, particularly in early childhood development. Social
robots with this affect understanding capability have been found
to promote children’s learning more effectively than those without,
e.g., [22, 41]. Prior works have integrated user social and affective
signals into either its behavior policy or cognitive model as human
feedback on the robot’s newly executed action to deliver real-time
personalized interaction [22, 41]. Similarly, affective signals have
been incorporated into the robot’s user cognitive and skill estimation
models to improveusermodel accuracy, such as a student vocabulary
acquisition [52]. Overall, affect recognition enhances the effective-
ness of robots to provide timely interventions to individual users
and improve their interaction experience. Nonetheless, the majority
of affect-aware social robots were only designed for one-on-one
interactions with humans. When interacting with a single person,
it is sufficient for an intelligent system to recognize the social and

affective cues directed at the interaction task or the robot. In con-
trast, in dyadic human interaction, the technology must be able to
recognize the affective and social dynamics between the two users.

To date, the vast majority of current affect recognition models,
particularly commercial affect extraction tools, are only applicable
in single-person settings. Only a handful of previous Multi-person
HRI field studies, e.g., [53, 59], investigated how to equip a robot
with a perception system to recognize the social-affective dynamics
of a human group. The perception system in [59], for instance, es-
timates user positions and body orientations using a Kinect to track
participants and control the orientation and gaze of the robot. In
a separate study [53], a prediction model for a participant’s social
dominance in a group human-robot interaction was developed but
trained on the nonverbal behavioral features that were manually
handcrafted by human coders offline, e.g., utterance type, gaze, inter-
ruptions. One previous study [50] focused on the automatic analysis
and classification of engagement based on humans’ and robots’ per-
sonality profiles using a dataset gathered in the context of triadic
human-human-robot interaction.

Due to this limitation in the robot’s perception system, the ma-
jority of current multi-party HRI research employs wizard-of-oz
paradigms to teleoperate a robot or an oversimplified behavior pol-
icy (e.g., simple rule-based or tablet-based behavior triggers) that
does not depend on the robot’s affective perceptual capacity. In a
minority of studies, machine learning or reinforcement learningwas
used to train the robot’s behavior policy [30, 60]. Even fewer studies
have equipped robots with affective perception that can guide their
interactive behavior. Research on developing affect recognitionmod-
els for dyadic human groups would unlock the potential for a robot
to engage in and even enhance inherently complex human-human
interactions. Therefore, the advancement of multi-person affect
recognition would catalyze the development of fully autonomous
social robots in multi-person HRI settings.

2.2 Deep Learning Approach to Affect
Recognition

The majority of affect recognition models, and commercial affect
extraction tools, in particular, are primarily concerned with single-
person or single-modality affect detection. In recent years, deep
learning has been used extensively to develop affect detection mod-
els trained on human behavioral cues in audiovisual recordings,
such as facial expression, speaking style, speech prosody, linguistics
sentiment, and head and bodymovement (see the review [21]). Deep
belief networks (DBNs) [69], attentively-coupled long-short term
memory (ACLSTM) [28], and multitask LSTM augmented with two-
stream auto-encoder for deep feature extraction [26] are examples of
deep learning techniques used in previous research. The audio-video
input features both handcrafted and deep features have been used as
model input for recognition (e.g., [26]), while the predicted affective
states range from valence and arousal to engagement (e.g., [47]).

In contrast to the widespread application of deep learning to the
detectionof individual affect, affectdetection inmulti-person interac-
tions is significantly less studied.Using deep learningmodels, a small
numberof studieshave investigateddyadicdynamics,primarily from
a single modality, e.g., [8, 27]. A number of multi-person interaction
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perception models focus on human action recognition such as hand-
shakes, e.g.[65]. For instance, deep features from the full body and
body parts of both individuals, as well as handcrafted motion and
posture features, were extracted to train deep learning models for
action recognitionmodels, such as [65]. Using a combination of deep
features, a graph network, and a logic-aware module, the relation-
ship and interaction between two individuals in still images were
analyzed in [63]. Personality recognition in the dyadic interaction
context was also modeled using the transformer-based method that
utilizes multimodal deep features extracted and individuals’ socio-
demographic profiles (e.g. gender, relationship status, mood) [39].
In a previous study, Zhang and Radke [68] developed a temporal
fusion of multimodal features extracted from vision, audio and text
to recongize each participant’s social role in a four-person meeting.

