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ABSTRACT
Many important properties of multi-agent systems refer to the par-

ticipants’ ability to achieve a given goal, or to prevent the system

from an undesirable event. Among intelligent agents, the goals are

often of epistemic nature, i.e., concern the ability to obtain knowl-

edge about an important fact 𝜑 . Such properties can be e.g. ex-

pressed in ATLK, that is, alternating-time temporal logic ATL
extended with epistemic operators. In many realistic scenarios,

however, players do not need to fully learn the truth value of 𝜑 .

They may be almost as well off by gaining some knowledge; in
other words, by reducing their uncertainty about 𝜑 . Similarly, in

order to keep 𝜑 secret, it is often insufficient that the intruder never

fully learns its truth value. Instead, one needs to require that his

uncertainty about 𝜑 never drops below a reasonable threshold.

With this motivation in mind, we introduce the logic ATLH,

extending ATL with quantitative modalities based on the Hartley

measure of uncertainty. The new logic enables to specify agents’

abilities w.r.t. the uncertainty of a given player about a given set of

statements. It turns out that ATLH has the same expressivity and

model checking complexity asATLK. However, the new logic is ex-

ponentially more succinct than ATLK, which is the main technical

result of this paper.
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1 INTRODUCTION
Many important properties of multi-agent systems refer to strategic
abilities of agents and their groups [3, 17]. They can be formal-

ized in logics of strategic ability, such as alternating-time temporal

logic ATL [8, 50] or strategy logic SL [22, 46]. For example, the

ATL formula ⟨⟨𝑡𝑎𝑥𝑖⟩⟩𝐹destination, built upon the strategic opera-

tor ⟨⟨𝐴⟩⟩𝜑 for “there is a strategy for 𝐴 such that 𝜑 holds” and the

temporal modality 𝐹 (“eventually”), can be used to express that the

autonomous cab can deliver the passenger to his/her destination.

Similarly, ⟨⟨𝑝𝑎𝑠𝑠𝑔⟩⟩(¬dead) U destination says that the passenger

has the ability to survive the ride alive. Such statements allow to
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express important functionality and safety requirements in a simple

and intuitive way. Moreover, they provide input to algorithms and

tools for verification, that have been in constant development for

over 20 years [5, 6, 12, 12, 19–21, 23, 31, 34, 39, 41–44, 47].

Knowledge and information has always been an important as-

pect of interaction, but it has become even more important with the

emergence of Internet and, more recently, social networks. Infor-

mation is an important resource on which strategies are built, e.g.,

it is widely acknowledged that executable strategies must comply

with so called uniformity constraints [37, 50]. More and more often,

information becomes also the goal of the interaction. Agents may

play to learn about a particular subject. People strive to know what

the state of the economy is, what is the latest clothing fashion,

and whether the coffee machine at their workplace serves good

espresso or not. Using strategic-epistemic specifications that in-

volve the knowledge operator 𝐾𝑎 , the latter kind of ability can

be expressed by ⟨⟨𝑤𝑜𝑟𝑘𝑒𝑟 ⟩⟩𝐹 (𝐾𝑤𝑜𝑟𝑘𝑒𝑟good ∨ 𝐾𝑤𝑜𝑟𝑘𝑒𝑟¬good). Du-
ally, the user of a social network may want to post a message

for their friends only, in which case no outsider should learn the

content of the message. This kind of ability can be captured by

⟨⟨𝑢𝑠𝑒𝑟 ⟩⟩𝐺¬(𝐾𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑟post = m ∨ 𝐾𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑟post ≠ m).
In many cases, however, strategic-epistemic specifications are

too coarse. It is great if the worker can obtain full knowledge about

the quality of workplace espresso, but being almost sure is almost

as good. Dually, leaking some information about the social network

post can be damaging, even if the intruder does not learn its ex-

act content. With this motivation in mind, we propose to extend

alternating-time temporal logic with new, information-theoretic

modalities H , based on the Hartley measure of uncertainty [29].

We also demonstrate the usefulness of the framework on a real-life

voting scenario.

In terms of technical results, we prove that the resulting logic

has the same expressive power and model checking complexity

as strategic-epistemic specifications; however, it is exponentially

more succinct. This is an important result, as it shows that the

verification of a given property with uncertainty operators can take

exponentially less time than when one uses knowledge modalities.

Related work. Strategic-epistemic reasoning has been intensively

studied in the early 2000s, especially within the framework of

ATEL [2, 32, 54–56] and Dynamic Epistemic Logic [4, 57]. Dynamic

epistemic planning [13] is a particularly relevant example. Still, we

are not aware of any works combining logical formalizations of

strategic reasoning with information-theoretic properties. The pa-

per [36] comes closest, as it discusses the relation between a variant

of resource-bounded temporal-epistemic logic and Hartley measure.

Moreover, our proposal is directly inspired by information-theoretic

notions of security, cf. [40] for an introduction.
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Another strand of related works concerns quantitative specifica-

tion and verification of MAS due to stochastic interaction [24, 30],

graded [9, 26] and fuzzy strategic modalities [11, 14], or proba-

bilistic beliefs about the opponents’ response [18]. Those papers

considered neither knowledge nor information-theoretic properties,

though [26] leaned in that direction by including a count over the

accessible imperfect worlds.

Succinctness of logical representations has been studied since

early 1970s [51]. In particular, the relative succinctness of branching-

time logics was investigated in [1, 45, 59], and [15] studied the

succinctness of the strategic logic ATL* with past-time operators.

The methodology of proving succinctness by means of formula size
games was proposed in [1], and later generalized in [27]. We adapt

the latter approach to obtain our main technical result here.

2 LOGICS OF STRATEGIC ABILITY
We first recapitulate the logical foundations that we chose for our

approach.

2.1 Alternating-Time Logic ATL
Alternating-time temporal logicATL [7, 8, 50] generalizes the branching-

time temporal logic CTL [25] by replacing the path quantifiers E,A
with strategic modalities ⟨⟨𝐴⟩⟩. Informally, ⟨⟨𝐴⟩⟩𝛾 says that a group

of agents 𝐴 has a collective strategy to enforce temporal property

𝛾 . ATL formulas can include temporal operators: “𝑋 ” (“in the next

state”), “𝐺” (“always from now on”), “𝐹 ” (“now or sometime in the

future”), and U (strong “until”).

Syntax. Formally, let Agt be a finite set of agents, and Prop a count-
able set of atomic propositions. The language of ATL is defined as

follows:

𝜑 ::= p | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨⟨𝐴⟩⟩𝑋𝜑 | ⟨⟨𝐴⟩⟩𝐺𝜑 | ⟨⟨𝐴⟩⟩𝜑U𝜑 .

where 𝐴 ⊆ Agt and p ∈ Prop. Derived boolean connectives and

constants (∨,⊤,⊥) are defined as usual. “Sometime” is defined as

𝐹𝜑 ≡ ⊤U𝜑 .

2.2 Semantics of ATL
Models. The semantics of ATL is defined over a variant of synchro-

nousmulti-agent transition systems. Let 𝑆 = {Agt, 𝑆𝑡,Act, 𝑑, out} be
a concurrent game structure (CGS) such that:Agt = {1, ..., 𝑘} is a set
of agents (or players), 𝑆𝑡 is the set of states of the system, act is a set
of actions,𝑑 : Agt×𝑆𝑡 → 2

Act\{∅} showswhat actions are available
for each player in each state, and out : 𝑆𝑡 ×Act1 × ...×Act𝑘 → 𝑆𝑡 is

the transition functionwhich, given a state and one action from each

player in that state, returns the resulting sate. A CGS together with a

set of atomic propositions Pv and a valuation function V : Pv → 2
𝑆𝑡

is called a concurrent game model (CGM). A pointed CGM is a pair

(𝑀,𝑞0) consisting of a concurrent game model 𝑀 and an initial

state 𝑞0 in𝑀 .

