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ABSTRACT
This paper addresses the problem of integrating local guide poli-

cies into a Reinforcement Learning agent. For this, we show how

to adapt existing algorithms to this setting before introducing a

novel algorithm based on a noisy policy-switching procedure. This

approach builds on a proper Approximate Policy Evaluation (APE)

scheme to provide a perturbation that carefully leads the local

guides towards better actions. We evaluated our method on a set

of classical Reinforcement Learning problems, including safety-

critical systems where the agent cannot enter some areas at the

risk of triggering catastrophic consequences. In all the proposed

environments, our agent proved to be efficient at leveraging those

policies to improve the performance of any APE-based Reinforce-

ment Learning algorithm, especially in its first learning stages.
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1 INTRODUCTION
Reinforcement Learning (RL) aims at learning an optimal policy in

an unknown environment by interacting with it. This discipline has

known many successes on a wide range of simulated systems from

recommender systems [66, 88] to complex video games [20, 55].

Despite some advances in real-world environments such as balloon

navigation [8] or plasma control in Tokamaks [16], RL is not ready

to be applied to most real-world applications. Too many challenges

must first be resolved [18, 85]. In particular, the agent requires many

interactions with the system to learn a good policy, which can be

prohibitive in various cases: running real-world experiments may

be more time - or money - consuming by many orders of magnitude

*
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Figure 1: Reinforcement Learning with Local Guides
At each step, the agent receives a state 𝑠 , the reward 𝑟 of the

previous state-action pair, as well as the guide policy 𝜋𝑔(·|𝑠) with
its associated confidence function _(𝑠).

compared to simulations, or when failing would eventually damage

the system. In fact, these interactions may be completely restricted

in the case of safety-critical environments, as they would have

catastrophic consequences on themselves or their surroundings if

an inadequate action is chosen in the wrong state. Hence, the agent

must be able to learn with a small, potentially narrow, amount of

samples.

One of the main reasons for this requirement is the poor quality

of the data sampled by the agent at the beginning of learning: an

improper initialization of the policy drives the agent to visit mean-

ingless or even catastrophic parts of the environment. In the former

case, the agent would need a significant number of interactions

with the system before discovering suitable areas of the environ-

ment. This results in running a mediocre policy for a long period,

which is unacceptable on most real-world systems. For instance,

a traditional way of teaching a robot how to walk would result

in a substantial amount of falling, which would eventually dam-

age it. Another example is the control of the cooling system of a

server room: forcing the room to stay at a high temperature would

damage the servers. This problem is all the more pronounced in

high-dimensional environments with sparse rewards where rele-

vant information are located in a narrow subspace of the environ-

ment. Real-life exploration is similar to what can be encountered

when playing Montezuma’s Revenge, an arcade game notoriously

difficult to solve [7, 9] because of its sparse signals provided only

after completing specific series of actions over extended periods.

Consequently, satisfactory RL agents must be able to quickly

discover meaningful information about the environment with care-

fully chosen interactions with the system, that are both informative

and safe. In the literature, a commonway to go towards this purpose
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is to consider information provided by a guide policy (potentially

sub-optimal). One proposition is to rely on external data that has

been gathered with this guide to properly initialize any RL agent

[45, 51, 56], and/or to lead the subsequent optimization process

[64, 71]. This has been successful in solving complex tasks, includ-

ing the first levels of Montezuma’s Revenge [6, 61]. However, the

suggested algorithms require a substantial amount of data to be

efficient [57] which can be difficult to get in some real-world envi-

ronments where sampling is expensive. In fact, data can be nearly

impossible to gather from safety-critical environments since states

leading to disastrous repercussions cannot be visited. Another line

of work directly considers having access to the global sub-optimal

guide which avoids the need for sampling from a costly environ-

ment. It acts as a teacher for the RL agent [89], which can either

be attractive [3, 72, 82] to lead the agent towards meaningful areas,

or repulsive [81, 84] to prevent it from entering unsafe states. Al-

though presenting considerable improvements, almost none of the

methods introducing a guide tackles the policy initialization with

the exception of [82], or [3] at the cost of initial sampling.

More importantly, both of these families assume access to a guide

that would be efficient in all the state space of the environment,

named in this paper as global guide. Considering the increasing

complexity of real-world systems, such global information becomes

too difficult to build using classical tools [44, 77]. Nonetheless, in-

formation can often still be extracted, regardless of the complexity

of the environment. For instance, experts may build heuristics such

as catch-up policies to avoid going into unsafe states, or, when the

dynamics can be inferred on some parts of the system, apply some

of the many tools from Optimal Control (OC) theory [37, 79] for

building attractive policies to guide the agent towards relevant in-

formation. In particular, Gain Scheduling [47, 69] is thoroughly used

in the industry [4, 15, 23] to provide controllers that are relevant

only at the vicinity of chosen operating points.

Inspired by these real-world considerations, we propose to ad-

dress a novel framework called Reinforcement Learning with Local
Guides (RLLG), that seeks to reduce the number of interactions

between the RL agent and the environment. Within this setting, the

agent must find a suitable global policy in the entire state-action

space with the help of a controller that would be relevant only

in a known region of the state space, named local guide. This ex-
tension is representative of real-world demands and includes any

kind of local controller - whether attractive or repulsive - that may

be present in real-world systems. This setting generalizes to any

external policy as it also encompasses global ones.