To the best of our knowledge, only a handful of recent works have
begun to develop deepmodels for recognizing affect in multi-person
interactions (e.g., [9, 34]). For instance, Chen and colleagues [9]
recently utilized end-to-end deep learningmethods augmentedwith
attention mechanisms to identify each individual’s affective expres-
sion in an audio stream containing the utterances of two speakers.
Another work by [27] developed a framework to identify an individ-
ual’s engagement in the context of a two-way conversation. In their
study, a hybrid approach of deepmodels and Bayesian networkswas
used to predict interpersonal dynamics in the dyadic interaction,
including back channeling, speaking turns, gender, and face, hand
movement, speech, and context data. The audiovisual recordings
were captured separately for each interlocutor.

Overall, very little research has been conducted on the application
of a deep learning approach to multi-person affect recognition in
which all the interlocutors interact with one another in a single au-
diovisual recording, limiting the development of affect-aware robots
suited for dyadic human interactions in the real world. In addition,
advanced techniques in deep learning research, such as video aug-
mentation techniques and explainable visualization in deep learning,
have been applied to advance multi-person affect perceptionmodels
for social robots. Consequently, our work proposes a novel frame-
work that employs these cutting-edge deep learning techniques to
significantly enhance a robot’s ability to comprehend the affective
dynamics of multi-person HRI in the wild.

2.3 Video ClassificationModels and Data
Augmentation Techniques

State-of-the-art video classification models were mostly developed
for action recognition, a central task in video understanding [19,
20, 62]. Among various modalities (e.g., RGB frames, optical flow,
human skeleton, and audio waves) used for feature representation,
RGB-based and Skeleton-based action recognitionmodels have been
the mainstream approach in recent years [3, 19, 20, 62]. RGB frames
are themost basic and typical modality to be used for model training
in action recognition tasks. The recently proposed TimeSformer [3]
network is only built on self-attention over space and time. It adapts
the Transformer architecture to video by enabling spatiotemporal
feature learning directly from a sequence of frame-level patches.
X3D [19] is a family of efficient video networks that continuously
expand a small 2D image classification architecture along multi-
ple network axes (space, time, width, and depth). I3D [62] is a 2D

ConvNet inflation-based model, in which the filters and pooling
kernels of deep image classification ConvNets are expanded into 3D.
In SlowFast [20], a dual-pathway structure is proposed to combine
the benefits of a slow pathway for static spatial features and a fast
pathway for dynamic motion features.

On the other hand, human skeletons in a video provide a sequence
of joint coordinate lists which emphasizes its action-focusing na-
ture and compactness. Recently proposed Channel-wise Topology
Refinement Graph Convolution Network (CTR-GCN) [11] dynam-
ically learns different topologies and effectively aggregates joint
features in different channels. The multi-Scale aggregation Scheme
(MS-G3D) [36] disentangles the importance of nodes in different
neighborhoods for effective long-range modeling. It utilizes dense
cross-spacetime edges as skip connections for direct information
propagation across the spatial-temporal graph. STGCN [17] adopts
Graph Convolution Neural (GCN) Networks for skeleton process-
ing. Based on all the above works, Transformer, CNN, and Graph
Convolutional models have achieved breakthrough results in action
recognition tasks. With the great power of understanding general
human activities, pre-trained action recognitionmodels make it suit-
able for themodels to solve the task of joint engagement recognition
with the fine-tuning process.

3 METHODS
In this section, we introduce the robot-parent-child interaction
dataset ourmodelswere trained on, and four different video augmen-
tation methods. The behavior-based objective metric to evaluate the
learned representation is also presented.