Strategies and their outcomes.Given a CGS, we define the strate-
gies and their outcomes as follows. A strategy for 𝑎 ∈ Agt is a
function 𝑠𝑎 : 𝑆𝑡 → Act such that 𝑠𝑎 (𝑞) ∈ 𝑑 (𝑎, 𝑞).1 The set of such
strategies is sometimes denoted by Σ𝐼𝑟𝑎 , with the capital “I” referring

to perfect Information, and the lowercase “r” for possibly imperfect

1
This corresponds to the notion of memoryless or positional strategies. In other words,

we assume that the memory of agents is explicitly defined by the states of the model.

recall. A collective strategy for a group of agents 𝐴 = {𝑎1, . . . , 𝑎𝑟 } is
a tuple of individual strategies 𝑠𝐴 = ⟨𝑠𝑎1 , . . . , 𝑠𝑎𝑟 ⟩. The set of such
strategies is denoted by Σ𝐼𝑟

𝐴
.

A path 𝜆 = 𝑞0𝑞1𝑞2 . . . in a CGS is an infinite sequence of states

such that there is a transition between each𝑞𝑖 and𝑞𝑖+1. 𝜆[𝑖] denotes
the 𝑖th position on 𝜆 (starting from 𝑖 = 0) and 𝜆[𝑖,∞] the suffix of

𝜆 starting with 𝑖 . The “outcome” function 𝑜𝑢𝑡 (𝑞, 𝑠𝐴) returns the set
of all paths that can occur when agents 𝐴 execute strategy 𝑠𝐴 from

state 𝑞 onward, defined as follows:

𝑜𝑢𝑡 (𝑞, 𝑠𝐴) = {𝜆 = 𝑞0, 𝑞1, 𝑞2 . . . | 𝑞0 = 𝑞 and for each 𝑖 = 0, 1, . . .

there exists ⟨𝛼𝑖𝑎1 , . . . , 𝛼
𝑖
𝑎𝑘
⟩ such that 𝛼𝑖𝑎 ∈ 𝑑𝑎 (𝑞𝑖 ) for every

𝑎 ∈ Agt, and 𝛼𝑖𝑎 = 𝑠𝐴 [𝑎] (𝑞𝑖 ) for every 𝑎 ∈ 𝐴, and 𝑞𝑖+1 =

𝑜 (𝑞𝑖 , 𝛼𝑖𝑎1 , . . . , 𝛼
𝑖
𝑎𝑘
)}.

Semantic clauses. The semantics of ATL is defined by the follow-

ing clauses:

𝑀,𝑞, |= p iff 𝑞 ∈ 𝑉 (p), for p ∈ Prop;
𝑀,𝑞, |= ¬𝜑 iff𝑀,, ̸ |= 𝜑 ;
𝑀,𝑞, |= 𝜑1 ∧ 𝜑2 iff𝑀,𝑞 |= 𝜑1 and𝑀,𝑞 |= 𝜑2;
𝑀,𝑞 |= ⟨⟨𝐴⟩⟩𝑋𝜑 iff there is a strategy 𝑠𝐴 ∈ Σ𝐼𝑟

𝐴
such that, for

each path 𝜆 ∈ 𝑜𝑢𝑡 (𝑞, 𝑠𝐴), we have𝑀, 𝜆[1] |= 𝜑 .
𝑀,𝑞 |= ⟨⟨𝐴⟩⟩𝐺𝜑 iff there is a strategy 𝑠𝐴 ∈ Σ𝐼𝑟

𝐴
such that, for

each path 𝜆 ∈ 𝑜𝑢𝑡 (𝑞, 𝑠𝐴), we have𝑀, 𝜆[𝑖] |= 𝜑 for all 𝑖 ≥ 0.

𝑀,𝑞 |= ⟨⟨𝐴⟩⟩𝜑1U𝜑2 iff there is a strategy 𝑠𝐴 ∈ Σ𝐼𝑟
𝐴

such that,

for each path 𝜆 ∈ 𝑜𝑢𝑡 (𝑞, 𝑠𝐴), we have𝑀, 𝜆[𝑖] |= 𝜑2 for some

𝑖 ≥ 0 and𝑀, 𝜆[ 𝑗] |= 𝜑1 for all 0 ≤ 𝑗 < 𝑖 .

2.3 Imperfect Information and Knowledge
Realistic multi-agent interaction always includes some degree of

limited observability. Here, we use the classical variant of “ATL
with imperfect information”, defined as follows:

We extend concurrent game structures with indistinguishabil-

ity relations ∼𝑎 , for each 𝑎 ∈ Agt. The resulting structure 𝑆 =

{Agt, 𝑆𝑡, {∼𝑎 | 𝑎 ∈ Agt},Act, 𝑑, out} is called a concurrent epistemic

game structure (CEGS). A CEGS together with a set of atomic

propositions Pv and a valuation function V : Pv → 2
𝑆𝑡

is called a

concurrent epistemic game model CEGM.

Strategies of agents must specify identical choices in indistin-

guishable situations. That is, strategies with imperfect information

(ir strategies, for short) are functions 𝑠𝑎 : 𝑆𝑡 → 𝐴𝑐𝑡 such that (1)

𝑠𝑎 (𝑞) ∈ 𝑑 (𝑎, 𝑞), and (2) if 𝑞 ∼𝑎 𝑞′ then 𝑠𝑎 (𝑞) = 𝑠𝑎 (𝑞′). 2 As before,
collective strategies for 𝐴 ⊆ Agt are tuples of individual strategies
for 𝑎 ∈ 𝐴. We denote the set of𝐴’s imperfect information strategies

by Σ𝑖𝑟
𝐴
(with the lowercase “i” for imperfect information).

The semantics of “ATL with imperfect information” (ATL𝑖𝑟 ) dif-
fers from the one presented in Section 2.1 only in that the strategies

are taken from Σ𝑖𝑟
𝐴
instead of Σ𝐼𝑟

𝐴
. In other words, the agents in 𝐴

should have an executable strategy which enforces 𝜑 from all the

states that at least one member of the coalition considers possible.

Alternating-time temporal epistemic logic ATLK adds the knowl-

edge modality of the multi-agent epistemic logic to ATL with im-

perfect information. In multi-agent epistemic logic, expressing the

knowledge of the agents is formalised by epistemic formulae of type

K𝑎𝜑 , stating that agent 𝑎 knows that 𝜑 holds, with the following

semantics:

2
Again, we consider only positional strategies here.
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𝑠0

𝑠1 𝑠2

¬𝑉𝑜𝑡𝑒𝑑 , ¬𝑉𝐴

𝑉𝑜𝑡𝑒𝑑 , 𝑉𝐴 𝑉𝑜𝑡𝑒𝑑 , ¬𝑉𝐴

voteA, 𝜖

𝜖 , 𝜖

𝑣𝑜𝑡𝑒𝐴, 𝜖

C

𝜖 , 𝜖 𝜖 , 𝜖

Figure 1: Single issue referendum with one voter and one
coercer

𝑀,𝑞 |= K𝑎𝜑 iff, for every state 𝑞′ such that 𝑞 ∼𝑎 𝑞′, we
have that𝑀,𝑞′ |= 𝜑 .

The formula stating mutual knowledge 𝐸𝐴𝜑 (read ”everybody

in 𝐴 knows that 𝜑”) is defined as:

𝑀,𝑞 |= 𝐸𝐴𝜑 iff𝑀,𝑞 |= K𝑎𝜑 , for all 𝑎 ∈ 𝐴.