In this paper, we first present how to adapt the Approximate

Policy Iteration scheme to take an external policy into account to

the RLLG setting, and analyze their advantages and drawbacks.

Then, we introduce a novel algorithm to cope with the presented

weaknesses and validate our approach on a variety of complex

environments in two different use cases. The various algorithms

are first compared to guide the exploration process to improve

the quality of the gathered data during the first episodes. They

are further tested to prevent the agent from entering catastrophic

states. In both cases, the relevance of introducing local controllers

as well as the advantages of ourmethod are outlined in the proposed

environments.

2 RELATEDWORK
Before diving into the RLLG setting, we present how expertise has

previously been integrated into the RL framework. This expert

information is often global and can take different forms: data, re-

ward, or policy. We cover them below and include the few existing

approaches leveraging local information in the last paragraph.

Imitation Learning with Demonstrations. Many works focused on

a setting where the agent has access to a large amount of demon-

stration trajectories from a guide of the task. A first proposition

to recover the policy of the guide is Behavioral Cloning (BC) [75]

which uses the traditional Supervised Learning scheme. When the

dataset is complete and comes from an expert policy, this technique

was successful in special cases of autonomous driving [62] and

flying [70]. However, when the agent finds itself in a situation not

described by the dataset, it may choose catastrophic actions and

its performance can quickly degrade [14]. In fact, Ross and Bagnell

[67] show that this distribution shift induces a quadratic error in the

length of the episode for standard Supervised Learning algorithms,

so Ross et al. [68] proposed DAGGER, an approach mixing the ex-

pert and the learnt policy, to get a linear error. Among the many

different Imitation Learning frameworks lies Inverse RL [1, 5, 33]

which attempts at correcting the weaknesses of BC by encoding the

expert policy into a reward function that could be optimized. This

approach has shown impressive results in a wide variety of environ-

ments, including high-dimensional ones [11, 32, 87]. Nonetheless,

this set of techniques seeks to reproduce and generalize the guide

policy, not improve it. It can be problematic when the guide is

sub-optimal.

Reinforcement Learning from Demonstrations (RLfD). Instead of

copying and generalizing the guide policy from the provided dataset,

RLfD [64, 71] uses RL tools to find a better policy. In practice, the

additional data is mostly used to overcome unnecessary exploration

and lead the agent towards interesting parts of the MDP [57]. They

were originally employed to initialize the policy with BC [40, 60],

and then throughout the entire optimization process. For example,

DQNfD [31] and DDPGfD [83] include the demonstration data in

the replay buffer and add new regularizations to force the opti-

mization process to better consider the demonstrations. In a similar

fashion, POfD [36] and LOGO [65] force the policy of the agent

to stay close to the guide policy by penalizing or constraining the

RL objective. However, these methods are only possible when the

expert policy is attractive as no data could be retrieved near states

having catastrophic consequences. Besides, they might require sub-

stantial data in order to guide the RL agent [31, 57, 65], which can

be difficult to obtain on systems that are costly to sample.

Reward Shaping. An additional intuitive idea to include domain

knowledge in the RL process is to modify the reward function [17,

52], but an arbitrary reward shaping is dangerous as it might deviate

the agent from its original goal [63]. Thus, Ng et al. [58] proposed

Potential Based Reward Shaping, a framework that constrains the

added rewards to be in a specific potential form to guarantee for

the original goal to be unchanged, though finding such potential

from any external knowledge is difficult [29]. A clever alternative

strategy is to add the heuristic in the 𝑄-function instead [38, 39]
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which has fewer chances of deviating from the original goal, and/or

to decrease the impact of the heuristic over time [12].

Reinforcement Learning with a Global Guide. Closely related to

our work is to transfer the knowledge of a known teacher [89]

- or guide policy - to the RL agent [72, 82]. Despite the need of

building a global guide, this circumvents the problem of acquiring

a large amount of data. Similarly than in RLfD, the guide policy

leads the RL agent in its first learning stages [39, 72]. More recently,

Uchendu et al. [82] and Agarwal et al. [3] took advantage of the

access to a global guide to properly initialize an RL policy, even

though [3] introduced QDagger, an algorithm that is pre-trained on

the data sampled by the teacher that could be unavailable in practice.

Rather than finding a global policy that would be better than the

global guide, Jacq et al. [34] proposed the Lazy-MDPs framework to

learn to take over the guide only when it is noticeably sub-optimal.

While it provides interesting insights into the properties of the

environment, it does not prioritize sample efficiency.

Local Expertise. All the above methods rely on a global guide or

heuristic that can be difficult to acquire. Very few works focused on

local ones. One approach is COG [74] which leverages data from a

sub-task to guide the agent in the RL optimization process. However,

it suffers from the drawbacks of relying on data discussed in the

previous paragraph and is only applied in the sparse reward setting.

Most related to our work is to directly consider having access

to local guides. It has been studied in two cases. First, when the

local controller is optimal, as the one for those built with Optimal

Control (OC) theory [37, 49, 53], some works proposed a switching

mechanism between the RL and the local controller [10, 26, 46, 90].

