
Anonymous Multi-Agent Path Finding with Individual Deadlines
Gilad Fine

Bar Ilan University, Israel

giladfine1@gmail.com

Dor Atzmon

Royal Holloway, University of

London, UK

dor.atzmon@rhul.ac.uk

Noa Agmon

Bar Ilan University, Israel

agmon@cs.biu.ac.il

ABSTRACT
Anonymous Multi-Agent Path Finding (AMAPF) is the problem of

planning conflict-free paths to a set of target locations for a group

of agents, where each agent is not associated with a specific target.

This paper studies AMAPF with Individual Deadlines (AMAPFwID),
where each target must be reached before a specific deadline, and

the agent stays there to perform some long-term mission, for in-

stance securing an asset, responding to an emergency, or perform-

ing a maintenance job. We examine three types of behavior of

agents when reaching a target: (a) disappear on target, (b) stay on

target, and (c) move after the deadline. The latter is only possible if

the agent is replaced by another agent. We refer to this replacement

as hot swapping. We propose a solution to AMAPFwIDwith each type

of such behavior, based on a reduction to Network Flow. We test

all solutions experimentally and show cases where hot swapping

is beneficial. Finally, we also provide a solution to the case where

agents disappear on targets that maximizes the number of targets

reached and discuss other aspects of the problem.

KEYWORDS
MAPF, Network Flow, Multiagent Systems, Path Planning

ACM Reference Format:
Gilad Fine, Dor Atzmon, and Noa Agmon. 2023. Anonymous Multi-Agent

Path Finding with Individual Deadlines. In Proc. of the 22nd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Recent years have brought considerable attention to the use of

robots in missions that vary from target protection to package deliv-

ery or warehouse management. While the use of robots has unique

advantages—among those human-safety and cost efficiency—it also

raises special challenges, first and foremost the need to prevent

robots from colliding with their peers when traveling in the environ-

ment. This constraint is encapsulated in the problem of Multi-Agent

Path-Finding (MAPF) [24], which focuses on finding collision-free

paths for multiple agents (robots) that travel from given initial

positions to target locations.

Motivated by the use of robots in ongoing missions, such as target
protection or event handling, in which an agent or a robot must

reach a target location and maintain its position there for perform-

ing some task, we introduce a new version of the MAPF problem,

the Anonymous Multi-Agent Path-Finding with Individual
Deadlines (AMAPFwID). In this problem, a group of agents needs

to reach (acquire) permutation-invariant target locations in the

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

environment. Each target has an individual deadline, which deter-

mines the maximal timestep where this target must be reached by

some agent in order for the target to be considered acquired. After
this deadline, at all times, there must be some agent in the target’s

location.

The AMAPFwID is a special case of the Anonymous MAPF (AMAPF),
in which agents are not assigned a specific target, and finding

collision-free paths minimizing the sum of traveled distances (fuel),

the maximal path cost (makespan), or the sum of all paths’ costs

(SOC) can be solved in polynomial time [30]. When targets are

correlated with individual deadlines, the existing solutions become

irrelevant, and thus in this paper we examine in depth the AMAPFwID
problem and suggest algorithms for solving it.

We examine three different cases of the AMAPFwID problem, that

differ in the behavior of an agent once reaching the target location:

either (a) the agent disappears with the target (similar to entering a

building), thus not disturbing the movement of other agents, (b) the

agent remains present and blocks other agents (as an obstacle), or

(c) the agent stays at the target, though allowing for other agents

to take over the target while it continues to travel to another target

(similar to a relay race). We refer to the novel action of relaying the

acquisition on a target to another agent as hot swapping. Real-life
scenarios for hot swapping include keeping a target secured while

switching security guards, and providing a continuous service (e.g.,

medical attention or technical maintenance) while replacing the

service provider staff (e.g., physicians or technicians). Most work on

MAPF assumes the second behavior, that is, the agents stay at target,

though some refer to the possibility that agents disappear at target,

as seen recently in [16] for non-anonymous MAPF. We therefore

introduce the hot-swapping behavior which is applicable only in

anonymous MAPF, and—as shown herein—is extremely useful when

handling such ongoing missions.

Our main focus in this paper is a variant of the problem that

aims to find a feasible solution, in which we are interested to know

whether all targets can be acquired by the agents given their initial

positions. We show that this can be solved in polynomial time in all

three cases (a-c) and describe reductions to Network Flow for each

of the cases. We prove that our solutions also have the minimal

traveled distances (fuel) among all possible solutions. Additionally,

we provide a solution for case (a)—where agents disappear at their

target locations—that maximizes the number of targets acquired by

the agents and discuss other aspects of the problem.

We have fully implemented all algorithms
1
, and examined their

performance in benchmark environments. We show that the ability

to relay acquisition on targets by performing hot swapping signifi-

cantly extends the range of problem-solving in various settings.

1
Our implementation is publicly available at https://github.com/GiladFine/MAPF-with-

Adversarial-Constraints.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

869

https://github.com/GiladFine/MAPF-with-Adversarial-Constraints
https://github.com/GiladFine/MAPF-with-Adversarial-Constraints

2 RELATEDWORK
AMAPFwID is rooted in the domain of Multi-Agent Path-Finding
(MAPF) problems. In these problems, the main goal is to navigate a

team of physical agents to a set of target locations while avoiding

collisions [20, 23, 24]. The problem has twomain variations relevant

to our work:Non-Anonymous andAnonymous, where the differ-
ence is whether the agents are initially assigned with a specific goal

location, or not (respectively). The classical non-anonymous MAPF
is 𝑁𝑃-hard for different known objective functions [8, 25, 31]. Nev-

ertheless, many efficient optimal MAPF algorithms were proposed

[2, 4, 7, 14, 15, 21, 22, 26, 28]. In the anonymous case, reducing the

problem to a Network Flow problem and using polynomial time

algorithms such as the Ford-Fulkerson algorithm [5, 6] for finding

max-flow, was shown to solve the anonymous MAPF problem in

polynomial time [30].

Ma et al. [18] examined the problem of MAPF with deadlines, in

which the goal is to maximize the number of agents arriving at their

target locations before a given deadline 𝑇 in the non-anonymous

case. They prove the problem is 𝑁𝑃-hard, introduce two optimal

solvers, and show how they scale in different scenarios. Wang and

Chen [29] considered the MAPF problem with deadlines as a soft

constraint (referred to as due time), where the goal is to minimize

the maximal tardiness, sum of tardiness or total penalty for the

tardiness with respect to a set of individual deadlines 𝐷 . They show

that in the anonymous case the problem is solvable in polynomial

time, a setting that is similar to the AMAPFwID discussed in this work
when agents stay on targets once those are reached. However, in our

work, we examine in depth the problem of satisfying the deadlines

(while also minimizing traveled distances), and we specifically focus

on different agent behaviors once reaching the targets, and how

this influences the system’s performance.