3.1 Dataset and Annotation
The dataset we used to train our affect model originated from our
previous deployment [6]. In the study, a social robot was deployed
and teleoperated remotely in the homes of 12 families with 3-7-year-
old children to engage in a triadic story-reading activity with the
parent and child over the course of six 25-minute sessions and 3
to 6 weeks in total. In particular, the robot had roles of being 1) a
moderator andmediator such as by asking story-related questions or
vocabulary and 2) a listener by backchanneling and encouraging. For
each triadic session, audiovisual recordings were captured and sub-
sequently used to annotate the quality of parent-child engagement.
We chose the Joint Engagement Rating Inventory (JERI) to measure
parent-child engagement [1], as it has been utilized and validated
in previous parent-child interaction studies [1, 5]. This engagement
metric quantifies and classifies both the verbal and nonverbal behav-
iors associated with a child’s interaction with its parent.

To annotate the parent-child joint engagement in the audio-visual
recordings of the parent-child-robot interactions, we recruited two
trained annotators with a psychology or education background. The
coding scheme, the choice of the video interval threshold, and the
annotation protocol were derived from previous work on joint en-
gagement in parent-child interaction [5]. Specifically, the annotators
gave ratings every five non-overlapping seconds on a five-point
ordinal scale [-2,2], with two corresponding to cases in which the
parent-child pair displayed clear signs of high joint engagement
valence and -2 corresponding to cases in which the parent-child pair
displayed clear signs of low joint engagement valence. The video
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Figure 1: Proposed framework for evaluating the learned representation (Grad-CAM) withmodified Optical Flow and skeleton
information combined Semantic Segmentation as references. With the fine-tuned models, we generate Grad-CAM for each
video clip and evaluate its quality.We calculate the evaluation score based on two sub-scores (semantic-based andmotion-based)
which are obtained by applyingmutual information and cross-entropy.

fragment interval of target audio-visual recordings used to generate
continuous quality scales was determined to be five seconds.

Using the intra-class correlation (ICC) type (3,1) for average fixed
raters, the agreement among the three annotators was measured.
Given these evaluation criteria, the annotation quality with ICC=
0.95 exceeded the threshold for very good quality (0.75≤ 𝐼𝐶𝐶 ≤ 1.0).
After recordings were independently coded by the annotators, the
final score for each recording fragment was determined by averag-
ing the ratings assigned to each scale by the two annotators. We
have 3-scale levels (low: 8.49%, medium: 49.68%, and high: 41.83%)
for model training and testing. Strictly following the annotation
protocol in [5], we annotated 16,606 five-second video clips with
1517.08 ± 309.34 fragments from each family on average.

3.2 Model Training and Evaluation
In this section, we explain the details of model training and eval-
uation. We split the video clips and pose datasets (N=24,749) into
the train, valid, and test by assigning 8, 2, and 2 different families
respectively and conduct Leave-One-Family-Out Cross-Validation.
For all models, wemeasure Top-k (k=1) accuracywith cross-entropy
loss.More details about RGB frame- and skeleton-based action recog-
nition models are described in Table 1 and the following sections.

3.2.1 Action Recognition Models. For RGB frame-based models, we
use a base learning rate of 0.1 and it is step-wisely decayed for every
20 epochs with a total of 50 epochs. During fine-tuning, we freeze
the pre-trained weight by specifying the number of layers in each
backbone. The most of hyperparameters are kept the same as the
default configuration provided byMMAction2 [13].

3.2.2 Skeleton-basedActionRecognitionModels. Forskeleton-based
models, we use PoseDataset as input which is extracted from NTU
pose extraction [18]. This dataset has the format of keypoint, key-
point_score, frame_dir, label, img_shape, original_shape, and to-
tal_frames.We set the initial learning rate is 0.1, the batch size to 128,
and train models for 15 epochs with the CosineAnnealing learning
rate scheduler. For the optimizer,we set themomentum to0.9,weight
decay to 5×10−4, and use the Nesterov momentum. The rest of the
hyperparameters are kept the same as the default configuration
provided by Pyskl [17].

3.3 Video Augmentation techniques
Our dataset has imbalanced label distribution (see Section 3.1) and
this poses the classification task very challenging [55], whichmay be
compounded by sample size, label noise, etc. The imbalanced label
distributionmotivates applyingvideo augmentation techniques. The
details about each video augmentation technique will be described
in the following subsections.