3 MOTIVATING EXAMPLE
In this section we show, using an example, how our proposed logic

can express more refined epistemic goals of agents using consider-

ably more concise formulas. As we will see, not only the new for-

mulation of these epistemic properties will be significantly shorter;

the interpretation of the formulas will also be easier to understand

in comparison to their analogous formulas in ATLK.

3.1 Coercion in Referendums
We consider a very simple scenario of an election with a single

voter and a single coercer. The election is a referendum, in the sense

that each voter has to either vote for an issue in question or to vote

against it. We consider two variants. In the first one there is only

one issue put for referendum (we call it proposal A). The model

consists of two agents, the voter 𝑣 and the coercer 𝑐 . The set of

possible actions for the coercer in the model is {𝜖} and for the voter
is {𝑣𝑜𝑡𝑒𝐴, 𝑣𝑜𝑡𝑒𝐴, 𝜖}, where 𝜖 represents a null action (meaning the

action of doing nothing). 𝑣𝑜𝑡𝑒𝐴 and 𝑣𝑜𝑡𝑒𝐴 respectively represent

voting for and against the proposal 𝐴. The atomic proposition 𝑉𝐴
states that the vote is cast in favor of proposal 𝐴, while the atomic

proposition 𝑉𝑜𝑡𝑒𝑑 shows that the vote is already cast. The game

model is depicted in Figure 1.

The valuations of atomic propositions are depicted in blue, and

the red dashed line between 𝑠1 and 𝑠2 shows that the these two states

are indistinguishable for player 𝑐 . In this simple model, we might

express the property of coercion resistance in ATLK as follows:

𝑀, 𝑠0 |= ⟨⟨𝑣⟩⟩𝐹 (𝑉𝑜𝑡𝑒𝑑 ∧𝑉𝐴 ∧𝐺¬(K𝑐𝑉𝐴 ∨ K𝑐¬𝑉𝐴))
∧⟨⟨𝑣⟩⟩𝐹 (𝑉𝑜𝑡𝑒𝑑 ∧ ¬𝑉𝐴 ∧𝐺¬(K𝑐𝑉𝐴 ∨ K𝑐¬𝑉𝐴))

The formula states that the voter has a strategy to vote for the

proposal 𝐴 or against it, in a way that in either case the coercer

does not know the value of the vote.

3.2 Referendum with Multiple Proposals
Consider a more sophisticated variant in which the voter par-

ticipates in a double referendum, i.e., votes on two proposals 𝐴

and 𝐵 on a single ballot. The set of atomic propositions in this

scenario is {𝑉𝑜𝑡𝑒𝑑,𝑉𝐴,𝑉𝐵} and the set of actions for the voter is

{𝑣𝑜𝑡𝑒𝐴𝐵, 𝑣𝑜𝑡𝑒𝐴𝐵, 𝑣𝑜𝑡𝑒𝐴𝐵, 𝑣𝑜𝑡𝑒𝐵𝐴}. For expressing the property of

coercion resistance in this scenario, a seemingly reasonable way is

to extend the above formulas as below:

𝑀, 𝑠0 |= ⟨⟨𝑣⟩⟩𝐹 (𝑉𝑜𝑡𝑒𝑑 ∧𝑉𝐴 ∧𝑉𝐵∧
𝐺¬(K𝑐𝑉𝐴 ∨ K𝑐¬𝑉𝐴 ∨ K𝑐𝑉𝐵 ∨ K𝑐¬𝑉𝐵))

∧ ⟨⟨𝑣⟩⟩𝐹 (𝑉𝑜𝑡𝑒𝑑 ∧𝑉𝐴 ∧ ¬𝑉𝐵∧
𝐺¬(K𝑐𝑉𝐴 ∨ K𝑐¬𝑉𝐴 ∨ K𝑐𝑉𝐵 ∨ K𝑐¬𝑉𝐵))

∧ ⟨⟨𝑣⟩⟩𝐹 (𝑉𝑜𝑡𝑒𝑑 ∧ ¬𝑉𝐴 ∧𝑉𝐵∧
𝐺¬(K𝑐𝑉𝐴 ∨ K𝑐¬𝑉𝐴 ∨ K𝑐𝑉𝐵 ∨ K𝑐¬𝑉𝐵))

∧ ⟨⟨𝑣⟩⟩𝐹 (𝑉𝑜𝑡𝑒𝑑 ∧ ¬𝑉𝐴 ∧ ¬𝑉𝐵∧
𝐺¬(K𝑐𝑉𝐴 ∨ K𝑐¬𝑉𝐴 ∨ K𝑐𝑉𝐵 ∨ K𝑐¬𝑉𝐵))

The formula states that the voter can vote in any combination,

for or against 𝐴 or 𝐵, without the coercer knowing the value of any

single vote. At the first glance these security properties seem to

be strong enough for capturing the desirable property of coercion

resistance. However, if we look at the two models in Figure 2,

both of them satisfy the property above. On the other hand, we

would consider model𝑀1 less secure than𝑀2. There are 4 possible

combinations of the valuations of 𝑉𝐴 and 𝑉𝐵 . In 𝑀2, the coercer

considers all 4 of them as plausible, but in 𝑀1 he could narrow

that down to only two possible combinations. In other words, the

uncertainty of the coercer about propositions 𝑉𝐴 and 𝑉𝐵 is higher

in𝑀2 than in𝑀1. In fact, as we shall see later, it is possible to write

a formula in the language of ATLK that keeps the above property

and yet distinguishes𝑀1 and𝑀2. But if we want to write a security

property in ATLK that rejects all the models where the coercer has

more distinguishing power over states 𝑠1 to 𝑠4 than the model𝑀2,

then the length of that formula would be very large – in the worst

case, even exponential in the number of distinguishing properties.

3.3 Reasoning about Uncertainty
One way of looking at the above situation is that, when reaching

any of the states 𝑠1 to 𝑠4, we want the coercer to have the least

amount of information, or in other words the maximum uncertainty

about the possible values of𝑉𝐴 and𝑉𝐵 . To express this concept, we

can use one of the well known quantitative measures of uncertainty.

Two measures that come to mind are Shannon entropy and Hartley

measure. Choosing Shannon entropy would be meaningful only if

we knew the intrinsic probabilities of each state. However, in the

models that we are using, and in the scenarios similar to the one

above, what we are interested is the uncertainty of the agents about

different possible outcomes of a set of properties (here 𝑉𝐴 and 𝑉𝐵 ).

We recall the definition of Hartley measure below:

Definition 3.1 (Hartley measure of uncertainty [29]). If 𝐴 is a

set of possible outcomes, then its Hartley measure is defined by

𝐻 (𝐴) = log |𝐴|.