The problem of Adversarial Cooperative Path-Finding (𝐴𝐶𝑃𝐹)

was presented by Ivanova et al. [10, 11], extending the MAPF problem
to consider a game between two groups of agents, one is controlled

by the player and the other by an adversary, where the goal is

to reach first a set of target locations. The game is sequential, all

teams take turns in moving every agent in their team, and the team

that reaches more target locations wins the game. Solving this as

a non-anonymous MAPF problem is clearly computationally hard.

Thus, solutions to the problem are examined empirically. A further

version of this problem is the Area Protection Problem (𝐴𝑃𝑃) [12],

attempting to find a defending strategy for a team of agents tasked

with protecting an area populated with high-profile assets points

(targets), known to be targeted by a rival team of agents. In 𝐴𝑃𝑃 ,

the adversarial agents’ strategy is unknown, yielding a PSPACE-

hard complexity for solving it. The AMAPFwID can be considered as

an instance of 𝐴𝑃𝑃 where the adversarial strategy is known, thus

simplifying the time complexity for solving it.

Another research area closely related to the AMAPFwID problem is

the Task Assignment problems. In this type of problems, we need to

assign limited resources to tasks, in order to optimize certain criteria,

often in a setting of robots navigation, e.g., assigning delivery jobs

to agents [9], or even more specifically, assigning targets to agents

[17], while attempting to minimize the makespan, i.e., the overall

time that takes these agents to complete their task. A common

solution to the task assignment problem is the Hungarian Method

[13], which operates in polynomial time. However, the Hungarian

method neglects to consider the possible collisions resulting from

the robots operating in the same physical space, making it imprac-

tical for AMAPFwID. Other studies explored the combination of task

allocation and path planning in different environments [1, 3, 27].

However, none of them support individual deadlines for the targets.

Future work may adjust other algorithms for this purpose.

3 ANONYMOUS MULTI-AGENT PATH
FINDINGWITH INDIVIDUAL DEADLINES

The Anonymous MAPF with Individual Deadlines (AMAPFwID) is
defined as a 5-tuple (𝐺𝑟,𝐴,𝐺, 𝐷, 𝐿) where 𝐺𝑟 is a finite undirected
graph 𝐺𝑟 = {𝑉 , 𝐸} describing the environment, 𝐴 = {𝑎0, . . . , 𝑎𝑛−1}
is a team of 𝑛 agents,𝐺 = {𝑔0, 𝑔1, . . . , 𝑔𝑛−1} is a set of 𝑛 target goal

locations (vertices) on the graph, and 𝐷 = {𝑑𝑔0 , 𝑑𝑔1 , . . . , 𝑑𝑔𝑛−1 } is a
set of deadlines (in timesteps) for each goal in𝐺 . The initial location

of an agent 𝑎𝑖 ∈ 𝐴 is denoted by 𝑙𝑖 . We are given 𝐿 = {𝑙0, . . . , 𝑙𝑛−1},
the set of initial locations of all agents in 𝐴. We denote by 𝑁 (𝑣)
the set of neighboring locations of location 𝑣 ∈ 𝑉 (∀𝑣 ′ ∈ 𝑁 (𝑣) :
(𝑣 ′, 𝑣) ∈ 𝐸). Two locations 𝑣1, 𝑣2 ∈ 𝑉 are adjacent locations if

𝑣1 ∈ 𝑁 (𝑣2) (or visa versa).
An Action is the operation an agent performs between two

consecutive timesteps 𝑡 and 𝑡 + 1. There are two types of actions: (1)
a move action, where an agent positioned at location 𝑣 at timestep

𝑡 moves to an adjacent location and is then positioned at some

location 𝑣 ′ ∈ 𝑁 (𝑣) at timestep 𝑡 + 1 and (2) a wait action, where an
agent is positioned at location 𝑣 at timesteps 𝑡 and 𝑡 + 1.

A Path for an agent 𝑎𝑖 ∈ 𝐴 is defined as a sequence of locations

such that the agent either performs wait or move actions between
any pair of consecutive timesteps -

𝑃𝑎𝑖 = {[𝑝0, 𝑝1, 𝑝2, . . .]}, where ∀𝑝 𝑗 , 𝑝 𝑗+1 ∈ 𝑃𝑎𝑖 : ∃𝑝 𝑗+1 ∈ 𝑁 (𝑝 𝑗) or
𝑝 𝑗 = 𝑝 𝑗+1 ∈ 𝑉 . Each 𝑝 𝑗 = 𝑃𝑎𝑖 [𝑗] denotes the location of the agent

at timestep 𝑗 .

A Conflict/Collision between two paths 𝑃𝑎𝑥 and 𝑃𝑎𝑦 occurs if

the agents 𝑎𝑥 and 𝑎𝑦 occupy the same location at the same timestep

𝑡 (∃𝑡 : 𝑃𝑎𝑥 [𝑡] = 𝑃𝑎𝑦 [𝑡]) or if the agents swap locations between

two consecutive timesteps 𝑡 and 𝑡 + 1 (∃𝑡 : 𝑃𝑎𝑥 [𝑡] = 𝑃𝑎𝑦 [𝑡 + 1] ∧
𝑃𝑎𝑥 [𝑡 + 1] = 𝑃𝑎𝑦 [𝑡]).

A Plan for the agents 𝐴 is defined as a dictionary -

𝑆𝐴 = {(𝑎𝑖 , 𝑃𝑎𝑖) |∀𝑎𝑖 ∈ 𝐴 and 𝑃𝑎𝑖 [0] = 𝑙𝑖 } - each agent is mapped to

a path that starts in its initial location. A plan 𝑆𝐴 is conflict-free if
any two paths in 𝑆𝐴 do not conflict.

A target 𝑔𝑖 ∈ 𝐺 is said to be acquired by plan 𝑆𝐴 if ∀𝑡 ′ ≥
𝑑𝑔𝑖∃(𝑎 𝑗 , 𝑃𝑎 𝑗

) ∈ 𝑆𝐴 where 𝑃𝑎 𝑗
[𝑡 ′] = 𝑔𝑖 . This means that for each

timestep larger than or equal to the deadline, we have an agent in

our plan that is located at the target location at this timestep.

A Solution for AMAPFwID is a conflict-free plan 𝑆𝐴 for agents 𝐴

such that all targets are acquired. We define three different cases

for agent behavior once reaching a target:

(a) Agents disappear on targets (DOT). In this case, the agent

disappears immediately when the target is acquired at its

deadline.

(b) Agents stay on targets (SOT). In this case, the agent must

stay at the target location when the target is acquired at its

deadline and after the deadline.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

870

(c) Agents can move after deadline (HOT). In this case, agents

are free to move away from a target location at any time (be-

fore and after the deadline). This creates a unique situation,

where an agent acquiring a target can move even after the

deadline, as long as another agent is moving to the target

location, keeping the target acquired at all times. We refer

to this case of relaying the acquisition on a target to another

agent as hot swapping. Assume that an agent 𝑎𝑥 currently

acquires some target 𝑔 ∈ 𝐺 , and agent 𝑎𝑦 is located on some

location 𝑢 ∈ 𝑁 (𝑔). Then, if 𝑎𝑥 performs hot swapping with

𝑎𝑦 , both agents move simultaneously, 𝑎𝑥 to some location

𝑣 ∈ 𝑁 (𝑔) (𝑣 ≠ 𝑢) and 𝑎𝑦 moves into 𝑔, leaving 𝑔 acquired at

all timesteps.