Such switching cannot overcome the sub-optimality of the local

policy. Another line of research considered emergency procedures

that are activated when the agent enters a dangerous part of the

environment to prevent the agent from entering catastrophic states

[81, 84]. In addition to the local controller, Turchetta et al. [81]

assume a curriculum is available to maintain safety, and Wagener

et al. [84] rely on an advantage estimate of the local policy which

might not be available in practice. Contrary to these works, our

method does not require any additional heavy-to-build knowledge.

3 PRELIMINARIES AND PROBLEM SETTING
3.1 Preliminaries
Let ∆(X) be the set of all probability measures on X. The agent-
environment framework is modeled as a Markov Decision Process

(MDP) (S,A, 𝑟 , 𝑃, 𝜌,𝛾). It is composed of a state space S, an action

space A, a transition kernel 𝑃 : S × A → ∆(S), a reward function

𝑟 : S × A → [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ], an initial state distribution 𝜌 and a

discount factor 𝛾 ∈ [0, 1). We focus on the general setting whereA
is continuous and propose an extension to handle a discrete action

space in Appendix ??.
A policy 𝜋 : S → ∆(A) is a decision rule mapping a state

over a distribution of actions. The RL objective is to find a pol-

icy maximizing the expected discounted cumulative reward 𝐺𝑡 =∑∞
𝑖=0

𝛾𝑡𝑟 (𝑠𝑡+𝑖 , 𝑎𝑡+𝑖 ) over the distribution induced by the policy 𝜋 and

the transition kernel 𝑃 . The value of a policy 𝜋 is measured through

the value function 𝑉 𝜋 (𝑠) = E𝑃 [𝐺𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡+𝑖 ∼ 𝜋 (·|𝑠𝑡+1)∀𝑖 ≥ 0)]
and its associated𝑄-value function𝑄𝜋 (𝑠, 𝑎) = E𝑃 [𝐺𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎,

𝑎𝑡+𝑖 ∼ 𝜋 (·|𝑠𝑡+𝑖 ) ∀𝑖 ≥ 1]. Let 𝑉 ∗ and 𝑄∗ be the optimal value func-

tions associated with the highest expected cumulative rewards.

Let the Bellman operator for the𝑄-value functionB𝜋 [𝑄] (𝑠, 𝑎) =

𝑟 (𝑠, 𝑎) +𝛾E𝑠′∼𝑃 (· |𝑠,𝑎),𝑎′∼𝜋 (· |𝑠′) [𝑄(𝑠 ′, 𝑎′)], and the Bellman optimality

operatorB∗ [𝑄] (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎)+𝛾E𝑠′∼𝑃 (· |𝑠,𝑎)
[max𝑎′ 𝑄(𝑠 ′, 𝑎′)]. Being

𝛾-contractions, iteratively applying these operators to any initial

𝑄0
converges to their associated fixed points 𝑄𝜋 or 𝑄∗.

3.2 Approximate Policy Iteration
In view of the usual high dimensions of the state-action space and

the lack of access to the environment and its transition kernel, these

operators cannot be computed. Instead, the RL approach uses data

to approximate them. We denote
ˆB𝜋 and

ˆB∗ the associated empiri-

cal Bellman operators that use samples to estimate the expectation

under 𝑃 (·|𝑠, 𝑎). A general framework to find a good policy is Approx-

imate Policy Iteration, which is at the core of many state-of-the-art

algorithms [21, 28, 50, 54, 73] that are efficient on environments

with a continuous action space. As we will see in the following

section, such scheme is particularly relevant to the RRLG setting.

At each epoch 𝑘 , the agent collects data with the current policy

𝜋𝑘 , evaluates its associated 𝑄-function via Approximate Policy

Evaluation (APE) and improves its policy through Approximate

Policy Improvement (API). Given a datasetD = {(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1)
𝑁
𝑖=1
},

ˆE the empirical expectation of the state-action pair (𝑠, 𝑎) induced by

D, 𝜔 ∈ Ω and \ ∈ Θ the respective parameters of 𝑄 and 𝜋 , �̄�𝑘 ∈ Ω

the frozen weights associated to the 𝑄-target, it is formalized as:

𝑄𝑘+1

𝜔 ← arg min

𝜔 ∈Ω
ˆE

[(
𝑄𝜔 − ˆB𝜋

𝑘
\

[
𝑄𝑘�̄�𝑘

] )
2

]
, (APE)

𝜋𝑘+1

\
← arg max

\ ∈Θ
𝐽D𝜋\

(
𝑄𝑘+1

𝜔

)
. (API)

The objective 𝐽D𝜋\

(
𝑄𝑘+1

𝜔

)
in the Approximate Policy Improve-

ment step API may vary depending on the RL algorithm, but is

always a function of the estimated 𝑄-values.

Using this process greedily could lead to poor policies [35, 75],

especially at the beginning of learning when the estimates are

inaccurate. The agents thus need to explore the environment to

gather relevant data that would improve these estimations. Since

little information about the environment is known, this exploration

often relies on random noise added to the policy. It allows the

discovery of interesting parts of the environment, but can also very

well guide the agent towards meaningless regions. Even worse, this

random exploration might lead the agent to catastrophic states that

would be unacceptable in real-world systems.