3.3.1 Baseline. In Section 3.1, we briefly introduce our dataset’s
imbalanced labels and the total number of video clips. To ensure a
fair comparison with the proposed video augmentations techniques,
we apply oversampling to the original datasetwhich duplicated 8,143
video clips from lowandhigh joint engagement labeled video clips to
make all the labels have the same ratio. In total, we prepared 24,749
video clips for Baseline and this contained 8,249 video clips per label.

3.3.2 General Augmentations. To prevent the model from overfit-
ting by "fixating" on irrelevant patterns (e.g. backgrounds), we have
applied various kinds of augmentation techniques which is why
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Table 1: Comparisons of detailedmodel configuration with state-of-the-art models.

Models Year Inputs Data Modality # of Params Backbone Epochs
TimeSformer 2021 3×32×224×224 RGB frame 121.4M TimeSformer 15

X3D 2020 3×16×224×224 RGB frame 3.76M X3D_M 50
I3D 2017 3×32×224×224 RGB frame 28.0M ResNet50 50

SlowFast 2019 3× 32×224×224 RGB frame 34.6M ResNet50-4×16 50
CTR-GCN 2021 16× 2×100×17×3 PoseDataset 1.43M CTRGCN 15
MS-G3D 2020 16× 2×100×17×3 PoseDataset 3.17M MSG3D 15
ST-GCN++ 2022 16× 2×100×17×3 PoseDataset 3.08M STGCN 15
ST-GCN 2018 16× 2×100×17×3 PoseDataset 1.39M STGCN 15

we call them General Augmentations. This technique is applied to
diversify the background (replace the background with RGB color,
random indoor image, and blur the background), encouraging the
model’s robust learning by adding noise to the whole frame, ran-
domly rotating an image, applying horizontal flipping, and lastly,
giving hints of semantics in the frame by applying semantic seg-
mentations. These different types of simple but effective techniques
enabledus to supplementmore features in thedataset and in total,we
gathered 24,749 video clips that have all labels with the same ratio.

3.3.3 DeepFake. DeepFake was applied for dyads’ faces to over-
come the small populations in the original dataset and also for debias-
ing purposes.We used SimSwap [10] formulti-person face swapping
in videos. To feed a diverse set of target face images, we also utilized
AI-generated face dataset (https://generated.photos/faces) which
supports realistic customizations (e.g., race, gender, age, accessories,
and hair type). As we can see in Table. 2, this generates quite natural
video clips according to its target face images. In total, we gathered
24,749 video clips as same in the General Augmentation case.

3.3.4 Mixed. Finally,wealsowanted tosee if combining thedatasets
that showed performance improvement individually (see Table. 2)
would make even more performance improvements once combined.
To do this, we randomly sampled video clips from both General Aug
and DeepFake while keeping the same ratio from each dataset. So
in total, we kept 24,749 video clips for Mixed.

3.3.5 CutOut. CutOut is a well-known but simple regularization
technique that randomly masks out square regions of input during
training (spatial prior dropout in input space) [15]. This can be used
to improve the robustness andoverall performancewhenconducting
classification tasks, and in this work, CutOut is used to validate the
model’s representation learning without the core information in the
scenes (i.e. face). To apply CutOut, we utilized the face detection
module to detect the parent’s and child’s faces and cut out the cor-
responding regions, which are then replaced by black boxes. In total,
we gathered 24,749 video clips by oversampling towards the largest
number of labels (Mid, 𝑁=8,249) in the dataset.

3.4 EvaluationMetric
3.4.1 Gradient-weighted Class Activation Mapping. Grad-CAM is a
generalization of Class Activation Mapping (CAM) which combines
the class-specific property of CAM [61]. This supports the intuitive
visualization of themodel’s attention in an image and this technique

has been used in various HRI works [16, 24, 31]. Apart from Grad-
CAM’s effective visualization capability, our purpose is to validate
the quality of learned representations. Following the definitions in
[61], Class Activation Map (CAM) and Grad-CAM are defined as
follows.