Note that hot swapping is only possible when the problem is

anonymous, as it requires an agent to switch targets.

There are different ways in the literature to define the cost func-

tion that evaluates a given solution [24]. One possible cost function,

also known as fuel or traveled distances, counts the number ofmove
actions performed in the given solution. In this cost function, there

is no cost for wait actions. Later in this paper, we show that our

solutions for all cases defined above also minimize the traveled

distances cost function of the system.

Figure 1: Examples for hot-swapping. Targets 𝑔1 and 𝑔2 are
represented as yellow circles with their associated deadlines,
agents 𝑎1 and 𝑎2 appear in their initial locations

We show herein that the behaviors described above may have

an important effect on the satisfiability of a problem instance, as

well as the distances traveled by the agents. Consider the example

in Figure 1(a). In SOT and DOT, the agents cannot reach both targets

on time, as agent 𝑎1, initially located on square 1 is unable to reach

any of the targets on time. However, if using HOT, the problem

is satisfied. Specifically, agent 𝑎2 (initially located on square 3)

reaches 𝑔1 before the deadline, and agents 𝑎1 and 𝑎2 perform hot

swapping, allowing 𝑎2 to continue acquiring 𝑔2 by its deadline

while 𝑎1 stays in square 6 to acquire 𝑔1. Therefore, their paths

are 𝑃𝑎1 = [1, 2, 3, 4, 5, 6] for 𝑎1, and 𝑃𝑎2 = [3, 4, 5, 6, 6, 7, 8] for 𝑎2.

Algorithm 1: AMAPFwID-DOT to Network Flow Reduction

Input: AMAPFwID problem instance (𝐺𝑟 (𝑉 , 𝐸), 𝐴,𝐺, 𝐷, 𝐿)
Output: Network 𝑁 = (−→𝐺𝑟 (𝑉 ′, 𝐸′),𝑢, 𝑐, 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘)

1 Reduction((𝐺𝑟 (𝑉 , 𝐸), 𝐴,𝐺, 𝐷, 𝐿))
2 𝑇 ←𝑚𝑎𝑥𝑑∈𝐷 (𝑑)
3 𝑉 ′, 𝐸′ ← {𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘 }, ∅
4 for 𝑣 ∈ 𝑉 do
5 for 𝑡 ∈ {0, . . . ,𝑇 } do
6 𝑉 ′ ← 𝑉 ′ ∪ {𝑣 (𝑡), 𝑣′ (𝑡) }
7 𝑒 ← (𝑣 (𝑡), 𝑣′ (𝑡)) , 𝑐 (𝑒) = 0

8 𝐸′ ← 𝐸′ ∪ {𝑒 } // Location-occupancy edges

9 for 𝑡 ∈ {0, . . . ,𝑇 − 1} do
10 𝑒𝑤 ← (𝑣 (𝑡) ′, 𝑣 (𝑡 + 1)) , 𝑐 (𝑒) = 0

11 𝐸′ ← 𝐸′ ∪ {𝑒𝑤 } // Wait actions

12 for 𝑣𝑛 ∈ 𝑁 (𝑣) do
13 𝑉𝐺 , 𝐸𝐺 ← Gadget(𝑣′ (𝑡), 𝑣′𝑛 (𝑡), 𝑣 (𝑡 + 1), 𝑣′𝑛 (𝑡 + 1))
14 𝑉 ′ ← 𝑉 ′ ∪𝑉𝐺
15 𝐸′ ← 𝐸′ ∪ 𝐸𝐺 // Move actions

16 for 𝑙𝑖 ∈ 𝐿 do
17 𝑒 ← (source, 𝑙 ′𝑖 (0)) , 𝑐 (𝑒) = 0

18 𝐸′ ← 𝐸′ ∪ {𝑒 }
19 for 𝑔𝑖 ∈ 𝐺 do
20 𝑒 ← (𝑔′𝑖 (𝑑𝑔𝑖), sink) , 𝑐 (𝑒) = 0

21 𝐸′ ← 𝐸′ ∪ {𝑒 }
22 for 𝑒 ∈ 𝐸′ do
23 𝑢 (𝑒) = 1

24 𝑁 ← (−→𝐺𝑟 (𝑉 ′, 𝐸′),𝑢, 𝑐, 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘)
25 return 𝑁

26 Gadget(𝑣′𝑥 (𝑡), 𝑣′𝑦 (𝑡), 𝑣𝑥 (𝑡 + 1), 𝑣𝑦 (𝑡 + 1))
27 𝑉𝐺 = {𝑣1, 𝑣2 }
28 𝑒1 ← (𝑣′𝑥 (𝑡), 𝑣1) , 𝑒2 ← (𝑣′𝑦 (𝑡), 𝑣1) , 𝑐 (𝑒1) = 0, 𝑐 (𝑒2) = 0

29 𝑒3 ← (𝑣2, 𝑣𝑥 (𝑡 + 1)) , 𝑒4 ← (𝑣2, 𝑣𝑦 (𝑡 + 1)) , 𝑐 (𝑒3) = 0, 𝑐 (𝑒4) = 0

30 𝑒𝑛 ← (𝑣1, 𝑣2) , 𝑐 (𝑒𝑛) = 1

31 𝐸𝐺 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5 }
32 return𝑉𝐺 , 𝐸𝐺

Figure 1(b) describes a case in which SOT is not satisfied, though DOT
and HOT are. In DOT, 𝑃𝑎1 = [2, 3, 4, 5, 8, 11, 17] and 𝑃𝑎2 = [3, 4, 5, 8],
where 𝑎2 disappears in 𝑔1, allowing for 𝑎1 to travel to acquire 𝑔2.

In HOT, 𝑃𝑎1 = [2, 3, 4, 5, 8] and 𝑃𝑎2 = [3, 4, 5, 8, 11, 17], meeting both

deadlines by performing hot swapping in 𝑔1. Note that if setting

𝑑𝑔2 to 6, the problem is satisfied according to HOT but not according
to DOT. If 𝑑𝑔2 is set to 8, then the problem is satisfied according to

all three options, though SOT yields paths that are less efficient in

terms of traveled distances.