3.3 Problem setting
The goal is to find a good policy on the entire state space with as few

interactions as possible with the environment while avoiding cata-

strophic states in a setting where the system has been previously

studied by experts. The idea is to integrate local state space exper-

tise from, e.g. any available source, to lead and possibly constrain

the RL optimization process. This information is formalized as a

local guide 𝜋g : S → ∆ (A) that is relevant only in a potentially

small region of the state space Sg ∈ S. Note this controller may

be the concatenation of 𝑁 different local guides that are relevant
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Method Good initialization Hyper-parameter tuning Overcome bad guide Safe agent

Strict Action Guided (SAG) ✓ ✓ ✗ ✓

Reward Guided (RG) ✗ ✗ ✓ ✗

Policy Improvement Guided (PIG) ✗ ✗ ✓ ✗

Parameterized Action Guided (PAG) ✓ ✓ ✓ ✓

Table 1: Advantages and Drawbacks of the different agents in the Reinforcement Learning with Local Guides (RLLG) setting

in non-overlapping regions of the state space (𝑆𝑖
g
for expert 𝑖), in

which case Sg =

⋃𝑁
𝑖=1

𝑆𝑖
g
.

Along with the local heuristic, we consider having access to a

function _ : S → [0, 1] reporting the confidence of the local guide

in state 𝑠 . This could be a binary function when perfect knowledge

about the local policy and the environment is known, where _(𝑠) = 1

if 𝑠 ∈ Sg else _(𝑠) = 0. While this parameter may not be known

with precision, it can be estimated by practitioners.

We do not assume that the local guide is optimal as this is not

necessarily the case in real-world applications. This relaxes the need

to know with precision the confidence function _. Additionally, we

do not assume a combination of the local guides can solve the task,

hence the necessity of introducing RL.

In addition, this work is agnostic to the type of the guide policy,

e.g. stochastic or deterministic, but for the rest of the paper, we

consider the realistic setting where the guide policy is deterministic

that may be prevalent in the real world. It is unlikely that experts

design randomized policies that are then applied in real-world sys-

tems: actions of the tail distribution of the controller may harm the

system. We thus denote 𝑎𝑠
g
the only action the guide policy outputs

in the state 𝑠 . The extension to stochastic policies is straightforward

as 𝑎𝑠
g
could be replaced with an expectation over 𝜋g(·|𝑠).

4 REINFORCEMENT LEARNING WITH LOCAL
GUIDES

In this section, we first introduce three straightforward ways to

adapt APE RL algorithms to our setting and analyze their advan-

tages and disadvantages. We then propose a new simple yet efficient

approach to retain the identified advantages while avoiding the

presented drawbacks.

4.1 Classical integration of the local controller
Strict Action Guided (SAG). To include the local controller in

this setting, one can simply use it when available. Thanks to the

provided indicator function _(·), the agent will switch between the

different policies when the guide is judged sufficiently relevant,

that is when _(𝑠) ≥ _−. The global policy at iteration 𝑘 , 𝜋𝑘
SAG

, can

be written:

𝜋𝑘
SAG

(·|𝑠) =

{
𝑎𝑠
g

if _(𝑠) ≥ _−,
𝜋𝑘
\

(·|𝑠) otherwise.

(1)

This method is most appropriate when the local policy is opti-

mal, or when the sub-optimality of the local controller is deemed

sufficient for the problem at hand. Applying this switching mecha-

nism seems intuitive and has been successfully used in prior works

[26, 90]. However, the use of Deep Neural Networks combined with

a bootstrapped target loss in the (APE) step might lead to a distri-

butional shift previously studied in the offline setting [21, 43, 48].

Indeed, when evaluating the𝑄-function of a policy 𝜋 with a dataset

that has been gathered with a policy far from the evaluated one,

using 𝜋 to bootstrap its target would wrongly and continually back-

propagate bad estimates. To cope with this issue, we propose to

estimate the 𝑄-values of the switched policy 𝜋𝑘
SAG

instead of 𝜋𝑘
\
,

simply by building the target with
ˆB𝜋𝑘SAG instead of

ˆB𝜋
𝑘
\ . This step

would be impossible in the Approximate Value Iteration scheme,

comforting our choice of focusing on API-based algorithms.