Definition 1. CAM. Consider a model 𝑓 with a global pooling
layer 𝑙 after the last convolution layer 𝑙−1 and before the last fully
connected layer 𝑙+1. Given a class𝑐 of interest, theCAMis defined as:

𝐿𝑐𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈 (
∑︁
𝑘

𝛼𝑐
𝑘
𝐴𝑘
𝑙−1) (1)

where

𝛼𝑐
𝑘
=𝑤𝑐

𝑙,𝑙+1 [𝑘] (2)

Definition 2. Grad-CAM. Consider a convolution layer 𝑙 in a
model and given a class 𝑐 selected by a model, Grad-CAM is defined
as:

𝐿𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈 (

∑︁
𝑘

𝛼𝑐
𝑘
𝐴𝑘
𝑙
) (3)

where

𝛼𝑐
𝑘
=𝐺𝑃 ( 𝜕𝑌

𝑐

𝜕𝐴𝑘
𝑙

) (4)

here,𝐺𝑃 (·) denotes the Global Pooling operation.
To evaluate the quality of learned representation (Grad-CAM)

which is in video format, we break this down into image frames and
apply two different image-matching techniques with two references
which will be explained in the following sections.

3.4.2 Evaluation References. In the previous section, the concept of
Grad-CAM is defined and we particularly use this as a distribution
learner for evaluating with two references. Here, we convert the
images into distributions and calculate the mutual information and
cross-entropy. The two references are 1)modifiedOptical Flowand2)
skeleton information combined with Semantic Segmentation. Hav-
ing the two scores from each reference, we calculate the weighted
average score with the weight 𝛼 which has a value between 0 and
1 (See Fig. 2).

The primary hypothesis supporting our framework is based on
the annotation coding scheme for joint engagement (see Section
3.1); subtle display (both duration and intensity) of social cues is
crucial when evaluating human joint engagement (e.g., shared gaze,
contingent smiling, finger pointing, etc).
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Figure 2: Pipeline for imagematchingmetric which converts images into distributions and calculatesmutual information and
cross-entropy (between skeleton information combined with semantic segmentation, modified optical flow) and Grad-CAM.

Table 2: Overviewof joint engagement recognition task results from state-of-the-art end-to-end (top) and skeleton-based (bottom)
action recognitionmodels. General Aug and DeepFake significantly outperformed the performance in all end-to-endmodels.

Baseline General Aug DeepFake Mixed CutOut

Input

TimeSformer Cls (%) 62.2 (+0.0) 66.7 (+4.5) 70.1 (+7.9) 63.0 (+0.8) 60.9 (-1.3)
X3D Cls (%) 62.6 (+0.0) 65.1 (+2.5) 67.8 (+5.2) 63.5 (+0.9) 61.0 (-1.6)
I3D Cls (%) 60.1 (+0.0) 63.4 (+3.3) 66.9 (+6.8) 60.7 (+0.6) 55.8 (-4.3)

SlowFast Cls (%) 61.2 (+0.0) 63.8 (+2.6) 62.2 (+1.0) 58.4 (-2.8) 50.0 (-10.2)

Input

CTR-GCN Cls (%) 64.3
MS-G3D Cls (%) 63.3
ST-GCN++ Cls (%) 64.1
ST-GCN Cls (%) 59.4

Accordingly, to recognize the subtlemotion changes,weapplyOp-
tical Flow from [14]. After that, we modify the original Optical Flow
whichdisplays the color by their orientations, but instead,wediscard
this orientation-based colormap and follow the colormap used in
Grad-CAM to focus on themotion changes itself (See Fig. 1). Also, to
ensure the learned representation is focusing on the proper regions,
we considered skeleton information combined Semantic Segmenta-
tion as the other reference. We first extract the skeleton information
by applying the pose extractor described in [18] and combine this
with the Semantic Segmentation results [35]. For Semantic Segmen-
tation,we specify eachbody segmentwithpre-definedcolors (see Fig.
2), and when combining, the Gaussian heatmap is centered on each
of the body poses (see Fig. 2). This is based on the insights from our
annotation process where we evaluate the dyad’s joint engagement
level by focusing on social touch, body closeness, heading angle, and
smiling. Since our dataset mostly contains the face and upper parts
of the body, we putmore importance on the head and the upper body
parts rather than the bottom parts of the body.