4 AMAPFWID TO NETWORK FLOW REDUCTION
Here, we describe the reduction from AMAPFwID to Network Flow,

based on the reduction from AMAPF suggested by Yu and LaValle [30].
The idea behind the reduction is to create a network that consists of

a time-expanded version of the original MAPF graph, representing
the movements of agents through time. To create a network such

that it represents a reduction from AMAPFwID, instead of a reduc-

tion from AMAPF, two important definitions must be considered:

(1) the deadline of each target, and (2) the behavior of the agent

when arriving at a target location. We fully describe AMAPFwID-DOT
and then present the modifications required for AMAPFwID-SOT and

AMAPFwID-HOT.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

871

4.1 AMAPFwID-DOT (Disappear on Targets)
The reduction from AMAPFwID-DOT to Network Flow is presented in

Algorithm 1. Figure 2 shows an AMAPFwID problem instance with

4 locations and two agents, such that their initial locations are

𝐿 = {𝑢, 𝑣}, the targets are𝐺 = {𝑥, 𝑧}, and their deadlines are 𝑑𝑥 = 2

and 𝑑𝑧 = 1. Figure 3 shows the network 𝑁 = (−→𝐺𝑟,𝑢, 𝑐, 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘)
constructed for the reduction, as explained next. A network 𝑁

consists of a directed graph

−→
𝐺𝑟 = (𝑉 ′, 𝐸′), a capacity function

𝑢 : 𝐸′ → Z+, a cost function 𝑐 : 𝐸′ → Z+, and 𝑠𝑜𝑢𝑟𝑐𝑒 ∈ 𝑉 ′ and
𝑠𝑖𝑛𝑘 ∈ 𝑉 ′ vertices.

First, we set 𝑇 ← 𝑚𝑎𝑥𝑑∈𝐷 (𝑑) (line 2), where 𝑇 represents the

number of timesteps considered by the network, which in our case is

the latest deadline (the agents cannot move after this deadline). We

then initialize the sets of vertices 𝑉 ′ and edges 𝐸′ for our network,
where we add the source and sink vertices to 𝑉 ′ (line 3).

Now, we perform a cycle for every location 𝑣 ∈ 𝑉 to create the

time-expanded graph for the network (lines 4-15). For each vertex

𝑣 , at each timestep 𝑡 ∈ {0, . . . ,𝑇 } we create two vertices 𝑣 (𝑡) and
𝑣 ′ (𝑡) and a directed edge (𝑣 (𝑡), 𝑣 ′ (𝑡)) (lines 5-8). This edge, also
illustrated in Figure 3, is created to prevent the case where more

than one agent occupies a vertex at the same timestep. We call this

edge a location-occupancy edge.

Then, to model the movement of the agents, we create two types

of edges for wait andmove actions. To allow wait actions, we create
a directed edge (𝑣 ′ (𝑡), 𝑣 (𝑡 + 1)) for each location 𝑣 ∈ 𝑉 and for each

timestep 0 ≤ 𝑡 < 𝑇 (lines 9-11). To allowmove actions between two

adjacent locations 𝑣 and𝑢, we create a five-edge gadget (lines 12-15),

as illustrated in Figure 3. This gadget is created to prevent agents

from conflicting while swapping adjacent locations. As proved by

Yu and LaValle [30], any solution to AMAPF that only contains such

swapping conflicts can be reconstructed such that no such conflicts

exist. Here, we describe the version of the network that results in a

conflict-free solution without the need to rebuild the returned plan.

Finally, we create a directed edge (source, 𝑙𝑖 (0)) for each start

location 𝑙𝑖 ∈ 𝐿 at timestep 0, and a directed edge (𝑔′
𝑖
(𝑑𝑔𝑖), sink) for

each target location 𝑔𝑖 at its deadline 𝑑𝑔𝑖 (lines 16-21).

To prevent conflicts, all edges receive a capacity of 1 (lines 22-23).

To guarantee optimality (fuel), only move actions have a cost of 1
(line 30) while all other edges have a cost of 0.

This reduction results in a minimum-cost flow problem (MCFP),

solvable in polynomial time, for instance, using the 𝐹𝑜𝑟𝑑−𝐹𝑜𝑙𝑘𝑒𝑟𝑠𝑜𝑛
algorithm, where a feasible flow exists if and only if the original

graph has a valid AMAPFwID-DOT solution. Moreover, the returned

flow can be easily converted to a set of paths for the agents that

represent a valid AMAPFwID-DOT solution. This can be done by fol-

lowing the vertices in which the flow passes through while omitting

the source and sink vertices, as well as any 𝑣 ′ (𝑡) vertex (with an

apostrophe). In the proofs below, when referring to a flow, we mean

the set of paths the flow represents, which omits the irrelevant

vertices.

Theorem 4.1. Given a AMAPFwID-DOT problem instance, a solution
exists iff a feasible flow exists in the network created by Algorithm 1.
Moreover, if a solution exists, the minimum-cost flow represents a
solution minimizing the traveled distances (fuel).

Figure 2: AMAPFwID problem instance

Figure 3: AMAPFwID-DOT to Network-Flow reduction example

Proof outline. The network represents an exact time-expanded

graph of the received graph; allwait andmove actions for the agents
are represented in the network. Therefore, both a plan for the agents

and a feasible flow in the network can have the exact same tran-

sitions. Both (a plan and a flow) start from the initial locations

of the agents and finish at the target locations at their deadlines.

Due to the capacity of the edges (= 1) and their construction, the

flow also guarantees that no two agents will be able to occupy the

same location at the same timestep or traverse an edge in opposite

directions between consecutive timesteps. After deadlines, the flow

ends and other agents may pass through the corresponding target

location. Lastly, in a plan and in a flow, agents cannot perform any

other actions after the latest deadline.

The optimality of the returned solution follows as a direct result

of setting a cost of 1 for any edge that represents a move action
and a cost of 0 for any other edge. By defining the problem as

a minimum-cost flow problem, the returned flow must have the

lowest cost among all feasible flows. □

4.2 AMAPFwID-SOT (Stay on Targets)
In AMAPFwID-SOT, the agents must stay at the target locations after

their deadline and not move. Therefore, here, other agents cannot

pass through any target location after its deadline. To model this be-

havior, we make the following modification in the network created

in Algorithm 1.

• Remove all five-edge gadgets that represent move actions
from/to target locations after their deadline.

Figure 4 shows the network presented in Figure 3 after this modifi-

cation. We can see that after the deadline 𝑑𝑧 = 1 of target location

𝑧, agents can no longer enter this location.

AMAPFwID-SOT is a more restrictive definition than AMAPFwID-
DOT. Therefore, any solution to SOT is also a valid solution to DOT.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

872

Figure 4: AMAPFwID-SOT to Network-Flow reduction example

The problem instance presented in Figure 2 is not solvable for both

DOT and SOT. However, if the deadline 𝑑𝑥 = 2 of target location 𝑥

was 𝑑𝑥 = 3 instead, it would have been solvable in DOT but not in
SOT. This demonstrates again that some instances can be solvable in

AMAPFwID-DOT but not in AMAPFwID-SOT. Proving that the network

created in the reduction for SOT solves AMAPFwID-SOT is identical to
Theorem 4.1, except the fact that here agents cannot move from/to

target locations after their deadline, which is modeled by the above

modification.