Reward Guided (RG). While the previous policy definitely pro-

vides a boost in learning, especially for initializing the policy and

making sure it respects the potential constraints of the environ-

ment, the agent is stuck with the potential sub-optimality of the

guide. A first way to cope with this is to shape the reward to include

the local information [38, 39]. LetM𝜋g

𝜋𝑘
\

(𝑠) be a behavioral cloning

(BC) metric that reports how close the policy of the agent 𝜋𝑘
\
is to

the guide policy 𝜋g. Different BC metrics can be used depending on

the considered setting, e.g. −∥𝑎 − 𝑎𝑠
g
∥2 when 𝜋𝑘

\
is deterministic, or

log𝜋𝑘
\

(𝑎𝑠
g
|𝑠) when the density of the policy is available. Given these

notations, considering a hand-crafted scheduler 𝛽𝑘
RG

, the shaped

reward can be written as:

𝑟𝑘 (𝑠, 𝑎, 𝜋g, 𝜋
𝑘
\
, _) = 𝑟 (𝑠, 𝑎) + 𝛽𝑘

RG
_(𝑠)M𝜋g

𝜋𝑘
\

(𝑠). (2)

However, as discussed in the related works section, playing with

the rewards is hazardous as it might lead to a completely modified

goal [59]. Besides, the impact of the metricM𝜋g

𝜋𝑘
\

(𝑠) is difficult to

control when it is added to the reward function. This phenomenon

was observed in our experiments where we did not get good results,

see Appendix ??.

Policy Improvement Guided (PIG). Another approach to guide the

RL agent with the local controller is to constrain the optimization

process, in particular in the Approximate Policy Improvement step

[39, 42, 86]. It is formalized as a Trust Region approach to make

sure the agent explores at the right location:

𝑎𝑟𝑔 𝑚𝑎𝑥

\∈Θ
𝐽D𝜋\

(
𝑄𝑘+1

𝜔

)
subject to

ˆE𝑠∼D
[
_(𝑠)M𝜋g

𝜋\
(𝑠)

]
≤ 𝑀𝑘 ,

(3)

where 𝑀𝑘 is an unknown constant that would have to be de-

termined by the practitioner. However, when learning policies are

parameterized by Deep Neural Networks, this optimization problem

is difficultly solved analytically. Following the regularized RL frame-

work [25], practitioners resort to solving the relaxed Lagrangian

optimization problem:
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Figure 2: Environment visualizations.

𝜋𝑘+1

\
← arg max

\ ∈Θ
𝐽D𝜋\

(
𝑄𝑘+1

𝜔

)
+

𝛽𝑘
PIG

ˆE𝑠∼D
[
_(𝑠)M𝜋g

𝜋\
(𝑠)

]
.

(4)

In the literature 𝛽𝑘
PIG

is either kept constant [42, 86] or slightly

decayed over the episodes [3, 36, 72]. This controller integration

is actually a state-the-art method to guide the RL policy when a

global sub-optimal guide is available and was first proposed in [72].

Other approaches to constrain a policy to remain close to another

exist [41, 65], though they all rely on solving a Lagrangian problem,

which would suffer from the same drawbacks as the presented

method.

4.2 Relaxing the guide action strict focus
In the previous section, we discussed the advantages and drawbacks

of the three introduced methods to integrate a local controller: SAG

would benefit from a jump start but would not be able to outperform

a sub-optimal guide, whereas RG and PIG could eventually improve

it. However, in RG, shaping the reward is hard and presents the

risk of deviating the agent from its original goal. The exact Trust

Region procedure of Equation (3) would be a good solution to

answer this problem. Indeed, setting a small𝑀𝑘 at the early stages

of learning makes sure the learnt policy begins near the local guide,

and gradually increasing it would allow a clever and safe exploration

of the environment. However, the relaxed Lagrangian approach is

a relaxation of the constrained optimization problem so the agent

is very likely to go beyond the trust region. When it is crucial to

stay close to the local controller, this is not acceptable.

In this section, we propose a novel method to take the best of all

approaches: it has a good policy initialization, sets a well-defined

constraint on the closeness between the learnt and guide policies

while still being able to overcome the sub-optimality of the guide.

Note that our agent takes advantage of the continuous structure

of the action space, but we propose an extension to the discrete

setting in Appendix ??.

Perturbed Action Guided (PAG). We propose to keep the Action

Guided approach from SAG that integrates the local controller ac-

tion into a global policy to enjoy a good initialization. Although,

in a similar fashion to [22], we introduce a parameterized pertur-

bation b𝑘
𝜙
to gradually improve the local controller and overcome

its limitations. The agent would be able to visit interesting regions

of the state space while in practice respecting safety constraints

encoded in the guide actions 𝑎𝑠
g
. Formally, the parameterized per-

turbation b𝜙 (·|𝑠, 𝑎𝑠
g
,Φ) ∈ [−Φ,Φ], with 𝜙 ∈ Ξ takes as arguments

the state, the guide action and a bound Φ over the action space. This

perturbation slightly transforms the guide action allowing close

exploration and eventually improving the guide policy. The global

policy at iteration 𝑘 , 𝜋𝑘
PAG

, can be written:

𝜋𝑘
PAG

(·|𝑠) =

{
𝑎𝑠
g

+ 𝛽𝑘
PAG

b𝑘
𝜙

(·|𝑠, 𝑎𝑠
g
,Φ) if _(𝑠) ≥ _−,

𝜋𝑘
\

(·|𝑠) otherwise.

(5)

Where 𝛽𝑘
PAG

is a scheduler introduced to further control the

weight of the parameterized perturbation b𝑘
𝜙
. Intuitively, 𝛽𝑘

PAG

should be set close to 0 in the early stages of learning to enjoy

a good policy initialization thanks to the local controller, and grad-

ually increase to 1 as the perturbation b𝑘
𝜙
gets more relevant.