3.4.3 Image Matching Techniques. First, we adopt mutual infor-
mation, a dimensionless quantity metric that measures the mutual
dependence between two variables. The metric is high when the
attention map signal is highly concentrated in a few histogram bins,
and lowwhen the signal is spread across many bins. Mutual infor-
mation is defined as:

𝐼 (𝑋 ;𝑌 )=
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑝 (𝑥,𝑦)𝑙𝑜𝑔( 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) ) (5)

Here, we convert the image into a distribution by flattening the
image arrays and then compute the 2Dhistogram of two image array
samples. The second metric is cross-entropy, which comes from the
Kullback-Leibler divergence. This is a widely used metric for calcu-
lating the difference between two distributions, and this is defined as:

𝐻 (𝑝,𝑞)=−𝐸𝑝 [𝑙𝑜𝑔 𝑞] (6)

where 𝐸𝑝 [·] is the expected value operator with respect to the
distribution 𝑝 . Here, we first normalize the pixel values in images
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Algorithm 1Grad-CAM evaluation algorithm

1: Input: Images 𝐼0, 𝐼1, 𝐼2, Model 𝐹 (𝐼 ), MI(𝐻 ), CE(𝐼 ;𝐼 ), CROP(·)
2: Output: Score
3:
4: Score←[]
5: while 𝐼0 and 𝐼1 and 𝐼2 do
6: BoundingBoxes←𝐹 (𝐼0)
7: score←𝑑𝑖𝑐𝑡 ()
8: for role, part, bbox in BoundingBoxes do
9: 𝐼𝑛𝑒𝑤0, 𝐼𝑛𝑒𝑤1, 𝐼𝑛𝑒𝑤2←𝐶𝑅𝑂𝑃 (𝐼0,𝐼1,𝐼2,𝑏𝑏𝑜𝑥)
10: 𝑚𝑖1←𝑀𝐼 (ℎ𝑖𝑠𝑡2𝑑 (𝐼𝑛𝑒𝑤0, 𝐼𝑛𝑒𝑤1))
11: 𝑚𝑖2←𝑀𝐼 (ℎ𝑖𝑠𝑡2𝑑 (𝐼𝑛𝑒𝑤0, 𝐼𝑛𝑒𝑤2))
12: 𝑚𝑖←(𝛼 ·𝑚𝑖1+(1−𝛼) ·𝑚𝑖2) ⊲mutual information
13:
14: 𝐼𝑝0, 𝐼𝑝1, 𝐼𝑝2←𝐿𝑜𝑔−𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐼0,𝐼1,𝐼2)
15: 𝐼𝑛𝑒𝑤0, 𝐼𝑛𝑒𝑤1, 𝐼𝑛𝑒𝑤2←𝐶𝑅𝑂𝑃 (𝐼𝑝0,𝐼𝑝1,𝐼𝑝2,𝑏𝑏𝑜𝑥)
16: 𝑐𝑒1←𝐶𝐸 (𝑙𝑜𝑔−𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐼𝑛𝑒𝑤0,𝐼𝑛𝑒𝑤1))
17: 𝑐𝑒2←𝐶𝐸 (𝑙𝑜𝑔−𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐼𝑛𝑒𝑤0,𝐼𝑛𝑒𝑤2))
18: 𝑐𝑒←(𝛼 ·𝑐𝑒1+(1−𝛼) ·𝑐𝑒2) ⊲ cross-entropy
19:
20: 𝑠𝑐𝑜𝑟𝑒 [𝑚𝑖] [𝑟𝑜𝑙𝑒] [𝑝𝑎𝑟𝑡]←𝑚𝑖