4.3 AMAPFwID-HOT (Hot Swapping)
Hot swapping poses complex challenges to the network flow reduc-

tion. In this case, we must allow agents to leave the target locations

after the deadlines, but only if another agent replaces them there (or,

in other words, hot swapping can be performed only if the target

remains occupied at all timesteps after the deadline).

Assume an optimal (fuel) solution 𝑆𝐴 to AMAPFwID-HOT. We can

order the agents according to the time each agent arrived at a

target location in 𝑆𝐴 and stayed there. The agents may perform

hot swapping only with agents that have not yet reached a target

location and stayed there, e.g., there cannot be hot swapping at the

latest acquired target. This gives us the following observation.

Observation 1. Given an optimal solution 𝑆𝐴 to AMAPFwID-HOT,
the maximum number of hot swapping performed in 𝑆𝐴 is 𝑁𝐻𝑆 =∑𝑛−1
𝑖=1 (𝑖) (𝑛 is the number of targets).

For example, if we have two targets, there may be only up to

𝑁𝐻𝑆 = 1 hot-swapping operation; if we have three targets, there

may only be up to 𝑁𝐻𝑆 = 3 hot-swapping operations: two times

on one target, one time on another target, and no hot swapping on

the latest acquired target.

Let 𝑆𝐷 =
∑
𝑔𝑖 ∈𝐺 𝑑𝑔𝑖 , i.e., the sum of all deadlines, and let 𝑋 =

𝑆𝐷 + 𝑁𝐻𝑆 + 1. The modifications needed for AMAPFwID-HOT, in the

network defined in Algorithm 1, are as follows.

• Remove every (𝑔′
𝑖
(𝑑𝑔𝑖), sink) edge of every target 𝑔𝑖 .

• Add an edge 𝑒 = (𝑔′
𝑖
(𝑇), sink) for every target location 𝑔𝑖 at

timestep 𝑇 , with 𝑐 (𝑒) = 0 and 𝑢 (𝑒) = 1.

• Consider each location-occupancy edge 𝑒 = (𝑣 (𝑡), 𝑣 ′ (𝑡)),
defined in line 7. If 𝑣 ∈ 𝐺 (𝑣 is a target location) and 𝑡 ≥ 𝑑𝑣 ,

set 𝑐 (𝑒) = 0. Otherwise, set 𝑐 (𝑒) = 𝑋 .

In the problem instance from Figure 2, the sum of all deadlines is

𝑆𝐷 = 3 and the maximum number of hot swapping is 𝑁𝐻𝑆 = 1.

Thus, 𝑋 = 5. Figure 5 presents the network from Algorithm 1 after

performing the above modifications. The costs of edges with a

non-zero cost are presented in the figure.

The modified network is now sent to be solved by a minimum-

cost flow algorithm. Let 𝑓 be the returned flow (if exists).

• If there is no feasible flow, return no solution.
• If the cost of 𝑓 is ≥ 𝑋 · (𝑆𝐷 + 1), return no solution.
• Otherwise, return 𝑓 .

By sending the network from Figure 5 to a minimum-cost flow

algorithm, the returned flow consists of (𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑣 (0), 𝑣 ′ (0), 𝑧 (1),
𝑧′ (1), 𝑥 (2), 𝑥 ′ (2), 𝑠𝑖𝑛𝑘) and (𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑢 (0), 𝑢′ (0), 𝑣 (1), 𝑣 ′ (1), 𝑧 (2),
𝑧′ (2), 𝑠𝑖𝑛𝑘). The cost of this flow is 19, which is lower than 𝑋 ·
(𝑆𝐷 + 1) = 20. Therefore, we return this flow as a solution to our

problem instance. This flow represents the solution of (𝑣, 𝑧, 𝑥) and
(𝑢, 𝑣, 𝑧), where the agents perform hot swapping at location 𝑧.

Theorem 4.2. Given a AMAPFwID-HOT problem instance, a solution
exists iff the reduction (after the above modifications) returns a feasible
flow. Moreover, if a solution exists, the minimum-cost flow represents
a solution minimizing the traveled distances (fuel).

Proof outline. Assume a solution 𝑆𝐴 exists for the given prob-

lem instance. Now, let us observe the flow 𝑓 that represents the same

movement of the agents defined by 𝑆𝐴 . In this flow, all location-

occupancy edges of targets after their deadlines are traversed. Oth-

erwise, it means that one of the targets was not acquired at all

timesteps. The maximum possible cost for such a flow is (𝑋 +
1) · 𝑆𝐷 + 𝑁𝐻𝑆 . This cost is received when the agents only per-

formed move actions (each costs 𝑋 + 1, considering also location-
occupancy edges) at any possible timestep before the deadlines

(𝑆𝐷 timesteps) and performed the maximum number of hot swap-

ping 𝑁𝐻𝑆 (each increases the cost by 1). An example of such a

maximum-cost flow is presented above in our example. We get that

(𝑋 +1) ·𝑆𝐷 +𝑁𝐻𝑆 = 𝑋 ·𝑆𝐷 +𝑆𝐷 +𝑁𝐻𝑆 < 𝑋 ·𝑆𝐷 +𝑋 = 𝑋 · (𝑆𝐷 +1).
That it, this cost is lower than 𝑋 · (𝑆𝐷 + 1), and thus this flow will

be returned by the reduction.

Assume that there is no solution to the given problem instance,

then either no feasible flow will be found in our network, or a flow

with a cost of ≥ 𝑋 · (𝑆𝐷 + 1), as at least one location-occupancy
edge with a cost of 𝑋 must be traversed, instead of a cost of 0 at

a target location after the deadline. In either case, the reduction

returns no solution.
Optimality of the returned solution follows again as a direct

result of setting a cost of 1 for any edge that represents a move
action and a cost of 0 for any edge that represents a wait action. By
defining the problem as a minimum-cost flow problem, the returned

flow must have the lowest cost among all feasible flows.

□

5 HOT-SWAPPING VARIATIONS
In general, we have two main motivations for performing hot swap-

ping: clearing roadblocks (for example, an agent securing a target

on a bottleneck and thus blocking the passage to another target)

and saving time (as the swapping saves a single timestep for the

proceeding agent). In Figure 1(a), we can see an example of both

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

873

Figure 5: AMAPFwID-HOT to Network-Flow reduction example

motivations. In some real-life cases, performing hot swapping may

consume time. For instance, when the agents are required to transfer

information in order to perform such a switch. This time, denoted

by 𝑇𝐻𝑆 , can be considered as the time it takes the agent currently

acquiring the target to pass the responsibility to the incoming agent.

Let us redefine hot swapping. Assume that an agent 𝑎𝑥 currently

acquires some target 𝑔 ∈ 𝐺 , agent 𝑎𝑦 is positioned on some location

𝑢 adjacent to 𝑔. To perform hot swapping, let us assume that agent

𝑎𝑥 moves to location 𝑣 , which is also adjacent to𝑔 (𝑣 ≠ 𝑢) and agent
𝑎𝑦 moves to the target location 𝑔. When 𝑎𝑥 performs hot swapping

with 𝑎𝑦 , the agents are positioned at each timestep according to

the following definition (starting at timestep 𝑡).

