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ABSTRACT

Silver et al. [14] posit that scalar reward maximisation is sufficient
to underpin all intelligence and provides a suitable basis for artificial
general intelligence (AGI). This extended abstract summarises the
counter-argument from our JAAMAS paper[19].
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1 INTRODUCTION

Silver et al. [14] present the reward-is-enough hypothesis that “Intel-
ligence, and its associated abilities, can be understood as subserving
the maximisation of reward by an agent acting in its environment",
and argue for reward maximisation as a means for creating AGI.
We assert that the ability to consider multiple conflicting objectives
is a critical aspect of intelligence, and is inadequately addressed by
maximising a scalar reward. Even if scalar rewards are sufficient
to create AGI, this approach greatly increases the likelihood of ad-
verse outcomes. Therefore, we advocate explicitly multi-objective
Al methods based on vector rewards.

2 THE LIMITATIONS OF SCALAR REWARDS

The relative merits of scalar and vector rewards have been exten-
sively studied [8, 12, 13]. For many tasks an intelligent decision-
maker must trade-off between multiple conflicting objectives. For
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example a biological agent must satisfy drives such as reproduction,
hunger, thirst, avoidance of pain, following social norms, and so on.
An agent based on scalar rewards must either be maximising only
one of these objectives, or some scalarised combination of them.

Silver et al. acknowledge that multiple objectives exist, but argue
“a scalar reward signal can represent weighted combinations of
objectives". However it is well known that this places limitations on
the solutions which can be found [5, 20], and so may not allow an
agent to maximise its true utility [13]. In contrast, intelligence based
on vector rewards and approaches that are explicitly multi-objective
can directly optimise any desired measure of utility [8].

Vector rewards also support adaptation to changes in utility. A
scalar reward encodes a single, fixed weighting of objectives, while
vector rewards allow an agent to pursue its current goal, while
simultaneously learning with regard to other possible future goals.
Silver et al. state that “Intelligence may be understood as a flexible
ability to achieve goals", but scalar rewards do not allow the degree
of flexibility supported by multi-policy multi-objective methods.

Silver et al. also state “a solution to a specialised problem does
not usually generalise; in contrast a solution to the general problem
will also provide a solution for any special cases". We disagree
with the implied assumption that maximising scalar reward is the
general case. Scalar rewards (where the number of rewards n = 1)
are a subset of vector rewards (where the number of rewards n > 1).
Agents developed for vector rewards are also applicable to scalar
rewards, as the scalar can be treated as a one-dimensional vector.
The inverse is not true — mapping a vector reward to a scalar
inevitably limits some capabilities of the agent. Therefore methods
for scalar rewards are in fact the special case.

3 MULTI-OBJECTIVE REINFORCEMENT
LEARNING IN NATURAL INTELLIGENCES
If our arguments in favour of multi-objective representations of

reward are correct, then it would be expected that naturally evolved
intelligences such as those in humans and animals would exhibit
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evidence of vector-valued rewards. In fact, evolution has developed
organisms that delegate learning not just into multiple objectives
but even into multiple learning systems that are embedded within
an organism. There are multiple objectives at a basic biological
regulatory level, and these are matched with multiple objectives at
every level of analysis of the organism.

4 INTERNALLY-DERIVED REWARDS

One could argue that an agent maximising a scalar reward may
still develop the capacity to carry out multi-objective decision-
making. For example, agents based on evolutionary algorithms or
reinforcement learning might construct their own internal reward
signals to guide their learning and decision-making [7, 15, 17].
Regardless of whether vector rewards are derived externally or
internally, the agent must make decisions based on those vector
values. Silver et al. argue that an agent maximising a scalar reward
could theoretically develop multi-objective capabilities. However
we believe it is more practical to construct multi-objective agents
via explicitly multi-objective algorithms. Similarly, we argue that it
makes sense to design multi-objective reward structures for com-
putational agents rather than relying on them to identify such
structures themselves. In fact, we contend that it typically will be
easier to specify multi-objective rewards directly than to design a
scalar reward which captures all of the various factors of interest.

5 REWARD MAXIMISATION AND AGI

One of the main arguments of Silver et al. is that maximising of a
simple scalar reward in the context of a suitably complex environ-
ment may suffice for the emergence of general intelligence. They
illustrate this via the the scenario of an agent given a reward of +1
for collecting a round pebble, arguing this could lead it to develop
tools, form an understanding of the natural processes which form
pebbles, persuade people to collect pebbles, and so on.

While the development of open-ended, far-reaching intelligence
from such a simple reward is presented positively by Silver et
al., this scenario is strikingly similar to the infamous paperclip
maximiser thought experiment from the Al safety literature [4].
While unrestricted maximisation of a scalar reward may indeed
result in the development of complex, intelligent behaviour, it is also
inherently dangerous [11]. For this reason, Al safety researchers
have argued in favour of approaches based on satisficing rather
than unbounded maximisation [16], or on multi-objective measures
of utility which account for factors such as safety or ethics [18].

Therefore we argue that even if scalar rewards are enough for
the development of general intelligence, they are not sufficient
for the far more important task of creating human-aligned AGI.
While safety and ethics are not the focus of Silver et al’s paper, it
is concerning that these issues are not acknowledged in a paper
which is actively calling for the development of AGI.

Reward specification is difficult even in trivial systems, and re-
ward misspecification or reward hacking often lead to surprising,
unintended, and undesirable behaviour [3]. In more complex sys-
tems with more general agents, the potential for reward misspecifi-
cation significantly increases [6]. We argue that the use of scalar
rewards leads to significant risks of unpredictable and undesirable
behaviour. Given the limitations of their human designers, scalar
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rewards will most likely not be enough for the development of AGI
with guaranteed behavioural properties, and predictable reward
design is better achieved using multi-objective methods.

One possible implementation of a multi-objective approach to
safe and ethical AGI would be a review-and-adjust cycle [8]. A
multi-objective AGI plans or learns a set of optimal policies for all
possible utility functions. A policy is then selected to be executed,
possibly with direct or indirect user feedback. The outcome can
then be reviewed by an overseer (either a human, the AGI itself,
or another AGI), along with the AGI’s explanation of its policy
selection. The MOMDP, utility function or set of solutions can then
be updated based on this review. We note that such reviews can
not only be triggered by incidents, but also by regular inspection.

We see such a cycle as essential for future Al systems. As Al
researchers we have to enable responsible deployment. It is our
opinion that the above-mentioned benefits are not merely desirable,
but that it is a moral imperative for Al developers to obtain them,
in order to create systems that more likely benefit society.

6 CONCLUSION

Silver et al. argue that maximisation of a scalar reward suffices
to explain all observed properties of natural intelligence, and to
support the construction of artificial general intelligence. How-
ever, this requires representing all of the different objectives of an
intelligence as a single scalar value. which places restrictions on
the behaviour which can emerge. Therefore, we contend that the
reward-is-enough hypothesis does not provide a sufficient basis for
understanding all aspects of naturally occurring intelligence, nor
for the creation of computational agents with broad capabilities.
In the context of AGI, a focus on maximising scalar rewards
creates an unacceptable exposure to risks of unsafe or unethical
behaviour by the AGI agents. This is particularly concerning given
that Silver et al. are highly influential researchers and employed at
DeepMind, one of the organisations best equipped to expand the
frontiers of AGIL. While Silver et al. “hope that other researchers
will join us on our quest”, we instead hope that the creation of AGI
based on reward maximisation is tempered by other researchers
with an understanding of the issues of Al safety [9, 10] and an
appreciation of the benefits of multi-objective agents [1, 2].
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