21: 𝑠𝑐𝑜𝑟𝑒 [𝑐𝑒] [𝑟𝑜𝑙𝑒] [𝑝𝑎𝑟𝑡]←𝑐𝑒

22: 𝑆𝑐𝑜𝑟𝑒.𝐴𝑑𝑑 (𝑠𝑐𝑜𝑟𝑒)
23: return 𝑆𝑐𝑜𝑟𝑒

and then pass this through log-softmax to convert images into dis-
tributions. Then we apply cross-entropy as explained in Equation
6. Given that we have all the bounding boxes for each parent’s and
child’s face and body, we could separate these values based on their
bounding box coordinates (See Fig. 1). The overall process is sum-
marized in Algorithm 1. where the model 𝐹 (𝐼 ) is the face, age, and
gender detector,𝑀𝐼 (𝐻 ) is mutual information function,𝐶𝐸 (𝐼 ;𝐼 ) is
a cross-entropy function, and𝐶𝑅𝑂𝑃 (·) is a image crop function.

4 EXPERIMENTANDRESULTS
In this section, we conduct experiments to evaluate the effective-
ness of the proposed video augmentation techniques; General Aug,
DeepFake, Mixed, and CutOut to see their capability to improve
joint engagement recognition on state-of-the-art action recognition
models. Also, we compare the joint engagement classification per-
formance between RGB frame-based and skeleton-based models to
see the effect of different inputs in this task. For the implementation,
we utilized MMAction2 and Pyskl, an open-source toolbox for video
understanding based on PyTorch and all of the models were trained
on 8 NVIDIA 1080Ti GPUs

4.1 Joint Engagement Recognition Evaluation
As shown in Table. 2, applying General Aug and DeepFake consis-
tently outperformed the baselines in all end-to-end models. Particu-
larly, TimeSformer and I3D lead the accuracy by up to 7.9% and 6.8%
respectively. On the other hand, using CutOut did not improve the
performance compared to the baseline performance for all end-to-
endmodels. Also, inMixed, the performance increases except for the
case of SlowFast. This shows all of the end-to-end models here, lack
diverse features to generalize compared to the case in General Aug

and DeepFake. For the comparison between General Aug and Deep-
fake, General Aug is focusing on randomizing the external parts (e.g.,
background, light, orientation, etc) whereas Deepfake is focusing
on diversifying human-related factors (e.g., ethnicity, age, gender)
and in the case of the joint engagement classification task, Deep-
Fake showed more improvements except for the case with SlowFast.
These results give us an insight into the generalization of our video
augmentation techniques for joint engagement recognition.

The results from the skeleton-based models (see Table. 2) how-
ever, show lower top-1 accuracy (max acc: 64.3%) in all cases com-
pared to the baseline in end-to-endmodels. These graph convolution
network-basedmodelsattempt tofindSpatio-temporalpatterns from
the human skeleton information. However, unlike human action
recognition tasks, joint engagement recognition requires the model
to catch the affective state (e.g., facial features) of people which RGB
frames particularly include and this makes skeleton-based models
challenging to learn joint engagement without the core information.

4.2 Visualizing Interaction Representations
To have a deeper understanding of what the models have learned,
we use Grad-CAM to visualize the Spatio-temporal regions that con-
tribute the most to classify into certain joint engagement classes on
the dataset (see Fig. 3). We observe that the learned representations
focus on either small regions in the "face and body" or get distracted
by the backgrounds. For example, in Fig. 3, both the Grad-CAM in
the General Aug and DeepFake groups match well with either par-
ent’s or child’s face regions, but in the Baseline, the heatmap is not
actively paying attention to dyads but looking at the corner in the
scene. This implies that training on a diversified set of populations
or backgrounds encourages the model to be more robust about the
change of backgrounds, clothing, etc, and focusmore on dyads’ faces
and bodies. Also, in CutOut, the model did not fully focus on the
core parts of the scene but got distracted by the backgrounds. This
is because it could not refer to the face part which includes the core
information during the training.

5 DISCUSSIONANDCONCLUSION
The performance and visualization of the state-of-the-art end-to-
end video classification models for recognizing joint engagement
demonstrated their potential to recognize complex human-human
joint affective states with limited training data. The fine-tuned end-
to-end models initially pre-trained for general video understanding
(e.g., SlowFast, I3D) performedmore effectively on joint engagement
recognition than the models trained on human skeleton features
(e.g., CTR-GCN, ST-GCN). The video augmentation techniques en-
hanced the model’s performance even further. The visualization of
the learned representations in the end-to-end deep learning models
revealed their sensitivity to subtle social cues indicative of parent-
child interaction. Altogether, these findings and insights indicate
that end-to-end models were able to learn the representation of
parent-child joint engagement in an interpretable manner.