(1) Timestep 𝑡 : 𝑎𝑥 is at target 𝑔 and 𝑎𝑦 is at location 𝑢.

(2) Timesteps 𝑡 + 1 to 𝑡 +𝑇𝐻𝑆 : both 𝑎𝑥 and 𝑎𝑦 are at target 𝑔.

(3) Timestep 𝑡 +𝑇𝐻𝑆 + 1: 𝑎𝑦 is at target 𝑔 and 𝑎𝑥 is at location 𝑣 .

As we can see, this movement is guaranteed to leave 𝑔 acquired

at all times, as needed. In this movement, we allow agents to conflict,

but only on the target location and only after the deadline, as the
purpose of hot swapping is to keep a target acquired. If an agent

is blocking the way on a non-target location (or on a target before

the deadline), we have no target to keep acquired. It is easy to see

that for 𝑇𝐻𝑆 = 0 (denoted as 𝐻𝑆0), we get the standard AMAPFwID
with hot swapping. Also, for 𝑇𝐻𝑆 = 1 (𝐻𝑆1), we get the following

correlation:

Theorem 5.1. In AMAPFwID with hot swapping, if 𝑇𝐻𝑆 = 1 (𝐻𝑆1),
then the problem is equivalent to AMAPFwID when Agents Disappear
on Targets.

Proof outline. Let us consider a generic hot swapping case:

Agent 𝑎𝑥 ∈ 𝐴 is located at 𝑔 ∈ 𝐺 at timestep 𝑡 (𝑡 ≥ 𝑑𝑔). Recall

that 𝑁 (𝑣 ′) is the set of neighboring locations of location 𝑣 ′. Agent
𝑎𝑦 ∈ 𝐴 is located at 𝑢 ∈ 𝑉 at timestep 𝑡 (𝑢 ∈ 𝑁 (𝑔)). We also have a

non-occupied location 𝑣 ∈ 𝑁 (𝑔) (𝑣 ≠ 𝑢). In the following paths, we

consider only the locations of the agents between timesteps 𝑡 and

𝑡 + 2. The paths for the agents for 𝐻𝑆1 are 𝑃𝑎𝑥 = [. . . , 𝑔, 𝑔, 𝑣, . . .],
𝑃𝑎𝑦 = [. . . , 𝑢, 𝑔, 𝑔, . . .]. The paths for the Disappearing Targets

variation (DOT) are 𝑃𝑎𝑥 = [. . . , 𝑔], 𝑃𝑎𝑦 = [. . . , 𝑢, 𝑔, 𝑣, . . .]. We need

to show that in every location𝑢,𝑔, or 𝑣 at each time from 𝑡 to 𝑡+2we
have the same status in both problems, in terms of the occupancy

of the locations. For 𝑢, at timestep 𝑡 , we have 𝑎𝑦 at location 𝑢 for

both problems. At timesteps 𝑡 + 1 and 𝑡 + 2, we have no agent at

Figure 6: Modified Network for 𝐻𝑆1

location 𝑢 in both problems. For 𝑣 , at timesteps 𝑡 and 𝑡 + 1, we have
no agent at location 𝑣 in both problems, and at timestep 𝑡 + 2, we
have 𝑎𝑥 at location 𝑣 for 𝐻𝑆1, and 𝑎𝑦 at location 𝑣 for DOT, which is

the same as the agents are anonymous. For 𝑔, in both problems, we

have target 𝑔 acquired from 𝑡 to 𝑡 + 2. At timestep 𝑡 , both problems

have 𝑎𝑥 at target 𝑔. At timesteps 𝑡 + 1 and 𝑡 + 2, DOT does not have

any agent in target 𝑔 (𝐻𝑆1 has 𝑎𝑦 there), but it is equivalent, as

𝑎𝑦 being at target 𝑔 in 𝐻𝑆1 will not interfere with future agents

moving through target 𝑔 as these agents can perform hot swapping

with 𝑎𝑦 again, as we described. □
For 𝑇𝐻𝑆 > 1 (𝐻𝑆>1), we get a new variant of the problem, for

which we describe a new algorithm that solves it optimally. For

this variant, we consider the algorithm for solving AMAPFwID-HOT
(that is, with 𝐻𝑆0), and change it to solve 𝐻𝑆>1 by applying the

following modification.

• For each target 𝑔 ∈ 𝐺 , modify each gadget that represents a

move action from any location 𝑣 ∈ 𝑁 (𝑔) after the deadline𝑑𝑔 ,
so that the incoming edge to target 𝑔 is moved𝑇𝐻𝑆 timesteps

ahead, to model the time delay of hot swapping. This moved

edge is given a cost of 𝑇𝐻𝑆 · 𝑋 , where 𝑋 is the edge cost

defined in Section 4. This cost guarantees that if not all

targets are acquired at all timesteps after the deadlines, no

solution will be returned.

Figure 6 presents the modification for 𝐻𝑆1 (𝑡 ≥ 𝑑𝑔) - dotted grey

arrows represent the removed edges, and the bold solid arrows are

the new edges.

Theorem 5.2. Themodification to the network described in AMAPFwID-
HOT correctly models the behavior of 𝐻𝑆𝑥 , for any 𝑥 > 1.

Proof outline. Consider the generic hot swapping (𝐻𝑆0), where

we start at timestep 𝑡 (𝑡 ≥ 𝑑𝑔), and have 1 unit of flow at location 𝑢,

and 1 unit of flow at 𝑔. Location 𝑣 is the hot swapping destination

location (𝑔 ∈ 𝐺 and 𝑢, 𝑣 ∈ 𝑁 (𝑔), 𝑢 ≠ 𝑣). At timestep 𝑡 , we start

with 1 unit of flow at 𝑢 and 1 unit of flow in 𝑔, representing agents

being in 𝑢 and 𝑔 locations. For each timestep from 𝑡 + 1 to 𝑡 +𝑇𝐻𝑆 ,

according to the definition of our new construction, we still have 1

unit of flow in 𝑔 (this is enforced by a cost of 0), and no flow in 𝑢

or in 𝑣 , which is modeling the desired behavior, as 𝑔 is still acquired

and𝑢 and 𝑣 have no agents in them. At timestep 𝑡 +𝑇𝐻𝑆 +1, the flow
from 𝑢 finally reaches 𝑔, so the swap can finally take place, causing

the flow that was in 𝑔 to move to 𝑣 , thus representing agents being

in 𝑔 and 𝑣 , respectively. □

6 EMPIRICAL EVALUATION
We have fully implemented the algorithms described for the 4 set-

tings: DOT, SOT, HOT-0, HOT-2 for the purpose of evaluating the effect
of the agents’ behavior when reaching the target on the satisfiability

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

874

(a) Rooms 32x32 (b) Maze 32x32

(c) Warehouse 75x24

Figure 7: Environments with goal locations (red squares),
used for empirical evaluations

of the AMAPFwID problem. In order to do so, we have examined three

standard benchmark
2
maps - rooms, maze and warehouse (Figures

7(a) , 7(b), and 7(c) respectively), while placing the targets at interest-

ing locations on the map (mainly bottlenecks, noted by a red square

at Figure 7), and placing an equal number of agents at random

locations on the map. We have assigned a deadline to each target

at random, choosing a value between the minimal distance from

any agent to the target, to the maximal distance (other deadlines

are either easily or impossibly acquired by any agent, making this

instance not interesting). Deadlines are chosen uniformly, though

we do factor in relevant information on the problem (mainly the

number of goals and the map difficulty). In order to further trim

non-interesting instances of the problem, we use the Hungarian

Method to check that our problem has a satisfying solution for all

targets when neglecting the path-finding element of non-colliding

paths. If not, we have repeated the procedure again until resulting

in a valid instance.