The Hartley function coincides with Shannon entropy when

ignorance can be modeled by the uniform probability distribution.
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𝑠0

𝑠2 𝑠3𝑠1 𝑠4

¬𝑉𝑜𝑡𝑒𝑑 , ¬𝑉𝐴 , ¬𝑉𝐵

𝑉𝑜𝑡𝑒𝑑 , 𝑉𝐴 , ¬𝑉𝐵

𝑉𝑜𝑡𝑒𝑑 , ¬𝑉𝐴 , 𝑉𝐵 𝑉𝑜𝑡𝑒𝑑 , 𝑉𝐴 , 𝑉𝐵

𝑉𝑜𝑡𝑒𝑑 , ¬𝑉𝐴 , ¬𝑉𝐵

𝜖 , 𝜖

𝑣𝑜𝑡𝑒𝐴𝐵 , 𝜖

𝑣𝑜𝑡𝑒𝐴𝐵 , 𝜖

𝑣𝑜𝑡𝑒𝐴𝐵 , 𝜖

𝑣𝑜𝑡𝑒𝐴𝐵 , 𝜖

C C

𝜖 , 𝜖 𝜖 , 𝜖 𝜖 , 𝜖 𝜖 , 𝜖

(a)𝑀1

𝑠0

𝑠2 𝑠3𝑠1 𝑠4

¬𝑉𝑜𝑡𝑒𝑑 , ¬𝑉𝐴 , ¬𝑉𝐵

𝑉𝑜𝑡𝑒𝑑 , 𝑉𝐴 , ¬𝑉𝐵

𝑉𝑜𝑡𝑒𝑑 , ¬𝑉𝐴 , 𝑉𝐵 𝑉𝑜𝑡𝑒𝑑 , 𝑉𝐴 , 𝑉𝐵

𝑉𝑜𝑡𝑒𝑑 , ¬𝑉𝐴 , ¬𝑉𝐵

𝜖 , 𝜖

𝑣𝑜𝑡𝑒𝐴𝐵 , 𝜖

𝑣𝑜𝑡𝑒𝐴𝐵 , 𝜖

𝑣𝑜𝑡𝑒𝐴𝐵 , 𝜖

𝑣𝑜𝑡𝑒𝐴𝐵 , 𝜖

C C C

𝜖 , 𝜖 𝜖 , 𝜖 𝜖 , 𝜖 𝜖 , 𝜖

(b)𝑀2

Figure 2: Double referendumwith one voter and one coercer.
Model𝑀1 depicts a scenario which is less secure than𝑀2

Using this measure, what we want to specify as a security property

in the example above is that the uncertainty of the coercer about

the values of 𝑉𝐴 and 𝑉𝐵 should be maximal. The set of properties

of interest {𝑉𝐴,𝑉𝐵} could have 2
2 = 4 different combinations of

values. Therefore if we want that the coercer considers all of these

combinations as possible, the Hartley measure of uncertainty of

the coercer would be log 4 = 2 bits. To express this, we add a new

operator H , and write the formula:

⟨⟨𝑣⟩⟩𝐹 (𝑉𝑜𝑡𝑒𝑑 ∧H ≥2
𝑐 {𝑉𝐴,𝑉𝐵})

The formula states that the voter has a strategic ability to even-

tually cast her vote, while keeping the uncertainty of the coercer

about the valuations of 𝑉𝐴 and 𝑉𝐵 at the level of at least 2 bits.

Intuitively, the formula holds in state 𝑠1 of model𝑀2, but not𝑀1.

In the next section, we use this idea to formalize the syntax and

semantics of the logic ATLH.

4 ATL WITH UNCERTAINTY
In this section we define the syntax and semantics of the logic of

strategic abilities with uncertainty operator ATLH. The logic is

based on the idea of using the Hartley measure to quantify the

uncertainty of agents about the possible valuations of a set of for-

mulas. Similarly to ATLK, the semantics of ATLH is also defined

with respect to concurrent epistemic game models (CEGM).

4.1 Syntax
The syntax of ATLH is given as follows:

𝜑 ::= p | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨⟨𝐴⟩⟩𝑋𝜑 | ⟨⟨𝐴⟩⟩𝐺𝜑 | ⟨⟨𝐴⟩⟩𝜑U𝜑 | H ⊗𝑚
𝑎 𝛽 .

where 𝐴 ∈ 2
Agt

is a set of players, 𝛽 ∈ 2
𝜑 \ {∅} is a set of formulas,

𝑎 ∈ Agt is a player, and ⊗ ∈ {<, ≤, >, ≥,=} is a comparison operator.

For instance, the formula H>𝑚
𝑎 𝛽 states that the the uncertainty of

agent 𝑎 about the set of formulas 𝛽 is higher than𝑚.

4.2 Semantics
Let [𝑞]∼𝑎

= {𝑞′ ∈ 𝑆𝑡 | 𝑞′ ∼𝑎 𝑞} denote the abstraction class of

state 𝑞 ∈ 𝑆𝑡 with respect to relation ∼𝑎 , i.e., the epistemic neigh-

bourhood of 𝑞 from the perspective of agent 𝑎 ∈ Agt. For a given
formula 𝜑 , we define relation ∼𝜑∈ 𝑆𝑡 × 𝑆𝑡 that connects states with
the same valuation of 𝜑 :

𝑞1 ∼𝜑 𝑞2 iff𝑀,𝑞1 |= 𝜑 ⇔ 𝑀,𝑞2 |= 𝜑 .
If 𝛽 = {𝜑1, ..., 𝜑𝑛} is a set of formulas and 𝑎 ∈ Agt, then we define

∼𝛽
𝑎=∼𝑎 ∩⋂𝑛

𝑖=1 ∼𝜑𝑖

I.e., 𝑞1 ∼𝛽
𝑎 𝑞2 iff 𝑞1, 𝑞2 look the same to 𝑎 and cannot be discerned

by any formula in 𝛽 . Note that ∼𝛽
𝑎 is an equivalence. We define

R𝑎,𝑞 (𝛽) = {[𝑞′]∼𝛽
𝑎

| 𝑞′ ∼𝑎 𝑞}

for the set of equivalence classes of ∼𝛽
𝑎 contained in the epistemic

neighbourhood of state 𝑞. Then, the truth value of the statement

“agent 𝑎’s uncertainty about the set of formulas 𝛽 is in ⊗ relation

to value𝑚 ∈ R” can be defined as follows:

𝑀,𝑞 |= H ⊗𝑚
𝑎 𝛽, iff log |R𝑎,𝑞 (𝛽) | ⊗𝑚

Some straightforward validities of ATLH are:

(1) H
=𝑚
⩾𝑚
>𝑚
𝑎 𝛽 → H

⩾𝑚
⩾𝑚
>𝑚
𝑎 𝛽 ′, for all 𝛽 ⊆ 𝛽 ′;

(2) H
<𝑚
⩽𝑚
=𝑚
𝑎 𝛽 → H

<𝑚
⩽𝑚
⩽𝑚
𝑎 𝛽 ′, for all 𝛽 ⊆ 𝛽 ′.

Also, if |𝑆𝑡 | is the number of states in the model, then it holds

that𝑀,𝑞 |= H<min( |𝛽 |,log( |𝑆𝑡 |))
𝑎 𝛽 .

4.3 Model Checking
In this section, we discuss model checking forATLH. The following

results have long been known in the literature:

• Model checking of epistemic logic is in P with respect to the

size of the model and the length of the formula [28].

• Model checking of ATLK for agents with ir strategies is ∆P
2 -

complete with respect to size of the model and the length

of the formula [16]. This is a direct consequence of the fact

that model checking of ATL𝑖𝑟 is ∆P
2 -complete [33, 50].

In the following, we show that model checking of ATLH is also

∆P
2 -complete. To this end, it suffices to show that model checking

of the uncertainty part of the language is in P.

Proposition 4.1. If 𝜑 is an ATLH formula without strategic and
temporal operators and𝑀 is a CEGM, then checking if 𝜑 is satisfied in
a state 𝑞 of𝑀 can be done in polynomial time with respect to |𝜑 | and
|𝑀 |, where |𝑀 | is the total number of states, transitions, and epistemic
relation pairs in𝑀 .