The bound Φ on the perturbation b𝑘
𝜙
can be chosen by the prac-

titioner depending on the nature of the environment. For instance,

when safety is at stake, practitioners might choose a small Φ to

remain close to the guide actions. When it is not, Φ could be in-

creased to have a wider exploration and eventually improve the

guide policy.

Thanks to the Approximate Policy Iteration structure (APE-API),

b𝑘
𝜙
can directly be trained tomaximize𝑄𝑘+1

𝜔 , that is a global estimate

of the 𝑄-values of the global policy 𝜋𝑘
PAG

:

b𝑘+1

𝜙
← arg max

𝜙 ∈Ξ
𝐽D
b𝜙

(
𝑄𝑘+1

𝜔

)
, (6)

with 𝐽D
b𝜙

(
𝑄𝑘+1

𝜔

)
=

ˆE𝑠∼D,𝑎′∼b𝜙 (· |𝑠,𝑎𝑠
g
,Φ)

[
_(𝑠) 𝑄𝑘+1

𝜔 (𝑠, 𝑎𝑠
g

+ 𝑎′)
]
. See

Algorithm 1 for a pseudo-code description of our proposed method

PAG.

Algorithm 1 Perturbed Action Guided (PAG)

Initialize 𝑄0

𝜔 , 𝜋
0

\
, and b0

𝜙

for 𝑘 ∈ (1, . . . , 𝐾 ) do
Gather data with 𝜋𝑘

PAG
from Eq. (5)

Add data to the replay buffer D
Sample a batch from D
Update 𝑄𝑘+1

𝜔 with gradient descent on Eq. (APE) with
ˆB𝜋𝑘𝑃𝐴𝐺

Update 𝜋𝑘+1

\
with gradient ascent on Eq. (API)

Update b𝑘+1

𝜙
with gradient ascent on Eq. (6)

end for

5 EXPERIMENTS
In this section, we evaluate the performances of previously intro-

duced methods that integrate local controllers in the RL framework
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Figure 3: Hyper-parameter analysis of PIG (top) and PAG (bottom) on environments with attractive policies.
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Figure 4: Overall performances comparing PAG with SAC, SAG and PIG on 3 different environments with attractive policies.

in two different settings. In the first one, the guide leads the decision-

making process to maximize the performance of the agent. We

denote those local controllers attractive policies. In the second one,

the guide should prevent the agent from entering dangerous zones

of the environment using conservative repulsive guide policies. We

denote those local controllers repulsive policies.

Figure description. In all figures, the x-axis represents the number

of epochs from 0 to 𝐾 , which corresponds to 1000 interactions

with the system as well as 1000 gradient updates of the different

networks. The y-axis represents the averaged cumulative return

over 5 evaluation trials. All plots represent an exponential smoothed

average of 5 runs, and the shaded areas correspond to half of their

standard deviation.

Agents. We conduct our experiments using Soft Actor Critic

(SAC) [28], although our method can be used on any Approximate

Policy Evaluation-based RL algorithm. Reward-Guided agents’ per-

formances are deferred in Appendix ?? as they did not provide

interesting results.

Chosen hyper-parameters. All hyper-parameters are based on

the default hyper-parameters of SAC except for the size of the

hidden layers and the activation functions of the networks. Both

the policy and the 𝑄-functions are Feed-Forward Neural Networks

with 2 layers of 64 neurons for all the guided environments and 2

layers of 32 neurons for the safety-critical environments. Besides,

all networks have a ReLU activation with the exception of the 𝑄-

Network used in Safe Cartpole Swingup that has a TanH activation

which produced better results. All additional hyperparameters were

optimized using a grid search, and are detailed in the next sections.

The Pytorch code of this work can be found in https://github.com/

huawei-noah/HEBO/RLLG, and a MindSpore implementation has

been released in https://gitee.com/mindspore/models/tree/master/

research/rl/RLLG.

Metric. Along with the final performance of the agent and the

respect of the safety constraints, we attentively pay attention to its

initial performance. Thus, we compare the different agents using

the normalized Area-Under-the-Curve (AUC) as in [30, 78] of the

averaged cumulative performance of the agent during the total

number of epochs. The AUC is normalized by the AUC of the perfect

agent, that is the agent constantly having the optimal cumulative

reward, chosen in this work as the best reward observed by the

best agent. With an agent 𝐴, 𝐶𝑅(𝑘) the cumulative return of the

agent at epoch 𝑘 and 𝐶𝑅∗ being the best 𝐶𝑅 of the best agent, it is

formalized as:

Session 3A: Reinforcement Learning
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

834

https://github.com/huawei-noah/HEBO/RLLG
https://github.com/huawei-noah/HEBO/RLLG
https://gitee.com/mindspore/models/tree/master/research/rl/RLLG
https://gitee.com/mindspore/models/tree/master/research/rl/RLLG