We have examined instances of the problem for𝑛 = 10, 20, 30, 40, 50

number of agents and targets. For each number of agents, we have

created 50 valid instances, differing in the initial locations of the

agents and target deadlines. For each instance, we executed the 4

reductions: one for agents disappearing on targets (DOT), one in
which the agents stay at target (SOT), one for hot swapping with 2

timesteps delay (HOT-2), and one for standard hot swapping (HOT-0).
In Figure 8, we present the percentage of satisfied instances

(y-axis), for each behavior, for the rooms, maze, and warehouse

maps, respectively. We can see that for all maps, for every number

of agents (x-axis), we see a growth in the percentage of satisfia-

bility when using a better problem setting, as expected. The gaps

between the different settings suggest the existence and likelihood

2
https://movingai.com/benchmarks/mapf/index.html

(a) Room-32 (b) Maze-32

(c) Warehouse

Figure 8: Percentage of satisfied instances for each problem
setting results

(a) Room-32 (b) Maze-32

(c) Warehouse

Figure 9: Average instance runtime for each problem setting

of a problem instance to ’benefit’ from hot swapping. These re-

sults demonstrate both the major impact that the setting of the

problem has on the solutions and the overall usefulness of the hot

swapping, which was able to return optimal solutions for many

instances that were not solvable before, even for the case where

agents disappeared on targets. We have found that the usefulness

of hot swapping is better in relation to other problem settings when

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

875

https://movingai.com/benchmarks/mapf/index.html

Figure 10: Percentage of goals covered in non-satisfiable in-
stances of DOT per number of agents

the number of agents is relatively small (<10 on rooms and <20 on

maze, for example).

In Figure 9, we show the average running time (seconds) of each

method. These results show that the average runtimes grow linearly

with the number of agents, for both maps, and for all methods. This

is of course expected, due to the Polynomial nature of Network-Flow

algorithms. We can also see that solving HOT results in a slightly

greater runtime on average. We conjecture that this is due to the

graph built for HOT containing more edges before reaching the sink.

7 OPTIMIZING NUMBER OF TARGETS
COVERED - DISCUSSION

Until nowwe exclusively discussed the satisfiability problem, which

is, finding a solution that covers all targets (while minimizing the

traveled distances). In this section, we show that even if no such

cover exists, the flow returned in AMAPFwID-DOT from a max-flow

algorithm also solves the optimization variant of AMAPFwID, which
maximizes the number of targets acquired by the agents.

Theorem 7.1. Given an AMAPFwID-DOT problem instance, the max-
imum flow in the network created by Algorithm 1 maximizes the
number of acquired targets.

Proof outline. Assume a flow 𝑓 with value |𝑓 | = 𝑥 for the

reduction defined for AMAPFwID-DOT. This flow represents a partial

plan 𝑆𝐴 acquiring 𝑥 targets. In 𝑆𝐴 , each agent starts in its initial

location and ends in a target at its deadline, while not conflicting

with any other path. As agents disappear on target locations, other

agents may pass through either acquired or not acquired targets.

Thus, the partial plan is valid for AMAPFwID-DOT. Similarly, assume

a partial plan 𝑆𝐴 acquiring 𝑥 targets. In 𝑆𝐴 , agents start at initial

locations, disappear on targets, and do no conflict. In our reduction

for AMAPFwID-DOT, agents may pass any target after its deadline,

and a similar flow that represents 𝑆𝐴 exists in the network for DOT.
□

In Figure 10, we have the percentage of goals covered for all non-

satisfiable instances of DOT in all 3 maps. We can see an increase in

coverage as the number of agents becomes larger, which is a result

of the map getting filled with agents, and so the average distance

between an agent and a goal is getting smaller. Also, the high values

of the DOT coverage indicate that using this problem setting is also

beneficial in cases when a solution was not found.

It is important to note that this optimization of the number of

the acquired targets does not work for SOT or HOT:

• In AMAPFwID-SOT, the targets that are not acquired by any

agent should be available for the agents to pass through

after their deadlines. However, the modification defined for

AMAPFwID-SOT does not allow other agents to visit a target

location after its deadline, even if no agent has acquired this

target location. This kind of conditioning does not exist in

our reduction to AMAPFwID-DOT.
• In AMAPFwID-HOT, we should be able to differentiate between
acquired and not acquired target locations, as well. How-

ever, according to our modification, traversing a location-

occupancy edge of a target location after the deadline costs

0. Therefore, the maximum flow may not represent the case

of maximum acquired targets as the targets may not be ac-

quired at all timesteps from their deadlines.

As seen above, optimizing the number of acquired targets may

require solving a Max-Flow problem in networks with conditional

properties on the flow, which unfortunately is a generalization of

the NP-hard Integer Equal Flow problem [19]. We leave the research

on methods for the optimization of the number acquired targets in

SOT and HOT for future work.

8 CONCLUSIONS AND FUTUREWORK
This paper focuses on the Anonymous Multi-Agent Path Finding

problem, in which 𝑛 agents are required to acquire 𝑛 targets, and

those targets are associated with individual deadlines. Thus, the

problem is satisfied only if each target is acquired by some agent by

its respective deadline. We examine three possible agent behavior

when reaching the target: either it disappears once the deadline

is reached (DOT), stays in place (SOT), or has the ability to move

after the deadline, but only if relaying the target acquisition to

another agent replacing it by performing hot swapping (HOT). We

describe algorithms for all settings, using a modified network-flow

reduction, and prove that not only do these algorithms solve the

problem, they provide a solution that is optimal with respect to the

traveled distances. Further, we prove that when agents disappear

at targets, optimization of the number of acquired targets can be

solved in polynomial time, as well. We have shown empirically that

HOT significantly extends the satisfiability of the problem in various

settings.