Proof. Let𝜑1, 𝜑2, ...𝜑𝑘 be the subformulas of𝜑 (which incremen-

tally generate 𝜑) listed in order of length. We can see that 𝑘 ≤ |𝜑 |,
as there are at most |𝜑 | subformulas of 𝜑 . We start labeling each

state in𝑀 in increasing order of 𝑖 , with labels 𝜑𝑖 or ¬𝜑𝑖 , depending

Session 2F: Knowledge Representation and Reasoning II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

769



on whether 𝜑𝑖 is true in that state or not. It is easy to see that we

can do this in at most O(𝑘 |𝑀 |) labeling step. If the formula 𝜑𝑖 is a

propositional formula with respect to it’s subformulas, then it can

be labeled in in each state in constant time. In cases where 𝜑𝑖 is of

the form H ⊗𝑚
𝑎 𝛽 where ⊗ ∈ {<, >,=} and 𝛽 = {𝛼1, ...𝛼𝑘′}, we have

that each 𝛼 𝑗 is a subformula of 𝜑𝑖 . Therefore for labeling 𝜑𝑖 we

construct the set of equivalence classes R𝑎,𝑞 (𝛽) by checking the 𝑘 ′

labels of formulas in 𝛽 in all the states 𝑞′ where 𝑞′ ∼𝑎 𝑞. Then we

calculate log |R𝑎,𝑞 (𝛽) | and compare it with𝑚 in order to label 𝜑𝑖 .

This procedure can be done in at most O(𝑘 ′ |𝑀 |) steps. Therefore
the whole process of checking whether 𝜑 is satisfied in a state 𝑞 or

not can be done in at most O( |𝜑 |2 |𝑀 |2). □

Proposition 4.2. Model checking of ATLH for agents with ir
strategies is ∆P

2 -complete with respect to size of the model and the
length of the formula.

Proof. The lower bound follows from the fact that ATLH sub-

sumes ATL𝑖𝑟 , and model checking ATL𝑖𝑟 is ∆P
2 -hard. The upper

bound is straightforward from Proposition 4.1 and the fact that

model checking ATL𝑖𝑟 is in ∆P
2 . □

5 EXPRESSIVE POWER OF ATLH
In this section we show that ATLH and ATLK have the same

expressive power. We start by recalling the semantic definition of

comparative expressivity [58].

Definition 5.1 (Expressivity). Let 𝐿1 = ⟨𝛷1, |=1,M⟩ and 𝐿1 =

⟨𝛷2, |=2,M⟩ represents two logics, such that𝛷1 and𝛷2 are the set

of formulas defined in these logics,M is a nonempty class of models

(or pointed models) over which the logics are defined, and |=1 and
|=2 are the truth relations of these logics, such that |=1⊆ M ×𝛷1

and |=2⊆ M ×𝛷2. We say that 𝐿2 is at least as expressive as 𝐿1 on

the class of modelsM, iff for every formula 𝜑1 ∈ 𝛷1, there exists a

formula 𝜑2 ∈ 𝛷2 such that for every 𝑀 ∈ M we have 𝑀 |=1 𝜑1 iff
𝑀 |=2 𝜑2. We will write it as 𝐿1 ⩽M 𝐿2.

If both 𝐿1 ⩽M 𝐿2 and 𝐿2 ⩽M 𝐿1, then we say that 𝐿1 and 𝐿2 are

equally expressive onM, and write 𝐿1 =M 𝐿2.

In the following, we use |=K and |=H to denote the semantic

relation of ATLK and ATLH, respectively, whenever it might not

be clear from the context.

5.1 Knowledge as Uncertainty
Theorem 5.2. ATLH is at least as expressive as ATLK.

Proof. Because the set of formulas defined in ATLH includes

all the formulas defined in ATLK except the formulas including K
operator, and the semantics of the common formulas are similar

in both logics, it suffices to prove that for any formula of type

𝜑1 = K𝑎𝜑 in ATLK there is a formula 𝜑2 in ATLH such that for

every𝑀 ,

𝑀,𝑞 |= K𝑎𝜑 ⇔ 𝑀,𝑞 |=H 𝜑2

We claim that we can construct such 𝜑2 from K𝑎𝜑 to be 𝜑2 =

𝜑 ∧H=0
𝑎 {𝜑}. Therefore we need to prove that:

𝑀,𝑞 |=K K𝑎𝜑 ⇔ 𝑀,𝑞 |=H 𝜑 ∧H=0
𝑎 {𝜑}

We have that 𝑀,𝑞 |=K K𝑎𝜑 if and only if 𝜑 holds in all the

indistinguishable states from 𝑞 for 𝑎, which includes state 𝑞 itself.

This means that 𝜑 holds in 𝑞 and |𝑅𝑎,𝑞 (𝜑) | = 1, which in ATLH
would be expressed as𝑀,𝑞 |=H 𝜑 ∧H=0

𝑎 {𝜑}. □

5.2 Uncertainty as Knowledge
Theorem 5.3. ATLK is at least as expressive as ATLH.

The proof proceeds by translating every occurrence ofH ⊗𝑚
𝑎 𝛽

to a Boolean combination of epistemic formulas that express the

knowledge of agent 𝑎 with respect to the indistinguishability classes
of the formulas in 𝛽 , defined as follows:

Definition 5.4 (Indistinguishability class of a formula). For a given
model𝑀 , if 𝑞 ∈ 𝑆𝑡 , 𝑎 ∈ Agt and 𝜑 is a formula, then we define the

indistinguishability class of 𝜑 with respect to 𝑞 and 𝑎 as follows:

[𝜑]𝑞𝑎 = [𝜑] ∩ [𝑞]∼𝑎
,

where [𝑞]∼𝑎
denotes the set of states that are indistinguishable

from 𝑞 for 𝑎, and [𝜑] is the set of states 𝑞′ ∈ 𝑆𝑡 were𝑀,𝑞′ |= 𝜑 .

The full proof is technical and rather tedious; it can be found in

the extended version of the paper [52]. Here, we present how the

translation works on an example. Let 𝜑1 and 𝜑2 be two formulas

that do not contain any H operators. We would like to find an

ATLK formula 𝑃 (𝜑1, 𝜑2), such that:

𝑀,𝑞 |= H=log 3
𝑎 {𝜑1, 𝜑2} ⇔ 𝑀,𝑞 |=K 𝑃 (𝜑1, 𝜑2)

First we define new formulas𝐴,𝐵,𝐶 and𝐷 as follows:𝐴 = 𝜑1∧𝜑2,
𝐵 = 𝜑1 ∧ ¬𝜑2, 𝐶 = ¬𝜑1 ∧ 𝜑2 and 𝐷 = ¬𝜑1 ∧ ¬𝜑2. It is clear that
the sets of states [𝐴]𝑞𝑎 , [𝐵]

𝑞
𝑎 , [𝐶]

𝑞
𝑎 and [𝐷]𝑞𝑎 are mutually exclusive,

and moreover they partition [𝑞]∼𝑎
. Because the truth value of each

one of 𝐴, 𝐵, 𝐶 , 𝐷 corresponds to the truth value of exactly one of

four possible different valuation combinations of 𝜑1 and 𝜑2, so they

are distinct.

If 𝑀,𝑞 |= H=log 3
𝑎 {𝜑1, 𝜑2}, then exactly one of [𝐴]𝑞𝑎 , [𝐵]

𝑞
𝑎 , [𝐶]

𝑞
𝑎

or [𝐷]𝑞𝑎 has to be empty. Because these sets are mutually disjoint, if

all are non-empty then we should have at least four different states

in [𝑞]∼𝑎
with the four different valuation combinations for the

formulas 𝜑1 and 𝜑2. This would mean that𝑀,𝑞 |= H=log 4
𝑎 {𝜑1, 𝜑2}

which contradicts 𝑀,𝑞 |= H=log 3
𝑎 {𝜑1, 𝜑2}. Similarly if more than

one of [𝐴]𝑞𝑎 , [𝐵]
𝑞
𝑎 , [𝐶]

𝑞
𝑎 or [𝐷]𝑞𝑎 are empty, then it means that only

two or less possible valuation combinations of 𝜑1 and 𝜑2 exist in

[𝑞]∼𝑎
. This entails that 𝑀,𝑞 |= H<log 3

𝑎 {𝜑1, 𝜑2}, which is again a

contradiction. The converse is also true: if exactly three of the sets

[𝐴]𝑞𝑎 , [𝐵]
𝑞
𝑎 , [𝐶]

𝑞
𝑎 or [𝐷]𝑞𝑎 are non-empty, then there are exactly

three valuation combinations of 𝜑1 and 𝜑2 in [𝑞]∼𝑎
, which follows

that𝑀,𝑞 |= H=log 3
𝑎 {𝜑1, 𝜑2}. So the formula𝑀,𝑞 |= H=log 3

𝑎 {𝜑1, 𝜑2}
holds if and only if exactly one of [𝐴]𝑞𝑎 , [𝐵]

𝑞
𝑎 , [𝐶]

𝑞
𝑎 or [𝐷]𝑞𝑎 is empty.