Due to their superior performance and interpretability, end-to-
end models pre-trained on action recognition tasks provide new
opportunities for developing autonomous robots for multi-person
human-robot interaction. When skeleton-based models are used
for real-time affect perception in the wild, typically multiple layers
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Figure 3: Grad-CAM visualization of a sample test video clip generated fromfine-tuned I3Dwith different video augmentation
techniques (Mixed is excluded here since it was only used for the performance comparison).

of models are necessary for human identification, human skeleton
feature extraction, and affect prediction (e.g., [2]). In contrast to
skeleton-based models, end-to-end models accept image frames as
input and generate an affect prediction as output.After being trained,
they can be utilized to make predictions in real-time without requir-
ing excessive computational resources. The real-time version of
the SlowFast model, for instance, can function with minimal com-
putational resources [64]. Similarly, the visualization method we
proposed provides a means of demonstrating how recognition mod-
els extract crucial information fromvideos for the learning task. This
interpretable visualization could be used to support diversemethods
of robot learning in real-time from human input or human teachers,
such as the "social scaffolding for exploration" method and socially
guided machine learning [57].

We acknowledge that the relatively small population size of the
dyads may limit the applicability of the proposed framework for
multi-personaffect recognition.However, thesmall sizeof thedataset
motivates the use of a framework that can leverage various data
augmentation techniques and deep learning models pre-trained on
larger data corpora for other similar tasks. Indeed, the performance
of our proposed framework on the small dataset demonstrates its
potential benefits for real-world multi-person HRI, as the real-world
interaction datasets used to train a robot’s perceptionmodelmay not
be as large as datasets parsed from the Internet or generated by sim-
ulation. We also acknowledge that the analysis in the visualization
of the model’s learned representation does not pinpoint the spe-
cific social cues and behavioral characteristics that guide themodel’s
recognition of joint engagement.Ourwork only aims to demonstrate
that the visualization of the model’s learned representation can re-
veal semantically and interpretable insights that can be valuable to
humans and can potentially allow humans to correct themodel, chal-
lenging the widely held belief that end-to-end models have limited
interpretability in comparison to skeleton-based models.

In the future, we plan to use additional parent-child interaction
datasets [9] to investigate how to generalize this framework across
datasets and to quantify how various social and behavioral cues con-
tribute to the learned representations of end-to-endmodels.Also, the
additional dataset is beneficial to deal with angle changes for mobile
robots since the videos were collected frommultiple cameras with
differentanglesanddistances.Additionally, ourproposed framework
is extensible inmultipleways. First, the proposed data augmentation
and visualization can be applied to multiple data modalities, such
as audio and video, to jointly learn the joint engagement. Utilizing
multiple modalities in the dataset would increase the applicability of
multi-personaffectmodels to challenging real-world situations, such
asmissingdata in onemodality, and further enable themodel to learn
more holistic and human-like representations of joint engagement.

Our proposed framework can also be expanded to account for
individual differences in affect across dyads by adding the final layer
trained on individual human groups. It has been empirically demon-
strated that personalized and culture-sensitive affect models outper-
forms one-size-fits-all generic models when recognizing affect of
individuals (e.g., [49], [48]). Thus, personalized or culture-sensitive
joint engagement models may further enhance the model prediction
performances in the multi-person context.

For potential application, this work can be applied to group inter-
actions that involve human-agent and human-human interactions
in different scenarios including online education, group therapy and
museum guidance [38, 44, 58].

Inconclusion, thisworkservesas thefirst step toward fullyunlock-
ing the potential of state-of-the-art end-to-end video understanding
models pre-trained on large public datasets and augmented with
data augmentation and visualization techniques for robot’s affect
recognition in themulti-person human-robot interaction in thewild.
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