0 250 500 750 1000 1250 1500 1750 2000
epochs

400

200

0

200

400

600

800
A

ve
ra

ge
 r

et
ur

n
Safe Swingup Cartpole

= 0.5
= 1.0
= 2.0
= 5.0

0 200 400 600 800 1000
epochs

600

400

200

0

200

400

A
ve

ra
ge

 r
et

ur
n

Point Circle

= 0.5
= 1.0
= 2.0
= 5.0

0 250 500 750 1000 1250 1500 1750 2000
epochs

400

300

200

100

0

100

200

A
ve

ra
ge

 r
et

ur
n

Point Reach

= 0.5
= 1.0
= 2.0
= 5.0

0 250 500 750 1000 1250 1500 1750 2000
epochs

400

200

0

200

400

600

800

A
ve

ra
ge

 r
et

ur
n

Safe Swingup Cartpole

= 0.7 = 0.5
= 0.7 = 0.7
= 0.7 = 0.9
= 0.9 = 0.5
= 0.9 = 0.7
= 0.9 = 0.9

0 200 400 600 800 1000
epochs

600

400

200

0

200

400

A
ve

ra
ge

 r
et

ur
n

Point Circle

= 0.5 = 0.2
= 0.5 = 0.6
= 0.5 = 0.8
= 0.9 = 0.2
= 0.9 = 0.6
= 0.9 = 0.8

0 250 500 750 1000 1250 1500 1750 2000
epochs

400

300

200

100

0

100

200

A
ve

ra
ge

 r
et

ur
n

Point Reach

= 0.5 = 0.2
= 0.5 = 0.6
= 0.5 = 0.8
= 0.9 = 0.2
= 0.9 = 0.6
= 0.9 = 0.8

Figure 5: Hyper-parameter analysis of PIG (top) and PAG (bottom) on environments with repulsive policies.
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Figure 6: Overall performances comparing PAG with SAC, SAG and PIG on 3 different environments with repulsive policies.

𝐴𝑈𝐶(𝐴) =

∫𝐾−1

𝑘=0
𝐶𝑅(𝑘)𝑑𝑘

𝐾 ∗𝐶𝑅∗ . (7)

Those results are summarized in Table 2.

We perform the analysis of the different agents on different

environments from MuJoCo [80] in the Deepmind Control Suite

[76] and PyBullet [19] in Bullet-Safety-Gym [27]. Additional details

regarding the experimental protocol can be found in Appendix ??.

5.1 Local exploration with attractive policies
We first consider local controllers to guide the agent on some parts

of the environment, so the agent can quickly access relevant infor-

mation and focus on the most difficult parts of the environment

using standard RL. The objective is to learn a good policy with as

few interactions as possible.

In this setting, safety is not at stake, there is no need to gradually

increase the impact of the parameterized perturbation b𝑘
𝜙
. Hence,

the scheduler {𝛽𝑘
PAG
}𝐾
𝑘=0

is set to 1 in all experiments and, the

scheduler {𝛽𝑘
PIG
}𝐾
𝑘=0

starts at 1 and is gradually decreased with a

multiplicative factor 𝛿^ , with^ an integer starting at 0 and increased

by 1 every 50 epochs. The added heuristic has little to no impact at

the end of learning (i.e ^ = 20) for the PIG agent.

5.1.1 Environments. In this part, we focused on Ball in Cup, Point-
Mass, and Point-Maze. The local guide is always a SAC agent stopped

during mid-training. A complete description of these environments

and guides is available in Appendix ??, and can be visualized in

Figure 2.

5.1.2 Instability of standard approaches. First, we perform an ex-

tensive analysis of the current state-of-the-art PIG agent on dif-

ferent environments. This empirical study highlights the difficulty

of applying the PIG agent in a real-world setting. Figure 3 clearly

emphasizes that PIG can perform well with a proper scheduler

{𝛽𝑘
PIG
}𝐾
𝑘=0

. It is able to quickly find a near-optimal policy with a

limited amount of samples. However, this method depends heavily

on the choice of {𝛽𝑘
PIG
}𝐾
𝑘=0

: it requires the right initial 𝛽0

PIG
with

the right decay rate 𝛿 . This phenomenon is notably visible on Point-
Mass in Figure 3 where the performance of the PIG agent is unstable.

In fact, the guidance is even detrimental with some schedulers on

these environments and might prevent the agent from finding a

near-optimal policy. To the best of our knowledge, there currently

exists no way of knowing an appropriate scheduler in advance.
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This motivated our work to introduce a more stable and efficient

algorithm.

5.1.3 Robustness of our PAG agent to the hyper-parameter choices.
As opposed to existing approaches, our proposed algorithm PAG is

more robust on the choice of its hyper-parameter Φ. On all environ-

ments, Figure 3 attests that the performance of the agent scarcely

depends on the choice of Φ. Even setting Φ = 1.5, where the role of

the local expert is reduced as the resulting controller would cover

all of the action space, is useful to guide the agent in its first learning

stages. The worst case scenario is to have the same performance as

the standard RL agent, notably seen on Point-Mass. Lower choices
of Φ all lead to better results as they fully take advantage of the

expertise provided by the local policy.

5.1.4 Comparison of the different agents. We include the standard

RL agent (SAC) which does not use the local information and com-

pare the best versions of the different guided agents in Figure 6. In

the proposed environments, all guided agents profit from a better

initialization that the unguided one. However, SAG is not able to

find a near-optimal policy because of its direct dependency on the

local expert. Both the other guided agents - PIG and PAG - find a

near-optimal policy much faster thanks to a clever integration of

the local guide. In addition, our agent PAG turns out to be the most

efficient approach in all the environments.