This can happen in four different ways (one corresponding to each

of [𝐴]𝑞𝑎 , [𝐵]
𝑞
𝑎 , [𝐶]

𝑞
𝑎 or [𝐷]𝑞𝑎 being empty).

First consider the case where [𝐶]𝑞𝑎 is empty. Then:

�𝑞′ s.t 𝑞′ ∼𝑎 𝑞 and𝑀,𝑞′ |= 𝐶
⇔(∀𝑞′, 𝑞′ ∼𝑎 𝑞 =⇒ 𝑀,𝑞′ ̸ |= 𝐶)
⇔(∀𝑞′, 𝑞′ ∼𝑎 𝑞 =⇒ 𝑀,𝑞′ |= ¬𝐶)
⇔𝑀,𝑞 |= K𝑎¬𝐶
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In a similar way we can show that [𝐴]𝑞𝑎 is non-empty iff𝑀,𝑞 |=
¬K𝑎¬𝐴. The same goes for [𝐵]𝑞𝑎 , and [𝐷]𝑞𝑎 . Therefore among [𝐴]𝑞𝑎 ,
[𝐵]𝑞𝑎 , [𝐶]

𝑞
𝑎 and [𝐷]𝑞𝑎 , only [𝐶]𝑞𝑎 is empty iff:

𝑀,𝑞 |= ¬K𝑎¬𝐴 ∧ ¬K𝑎¬𝐵 ∧ K𝑎¬𝐶 ∧ ¬K𝑎¬𝐷
We got this result by assuming that only [𝐶]𝑞𝑎 is empty. Given

that 𝑀,𝑞 |= H=log 3
𝑎 {𝜑1, 𝜑2} iff exactly one of [𝐴]𝑞𝑎 , [𝐵]

𝑞
𝑎 , [𝐶]

𝑞
𝑎 or

[𝐷]𝑞𝑎 is empty, and knowing that we have four possible choices for

which one is to be empty, we get that:

𝑀,𝑞 |= H=log 3
𝑎 {𝜑1, 𝜑2} ⇔ 𝑀,𝑞 |=K 𝑃 (𝜑1, 𝜑2)

where 𝑃 (𝜑1, 𝜑2) is defined as:

𝑃 (𝜑1, 𝜑2) = (K𝑎¬(𝜑1 ∧ 𝜑2) ∧ ¬K𝑎¬(𝜑1 ∧ ¬𝜑2)
∧ ¬K𝑎¬(¬𝜑1 ∧ 𝜑2) ∧ ¬K𝑎¬(¬𝜑1 ∧ ¬𝜑2))

∨(¬K𝑎¬(𝜑1 ∧ 𝜑2) ∧ K𝑎¬(𝜑1 ∧ ¬𝜑2)
∧ ¬K𝑎¬(¬𝜑1 ∧ 𝜑2) ∧ ¬K𝑎¬(¬𝜑1 ∧ ¬𝜑2))

∨(¬K𝑎¬(𝜑1 ∧ 𝜑2) ∧ ¬K𝑎¬(𝜑1 ∧ ¬𝜑2)
∧ K𝑎¬(¬𝜑1 ∧ 𝜑2) ∧ ¬K𝑎¬(¬𝜑1 ∧ ¬𝜑2))

∨(¬K𝑎¬(𝜑1 ∧ 𝜑2) ∧ ¬K𝑎¬(𝜑1 ∧ ¬𝜑2)
∧ ¬K𝑎¬(¬𝜑1 ∧ 𝜑2) ∧ K𝑎¬(¬𝜑1 ∧ ¬𝜑2)) .

6 UNCERTAINTY IS EXPONENTIALLY MORE
SUCCINCT THAN KNOWLEDGE

The notion of succinctness [1, 51, 59] is a refinement of the no-

tion of expressivity. Assume that one particular property can be

expressed in both languages 𝐿1 and 𝐿2, with formulas 𝜑1 and 𝜑2
respectively. When comparing the representational succinctness

of these two languages, we are interested in whether there is a

significant difference in the lengths of 𝜑1 and 𝜑2. Similar to analysis

of complexity, what we consider significant is at least exponential
growth of the size of a formula in one of the languages comparing

to the equivalent formula in the other language. In this section, we

prove that the language of ATLH is exponentially more succinct

thanATLK. We use the so called formula size games (FSG) from [27]

to construct the proof. In brief, we will show that for any 𝑛 ∈ N,
there is a formula 𝜑𝑛 of size linear to 𝑛 in ATLH, such that for

any formula 𝜑 ′𝑛 in ATLK with the same set of satisfying models

as 𝜑𝑛 , the parse tree of 𝜑
′
𝑛 will have at least 2

𝑛
distinct nodes, and

therefore the size of 𝜑 ′𝑛 is at least exponential in 𝑛.

6.1 Succinctness and Formula Size Games
Before showing that ATL with uncertainty is exponentially more

succinct than ATL with knowledge, we summarize the basic termi-

nology.

Definition 6.1 (Length of formulas in ATLH). The length of for-

mula 𝜑 is denoted by |𝜑 |, recursively defined as follows:

|𝑝 | = 1,

| (𝜑1 ∨ 𝜑2) | = |𝜑1U𝜑2 | = |𝜑1 | + |𝜑2 | + 1,

|¬𝜑 | = |𝑋𝜑 | = |𝐺𝜑 | = 1 + |𝜑 |
|⟨⟨𝐴⟩⟩𝜑 | = |𝐴| + |𝜑 |,
|H ⊗𝑚

𝑎 𝛽 | = 1 +∑
𝜑𝑖 ∈𝛽 |𝜑𝑖 |.

Definition 6.2 (Succinctness). Let 𝐿1 = ⟨𝛷1, |=1, 𝑀⟩ and 𝐿2 =

⟨𝛷2, |=2, 𝑀⟩ be two logics such that 𝐿1 ⩽𝑀 𝐿2 and let 𝑓 (𝑥) =

𝑂 (𝑔(𝑛)) be a strictly increasing function. If for every 𝑛 ∈ (𝑁 )
there are two formulas 𝛼𝑛 ∈ 𝛷1 and 𝛽𝑛 ∈ 𝛷2 where:

• |𝛼𝑛 | = 𝑓 (𝑛)
• |𝛽𝑛 | = 2

𝑔 (𝑛)

• 𝛽𝑛 is the shortest formula on𝛷2 that is equivalent to 𝛼𝑛 on

𝑀 ,

then we say that 𝐿1 is exponentially more succinct than 𝐿2 on 𝑀

and write it as: 𝐿1 ⩽̸
subexp
𝑀

𝐿2.

In the following, for a set of pointed models 𝐴, we use the term

𝐴 |= 𝜑 to mean that ∀𝑀 ∈ 𝐴 .𝑀 |= 𝜑 .