The possibility of relaying the target acquisition to another agent

raises many possibilities for future work. First, we would like to

examine the optimality of the number of acquired targets in SOT
and HOT for AMAPFwID, as mentioned above. Also, hot swapping

can contribute to other versions of AMAPF, for example, we can

generalize the case where teams of agents exist, and each team

needs to accomplish a AMAPF problem [17], to the case where each

team is required to solve a AMAPFwID problem. Another example

is generalizing the evacuation case, where there are fewer targets

than agents and each agent needs to be evacuated from one of the

targets [30], to the case of AMAPFwID where each evacuation target

has a deadline. Moreover, one may try to define a special MAPF
variant of hot swapping where each agent must end at a specific

target while its target can be acquired by another agent before the

specified agent reaches its target.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

876

ACKNOWLEDGEMENTS
This research was supported in part by ISF grant #2306/18

REFERENCES
[1] Luka Antonyshyn, Jefferson Silveira, Sidney Givigi, and Joshua Marshall. 2022.

Multiple Mobile Robot Task and Motion Planning: A Survey. ACM Comput. Surv.
(2022).

[2] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betza-

lel, and Solomon Eyal Shimony. 2015. ICBS: Improved Conflict-Based Search

Algorithm for Multi-Agent Pathfinding. In the International Joint Conference on
Artificial Intelligence (IJCAI). 740–746.

[3] Fatma Faruq, Bruno Lacerda, Nick Hawes, and David J. Parker. 2018. Simultaneous

Task Allocation and Planning Under Uncertainty. In the International Conference
on Intelligent Robots and Systems (IROS). 3559–3564.

[4] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, T. K. Satish Kumar,

and Sven Koenig. 2018. Adding Heuristics to Conflict-Based Search for Multi-

Agent Path Finding. In the International Conference on Automated Planning and
Scheduling (ICAPS). 83–87.

[5] Lester Randolph Ford and Delbert R Fulkerson. 2009. Maximal flow through a

network. In Classic papers in combinatorics. Springer, 243–248.
[6] Lester R Ford Jr. 1956. Network flow theory. Technical Report. Rand Corp Santa

Monica Ca.

[7] Graeme Gange, Daniel Harabor, and Peter J. Stuckey. 2019. Lazy CBS: implicit

Conflict-based Search using Lazy Clause Generation. In the International Confer-
ence on Automated Planning and Scheduling (ICAPS). 155–162.

[8] Tzvika Geft and Dan Halperin. 2022. Refined Hardness of Distance-Optimal

Multi-Agent Path Finding. In Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 481–488.

[9] Christian Henkel, Jannik Abbenseth, and Marc Toussaint. 2019. An optimal

algorithm to solve the combined task allocation and path finding problem. arXiv
preprint arXiv:1907.10360 (2019).

[10] Marika Ivanová and Pavel Surynek. 2013. Adversarial cooperative path-finding:

a first view. In Workshops at the Twenty-Seventh AAAI Conference on Artificial
Intelligence.

[11] Marika Ivanová and Pavel Surynek. 2014. Adversarial cooperative path-finding:

Complexity and algorithms. In 2014 IEEE 26th International Conference on Tools
with Artificial Intelligence. IEEE, 75–82.

[12] Marika Ivanová and Pavel Surynek. 2017. Area Protection in Adversarial Path-

Finding Scenarios with Multiple Mobile Agents on Graphs: a theoretical and

experimental study of target-allocation strategies for defense coordination. arXiv
preprint arXiv:1708.07285 (2017).

[13] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[14] Edward Lam, Pierre Le Bodic, Daniel Harabor, and Peter J. Stuckey. 2019. Branch-

and-Cut-and-Price for Multi-Agent Pathfinding. In the International Joint Confer-
ence on Artificial Intelligence (IJCAI). 1289–1296.

[15] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven Koenig. 2019.

Symmetry-Breaking Constraints for Grid-Based Multi-Agent Path Finding. In

the AAAI Conference on Artificial Intelligence (AAAI). 6087–6095.
[16] Hang Ma, Daniel Harabor, Peter J Stuckey, Jiaoyang Li, and Sven Koenig. 2019.

Searching with consistent prioritization for multi-agent path finding. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 33. 7643–7650.

[17] Hang Ma and Sven Koenig. 2016. Optimal target assignment and path finding

for teams of agents. In the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). 1144–1152.

[18] Hang Ma, Glenn Wagner, Ariel Felner, Jiaoyang Li, TK Kumar, and Sven Koenig.

2018. Multi-agent path findingwith deadlines. In the International Joint Conference
on Artificial Intelligence (IJCAI). 417–423.

[19] Carol A Meyers and Andreas S Schulz. 2009. Integer equal flows. Operations
Research Letters 37, 4 (2009), 245–249.

[20] Malcolm Ross Kinsella Ryan. 2008. Exploiting subgraph structure in multi-robot

path planning. Journal of Artificial Intelligence Research 31 (2008), 497–542.

[21] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-

based search for optimal multi-agent pathfinding. Artificial Intelligence 219 (2015),
40–66.

[22] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The increasing

cost tree search for optimal multi-agent pathfinding. Artificial Intelligence 195
(2013), 470–495.

[23] David Silver. 2005. Cooperative Pathfinding. AIIDE 1 (2005), 117–122.

[24] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman

Barták, and Eli Boyarski. 2019. Multi-Agent Pathfinding: Definitions, Variants,

and Benchmarks. In the International Symposium on Combinatorial Search (SoCS).
151–159.

[25] Pavel Surynek. 2010. An Optimization Variant of Multi-Robot Path Planning Is

Intractable. In the AAAI Conference on Artificial Intelligence (AAAI). 1261–1263.
[26] Pavel Surynek. 2012. Towards optimal cooperative path planning in hard se-

tups through satisfiability solving. In the Pacific Rim International Conference on
Artificial Intelligence (PRICAI). 564–576.

[27] Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijaya Kondepogu. 2014.

Goal assignment and trajectory planning for large teams of interchangeable

robots. Autonomous Robots 37 (2014), 401–415.
[28] GlennWagner andHowie Choset. 2015. Subdimensional expansion formultirobot

path planning. Artificial Intelligence 219 (2015), 1–24.
[29] Hanfu Wang and Weidong Chen. 2022. Multi-Robot Path Planning With Due

Times. IEEE Robotics and Automation Letters 7, 2 (2022), 4829–4836.
[30] Jingjin Yu and Steven M LaValle. 2013. Multi-agent path planning and network

flow. In Algorithmic foundations of robotics X. Springer, 157–173.
[31] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal

Multi-Robot Path Planning on Graphs. In the AAAI Conference on Artificial
Intelligence (AAAI). 1443–1449.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

877

	Abstract
	1 Introduction
	2 Related Work
	3 Anonymous Multi-Agent Path Finding with Individual Deadlines
	4 AMAPFwID to Network Flow Reduction
	4.1 AMAPFwID-DOT (Disappear on Targets)
	4.2 AMAPFwID-SOT (Stay on Targets)
	4.3 AMAPFwID-HOT (Hot Swapping)

	5 Hot-Swapping Variations
	6 Empirical Evaluation
	7 Optimizing Number of Targets Covered - Discussion
	8 Conclusions and Future Work
	References