5.2 Safe exploration with repulsive policies
Another crucial application including a local policy in the process

is learning without any safety violations, that is learning without

exploring states that may have catastrophic consequences. While

many successful approaches using the CMDP framework have

been proposed [2, 13, 24], we discard them as they need to see the

constraint signal to build a safe policy. In a setting where this signal

only provides information when these constraints are violated, it

should never be seen. Hence, we investigate if it is possible to never

see any constraint violation during learning with the help of an

overly conservative emergency procedure that prevents the agent

from entering such states.

In this case, the agent should always stay close to the emergency

procedure, so we set the scheduler {𝛽𝑘
PIG
}𝐾
𝑘=0

to be fixed over learn-

ing for the PIG agent. Regarding our PAG agent, we set 𝛽0

PAG
at 0,

and gradually increase it to 1 following (1 − 𝛿^ ), with ^ an integer

starting at 0 and increased by 1 every 50 epochs.

5.2.1 Environments. We focused on Safe Cartpole Swingup, Point-
Circle and Point-Reach, and the local guides are scripted emergency

procedures. Similarly, the description of the environments can be

found in Appendix ?? and visualized in Figure 2.

5.2.2 Inefficiency of existing approaches. Similar to the previous

section, we investigate how the state-of-the-art method PIG per-

forms in this setting.We observe in Figure 5 that it is difficult to force

the RL agent to stay within the safe zone only with a penalty on the

API step. In fact, most of the chosen hyper-parameters 𝛽 in most

environments lead to safety violations at the beginning of learning

in most environments. All the more surprising is that the choice

of a relevant 𝛽 is complicated. For instance, in the Safe Cartpole
Swingup environment, the only agent that respects the constraints

Table 2: Normalized-AUC on the different environments.

Environment SAC SAG PIG PAG (ours)

ball-in-cup 0.73 ± 0.06 0.74 ± 0.08 0.9 ± 0.01 0.95 ± 0.01

point-mass 0.72 ± 0.06 0.63 ± 0.03 0.71 ± 0.1 0.72 ± 0.02

point-fall 0.34 ± 0.27 0.38 ± 0.01 0.70 ± 0.08 0.85 ± 0.06

cartpole 0.01 ± 0.01 0.69 ± 0.04 0.18 ± 0.09 0.82 ± 0.06

point-circle 0.39 ± 0.13 0.55 ± 0.1 0.06 ± 0.06 0.71 ± 0.19

point-reach −0.29 ± 0.1 0.43 ± 0.12 0.01 ± 0.01 0.71 ± 0.09

Total Mean 0.32 0.57 0.43 0.8

is when 𝛽𝑃𝐼𝐺 = 0.5. Higher choices of 𝛽PIG (𝛽PIG ∈ [1, 2, 5]) visit

catastrophic regions of the environment. Once again, this analysis

empirically underlines the necessity of introducing a new method.

5.2.3 Robustness of our PAG agent. Our proposed PAG agent pos-

sesses an important hyper-parameter that allows a strict closeness

with the emergency procedure if needed: Φ. Hence, with a prop-

erly chosen Φ, the agent never enters dangerous parts of the envi-

ronment but is still able to overcome the conservativeness of the

emergency procedure if needed. In addition, Figure 5 attests that

the performance PAG is robust to the choice of Φ, as long as this

one does not exceed a certain threshold.

5.2.4 Comparison of the different agents. In Safe Cartpole Swingup
and Point-Reach environments, the classical RL agent SAC only

learns not to go into catastrophic states, it does not solve the task. In

Point-Circle, it is able to do so but at the cost of visiting catastrophic
states. The PIG agent violates the constraints less often than the

unguided agent, but still consistently breaks them at the beginning

of learning. In the Safe Cartpole Swingup environment, it may be

able to avoid breaking these constraints, but it is rather out of luck

than from a proper choice of hyper-parameter. On the other hand,

the agents that utilize the local policy at a higher level, e.g. SAG and

PAG agents, are successful at keeping the agent safe throughout

learning. In addition, our PAG agent is also able to improve on

the SAC agent that suffers from an overly conservative emergency

procedure and find a better policy than the other methods.

6 CONCLUSION
We formalized a novel setting that generalizes access to any kind

of controller that may be available in real-world systems. We es-

pecially study the introduction of local controllers to enhance any

Approximate Policy Iteration-based RL agent thanks to a novel

algorithm. We studied two important use cases: guiding the agent

towards meaningful regions of the environment and preventing

it from entering dangerous state spaces. Our method was stable,

robust, and more efficient than standard approaches applied in this

setting. In addition, we allow a good initialization and a strict con-

straint on the closeness with respect to the local controller that

may be important on safety critical systems to learn a good policy

with zero safety violations.

However, in all the tested environments, we relied on a known

confidence function that details the relevance of the local controller

in simple environments. This may be a strong assumption in more

complex systems that would require a finer analysis, which will be

the focus of our future works.
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