Definition 6.3 (FSG). One-person formula size game (FSG) on

two sets of pointed models 𝐴 and 𝐵 is played as follows: during

the course of the game, a game tree is constructed such that each

node is labeled with pair ⟨𝐶 ◦ 𝐷⟩ of sets of pointed models. The

possible moves for the player (called the spoiler) on each node of

the tree are {𝑝 ∈ Pv,¬,∨,K𝑖 }, where 𝑖 ∈ Agt. A node can be open

or closed. Once a node is closed, no further move can be played

there. The condition and consequences of each of possible moves

are as below:

𝑝 ∈ Pv (Atomic move): the spoiler chooses 𝑝 ∈ Pv such that

𝐶 |= 𝑝 and 𝐷 |= ¬𝑝 . Then the node is declared closed.

¬ (Not move): A new node ⟨𝐶 ◦ 𝐷⟩ is added to the tree.

∨ (Or move): two nodes ⟨𝐶1 ◦ 𝐷⟩ and ⟨𝐶2 ◦ 𝐷⟩ are added to

the tree such that 𝐶1 ∪𝐶2 = 𝐶 .
𝐾𝑖 (Knows move), where 𝑖 ∈ Agt: For each (𝑀, 𝑠) ∈ 𝐷 the

spoiler chooses a pointed model (𝑀, 𝑠 ′) such that 𝑠 ∼𝑎 𝑠 ′.
If for some (𝑀, 𝑠) ∈ 𝐷 such (𝑀, 𝑠 ′) does not exist, then
the spoiler cannot play this move. All such chosen pointed

models are collected in 𝐷 ′
. Moreover, for each (𝑀, 𝑠) ∈ 𝐶 , all

possible pointed models (𝑀, 𝑠 ′) such that 𝑠 ∼𝑎 𝑠 ′ are added
to 𝐶 ′

. Then a new node ⟨𝐶 ′ ◦ 𝐷 ′⟩ is added to the tree.

We say that the spoiler wins FSG starting at ⟨𝐴 ◦ 𝐵⟩ in 𝑛 moves iff

there is a game tree𝑇 with root ⟨𝐴 ◦ 𝐵⟩ and precisely n nodes such

that every leaf of 𝑇 is closed.

Theorem 6.4 ([27]). The spoiler can win the FSG starting at ⟨𝐴◦𝐵⟩
in less than 𝑘 moves iff there is some 𝑛 < 𝑘 and a formula 𝜑 ∈ 𝛷𝑀𝐸𝐿

such that 𝐴 |=𝑀𝐸𝐿 𝜑 , 𝐵 |=𝑀𝐸𝐿 ¬𝜑 and |𝜑 | = 𝑛, where𝛷𝑀𝐸𝐿 is the
set of formulas defined in Multiagent epistemic logic and |=𝑀𝐸𝐿 shows
truth relation in it.

The game tree through which the spoiler wins the FSG is the

parse three of formula 𝜑 in the language of Multiagent epistemic
logic. For any ⟨𝐴 ◦ 𝐵⟩, the set of all closed game trees with root

⟨𝐴 ◦ 𝐵⟩ is denoted by 𝑇 (⟨𝐴 ◦ 𝐵⟩). Consequently, the set of closed
trees represents also the set of all formulas 𝜑 that could distinguish

the set of pointed models 𝐴 from the set of pointed models 𝐵 via

the truth relation |=𝑀𝐸𝐿 .

6.2 ATLH Is More Succinct than ATLK
Theorem 6.4 allows us to use FSG for proving the succinctness of

our new logic ATLH with respect to ATLK.

Theorem 6.5. The logicATLH is exponentially more succinct than
the logic ATLK.
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Issue A

Issue B

Figure 3: Example ThreeBallot vote.Here the voter has voted
for issue 𝐴 and against issue 𝐵. Thus, the value of the vote
is 𝐴𝐵. The voter fills two fields in the row of issue 𝐴 and one
space in the row of issue 𝐵, and then she separates the three
ballots. The resulting ballot set is {𝐹𝐵, 𝐵𝐵, 𝐹𝐹 }.

Vote and ballot set (BS) Receipt Possible information sets of the coercer

Vote = 𝐴𝐵, BS = {𝐵𝐵, 𝐹𝐵, 𝐵𝐹 }
BB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
FB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
BF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}

Vote = 𝐴𝐵, BS = {𝐵𝐵, 𝐵𝐵, 𝐹𝐹 }
BB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
FF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}

Vote = 𝐴𝐵, BS = {𝐵𝐵, 𝐹𝐵, 𝐹𝐹 }
BB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
FB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
FF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}

Vote = 𝐴𝐵, BS = {𝐹𝐵, 𝐹𝐵, 𝐵𝐹 }
FB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
BF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}

Vote = 𝐴𝐵, BS = {𝐵𝐵, 𝐵𝐹, 𝐹𝐹 }
BB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
BF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
FF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}

Vote = 𝐴𝐵, BS = {𝐹𝐵, 𝐵𝐹, 𝐵𝐹 }
FB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
BF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}

Vote = 𝐴𝐵, BS = {𝐹𝐵, 𝐵𝐹, 𝐹𝐹 }
FB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
BF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
FF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}

Vote = 𝐴𝐵, BS = {𝐵𝐵, 𝐹𝐹, 𝐹𝐹 }
BB {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}
FF {𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵}, {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}

Table 1: Indistinguishability sets of the coercer in a two
voter, two issue referendum with ThreeBallot, based on the
selected receipt by the voter. Each row lists the possible epis-
temic classes [𝑞]∼𝑐

of the coercer, depending on the voter’s
vote and the way she filled her ballots (invisible to the co-
ercer), the voter’s election receipt (visible to the coercer), and
the set of ballots posted on the public bulletin board

The full proof is rather technical; it can be found in the extended

version of the paper [52]. Here we explain the sketch of the proof:

Proof sketch. Let 𝐿𝑎𝑛𝑔(ATLK) and 𝐿𝑎𝑛𝑔(ATLH) represent
the languages of the logicsATLK andATLH respectively. For every

𝑛 ∈ N, we define a formula 𝜑𝑛 ∈ 𝐿𝑎𝑛𝑔(ATLH) where 𝑓 (𝑛) = 𝑛.

Then, we define two sets of pointed models 𝐴𝑛 and 𝐵𝑛 , such that

𝐴𝑛 |=H 𝜑𝑛 and 𝐵𝑛 |=H ¬𝜑𝑛 . Because ATLK is as expressive as

ATLH, there exists a formula 𝜓𝑛 ∈ 𝐿𝑎𝑛𝑔(ATLK) which is the

shortest formula in 𝐿𝑎𝑛𝑔(ATLK) equivalent to 𝜑𝑛 . Therefore 𝜓𝑛
too can distinguish sets 𝐴𝑛 and 𝐵𝑛 , which means the spoiler can

win the FSG game starting at ⟨𝐴𝑛 ◦ 𝐵𝑛⟩ by playing the formula𝜓𝑛 .

We then prove that the spoiler cannot win the FSG game starting

at ⟨𝐴𝑛 ◦ 𝐵𝑛⟩ in less than 2
𝑛
moves, which means the size of𝜓𝑛 is

at least 2
𝑛
. □

7 CASE STUDY: THREE BALLOT
We demonstrate the usefulness of our proposal on a real-life voting

scenario.

7.1 Voting with ThreeBallot
ThreeBallot [48, 49] has been proposed by Rivest as a paper-based

end-to-end verifiable voting protocol. Here, we use a simplified

version of the protocol, which can be used for multiple-issue ref-

erendums. Following the example in Section 3, we consider a two-

issue referendum, in which each voter votes to accept or reject two

proposals 𝐴 and 𝐵.

In ThreeBallot, the ballots are prepared such that for each issue,

there are three empty fields that the voter can fill. For voting to

accept the issue, the voter has to fill exactly two of the empty fields,

and to vote to reject the issue, the voter has to fill exactly one empty

field. However, the exact positions of the filled spaces are up to the

voter. After filling the ballots, the voter separates three columns

of fields, and in this way creates three separate ballots. The voter

can make (and keep) a copy of one of those ballots as the receipt.

Finally, she puts all the original ballots in the ballot box. The tally

of the votes is done by counting the filled spaces for each issue. The

difference between the number of filled spaces for each issue and

the number of voters shows the number of votes in favor of that

issue. After the tallying, all the ballots are published on a public

bulletin board, so that everyone can check the correctness of the

result.

One of the main goals of ThreeBallot is coercion resistance [38],
i.e., the protocol should make it impossible for a third party to

successfully coerce or bribe voters into voting in a particular way.

Informally, coercion resistance is usually understood as the inabil-

ity of the coercer to learn how the voter has voted, even if the

voter cooperates with the coercer. Interestingly, ThreeBallot was

both claimed secure [49] and insecure [10]. It might seem that one

of the claims must be wrong, but a closer look reveals that they

are based on different concepts of vote privacy. In [49], it is ar-

gued that the coercer cannot get to know how the voter has voted,
which is a strategic-epistemic property. In contrast, [10] argues that

the coercer can gain information about the value of the vote. We

demonstrate the difference in the remainder of this section.

7.2 Model of the Scenario
In our example, the two propositions that determine the vote of the

voter are 𝑉𝐴 and 𝑉𝐵 . We encode a vote against an issue by using

overline. So, 𝐴𝐵 indicates a vote for issue 𝐵 and against issue 𝐴; in

other words, it states that 𝑉𝐴 is false and 𝑉𝐵 is true. This way, the
set of possible votes from the voter is 𝑉𝑜𝑡𝑒𝑠 = {𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵}.
Similarly, we encode a filled space by 𝐹 and a blank (not filled)

space by 𝐵. For instance, a {𝐵𝑙𝑎𝑛𝑘, 𝐹𝑖𝑙𝑙𝑒𝑑} ballot is denoted by 𝐵𝐹 .

Figure 3 depicts an example ThreeBallot card and the resulting

ballots.

We consider a scenario with two voters and a two issue refer-

endum with issues 𝐴 and 𝐵. Let us call the first voter the voter, as
she will be the one that we are focusing on in this example. We call

the second voter the other voter. During the election, the voter has

several choices. The first is what vote she is going to cast. Then

for each possible vote, there are various ways that the ballots can
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be filled, which will result in different ballot sets. After that, the

voter has the choice of which of the ballots to keep a copy as the

receipt. In our scenario, there exist a coercer who after the election

will force the voter to reveal her receipt. The coercer then tries to

infer the actual value of the voter’s vote, based on the receipt and

the published bulletin board.

Table 1 shows the different ways how the choices of the voter

affect the possible indistinguishability set of the coercer about the

value of the vote, after the receipt has been revealed. The different

indistinguishability sets in each row result from various ways in

which the other voter might fill his ballot.

7.3 Analysis: Epistemic Security
The coercion resistance security property is usually framed follow-

ing the idea that the coercer cannot get to know how the voter has

voted, even if the voter cooperates with the coercer. In [53], various

nuances of coercion resistance are formulated in the logic ATLK.
In a similar way, we can use ATLK to express coercion resistance

in our ThreeBallot example as follows:∧
𝑉𝑖 ∈𝑉𝑜𝑡𝑒𝑠 ¬⟨⟨𝑣, 𝑐⟩⟩𝐹 (𝑉1 = 𝑉𝑖 ∧ (𝑉1 ≠ 𝑉2 → K𝑐 (𝑉1 = 𝑉𝑖 )))

The formula states that for any vote choice, there exists no common

strategy for the voter and the coercer, such that the voter selects

that vote and given that the choice of the two voters are different

(the reason for this condition is explained below), the coercer would

know the value of the vote.
3

It is obvious that in the cases where both voters have voted

identically, evenwithout revealing the receipt, the coercer will know

the value of the vote just by looking at the bulletin board. This is

similar to the casewhen in an election all the voters vote similarly, in

which case the privacy of their votes will be broken after publishing

the tally (unless some sort of obfuscation is used [35]). We added

the condition (𝑉1 ≠ 𝑉2) to the above formula to account for this.

Also in the following we only focus on the cases where the two

voters has voted differently.

By looking at Table 1 we can see that the model satisfies the

coercion resistance property as formulated in the above ATLK ex-

pression. This is because there is no row in the table that consists of

only one indistinguishability set for the coercer which has only one

member (the actual value of the vote). However the voter votes and

selects the receipt, there is at least one possible indistinguishability

set with more than one member, meaning that the coercer might

not get to know the actual vote of the voter.

7.4 Information-Theoretic Security in ATLH
We can alternatively define the coercion resistance property in the

information-theoretic sense, namely that the coercer cannot gain
information on how the voter has voted, even if the voter cooperates

with the coercer. Phrasing this differently, we want that no matter

the course of actions of the voter and coercer, the coercer has always

maximum uncertainty about the actual value of the vote. We can

express this property in ATLH as follows:∧
𝑉𝑖 ∈𝑉𝑜𝑡𝑒𝑠 ¬⟨⟨𝑣, 𝑐⟩⟩𝐹 (𝑉1 = 𝑉𝑖 ∧ (𝑉1 ≠ 𝑉2 →

H=log( |𝑉𝑜𝑡𝑒𝑠 |)
𝑐 {𝑉𝐴,𝑉𝐵}))

3
Note that we use (𝑉1 = 𝑉𝑖 ) in the role of an atomic proposition which evaluates to

true whenever𝑉1 is indeed equal to𝑉𝑖 . Condition (𝑉1 ≠ 𝑉2) is treated analogously.

The above formula states that, for any joint strategy of the co-

ercer and the voter, the uncertainty of the coercer will always be at

the maximum. Looking at Table 1, we can see that the ThreeBallot

protocol does not satisfy this property. This is because in each row

there exists a possible indistinguishability set whose size is less

than the number of possible votes.

This example shows that, although ThreeBallot could be con-

sidered secure with respect to the epistemic notion of coercion

resistance expressed in ATLK, it is not secure when we define the

security requirement as an information-theoretic property, and

formalize it in ATLH.

8 CONCLUSION
In this work, we introduce the logicATLHwhich extends alternating-

time temporal logic ATL with quantitative modalities based on the

Hartley measure of uncertainty. As the main technical result, we

show that ATLH has the same expressive power and the same

model checking complexity as ATLK (i.e., ATL with epistemic

modalities), but it is exponentially more succinct.

The succinctness result, together with the model checking com-

plexity, is of major significance. As we have seen in Section 4.3,

both ATLK and ATLH have the same verification complexity with

respect to the size of the model and the length of the formula. The-
orem 6.5 promises that, for some properties, their verification in

ATLH will be exponentially faster than in ATLK. Also, a more

succinct language often results in better readability, which in turn

helps the designers of a system to make less mistakes in the speci-

fication of desired properties. Last but not least, many properties

can be expressed in ATLH in a much more intuitive way than

in ATLK. Understanding the information-theoretic intuition of a

corresponding ATLK formula can be a real challenge.

We suggest the specification of security requirements as an im-

portant application area for our proposal. In particular, the frame-

work can be used to expose the logical structure of security claims,

for example, the difference between the epistemic and information-

theoretic notions of privacy. We demonstrate this on a real-life

voting scenario involving the ThreeBallot protocol, which has been

both claimed secure and insecure in the past. Indeed, the protocol

is secure with respect to an epistemic notion of privacy, but it may

fail to obtain the information-theoretic one.

In the future, we plan to implement model checking for ATLH
as an extension of the STV [42] or MCMAS [43] model checkers.
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