
Learn to Solve the Min-max Multiple Traveling Salesmen Problem
with Reinforcement Learning

Junyoung Park
KAIST

Daejeon, South Korea
junyoungpark@kaist.ac.kr

Changhyun Kwon
University of South Florida

Tampa, United States
chkwon@usf.edu

Jinkyoo Park
KAIST

Daejeon, South Korea
jinkyoo.park@kaist.ac.kr

ABSTRACT
We propose ScheduleNet, a scalable scheduler that minimizes task
completion time by coordinating multiple agents. We formulate
the min-max Multiple Traveling Salesmen Problem (mTSP) as a
Markov decision process with an episodic reward and derive a scal-
able decision-making policy using Reinforcement Learning (RL).
The decision-making procedure of ScheduleNet includes (1) rep-
resenting the state of a problem with the agent-task graph, (2)
extracting node embedding for agents and tasks by employing the
type-aware graph attention, (3) and computing the task assign-
ment probability with the computed node embedding. We show
that ScheduleNet can outperform other heuristic approaches and
existing deep RL approaches, particularly validating its exceptional
effectiveness in solving large and practical problems. We also con-
firm that ScheduleNet can effectively solve practical mTSP variants,
which include limited observation and online mTSP.

KEYWORDS
Minmax Nultiple Traveling Salesmen Problem (mTSP); Routing;
Scheduling; Graph Neural Network; Reinforcement Learning

ACM Reference Format:
Junyoung Park, Changhyun Kwon, and Jinkyoo Park. 2023. Learn to Solve
the Min-max Multiple Traveling Salesmen Problem with Reinforcement
Learning. In Proc. of the 22nd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 –
June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
As an important extension of the classical Traveling Salesman Prob-
lem (TSP), the multiple TSP (mTSP) arises in various scheduling,
routing, and planning problems. The applications of mTSP include
print press scheduling [12], crew scheduling [22, 35], interview
scheduling [11], hot rolling scheduling [36], robot/drone routing
[2], and disaster management [4, 7, 26]. When there is only one
salesman, mTSP is identical to TSP.

This paper considers the mTSP with the min-max objective
rather than the min-sum objective. While the min-sum objective
minimizes the total sum of each salesman’s cost, the min-max ob-
jective minimizes the highest cost among all salesmen. Hence, the
min-max objective is more appropriate when the underlying appli-
cation is a scheduling problem, as it minimizes the total completion
time or the makespan.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

This paper proposes an approximate method based on reinforce-
ment learning (RL) to solve large-scale instances of the min-max
mTSP. However, solving a large-scale mTSP using mathematical
programming becomes infeasible or inefficient due to the expensive
computational cost. Moreover, such approaches are less applica-
ble in solving real-time scheduling problems where the new tasks
appear dynamically.

Related tomTSP, the Capacitated Vehicle Routing Problem (CVRP)
also extends TSP when each salesman (equivalently, a vehicle) has
a finite capacity to visit customers. On the other hand, when the
capacity is unlimited, then CVRP is reduced to mTSP. Therefore,
most RL approaches developed for CVRP are applicable to solve
mTSP with the min-sum objective.

The min-max objective, however, has received little attention in
the RL literature—unlike the min-sum objective in TSP and CVRP
[5, 20, 21]—due to the additional complexity it introduces. While
CVRP with the min-sum objective can be solved by routing a single
vehicle multiple times sequentially, the min-max objective cannot be
handled similarly since minimizing the makespan requires coordina-
tion among salesmen. Moreover, the finite capacity of each vehicle
in CVRP plays a crucial role in the existing RL-based approaches
to result in multiple routes; hence applying such an approach to
the min-max mTSP is inappropriate.

To handle the distinct challenges of developing an RL approach
for the min-max mTSP, we propose a scalable policy, ScheduleNet.
Our approach allows each agent to choose its destination indepen-
dently, using local observations and incorporating other agents’
assignments. This ensures that the learned policy can solve a large-
scale problem without searching over the joint action space for all
agents. However, a sophisticated coordination mechanism should
be incorporated to make the independently-chosen scheduling de-
cision produce an excellent global performance.

Decision-Making Scheme. We formulate the min-max mTSP
as a Markov Decision Process (MDP) with an episodic reward and
derive a decision-making policy using RL. At every step of the MDP,
ScheduleNet accepts the MDP state as an input and assigns an idle
agent to one of the feasible tasks. The decision-making procedure
of ScheduleNet is as follows:

• ScheduleNet first represents the MDP state as an agent-task
graph, effectively capturing the complex relationships among
the entities to be applied in mTSP.
• ScheduleNet employs the Type-aware Graph Attention (TGA)
to extract important relational features among the agents and
tasks for the best cooperative task assignment.
• ScheduleNet computes the agent-task assignment probability
using the computed node embeddings.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

878

Training Method. Although the makespan (shared team re-
ward) is themost direct and general reward design for solvingmTSP,
training a scheduling policy using this reward is difficult due to the
credit assignment issues [13, 31]. Additionally, makespan is highly
volatile due to the combinatorial aspect of mTSP solution space (i.e.,
a slight change in the solution can drastically alter the outcome). To
overcome these issues, we employ the Clip-REINFORCE algorithm
with normalized reward to train the cooperative policy effectively.

Novelties. The proposed method that derives the constructive
scheduling policy to coordinate multiple agents has the following
novelties and advantages:

• ScheduleNet extracts crucial features using TGA and efficiently
assigns the best cooperative task. Furthermore, the computationally-
efficient representation scheme and the scalable decision-making
scheme allow ScheduleNet to solve large-scale instances of
mTSP.
• The agent-task graph representation and TGA allow the trained
policy to solve problems with different numbers of agents and
tasks while showing better generalization capabilities compared
to the neural baselines.
• ScheduleNet can solve practical variants of mTSP, including the
limited communication scenario where each agent (i.e., sales-
man) decides the actions (i.e., visiting cities) based on the local
observation, and the online scenario where the cities dynami-
cally appear during the execution of the scheduled actions.

2 RELATEDWORK
RL approaches that solve vehicle routing problems. Accord-
ing to Mazyavkina et al. [25], the RL approaches that solve vehicle
routing problems can be categorized into: (1) the improvement
heuristics that rewrite the complete solution iteratively to obtain a
better routing plan [8, 9, 18, 24, 39], (2) the construction heuristics
that construct the solution sequentially by assigning idle vehicles
to unvisited cities until the complete routing plan (sequence) is
constructed [5, 17, 20, 27], and (3) the hybrid approaches that blend
both approaches [1, 10, 16, 19]. Typically, the improvement heuris-
tics show better performances than construction heuristics as they
revise the complete plan iteratively. These RL approaches have
exclusively focused on static planning in a single-agent perspective,
which is far from the settings of real applications; however, the
construction heuristics are more effective for online vehicle routing
problems, where the routes should be updated whenever a new
customer appears.

RL approaches that solve the min-max mTSP. There are
only a few RL approaches that solve the min-max mTSP, which
involves minimizing the makespan for multiple salesmen to visit all
cities. [15] applies RL to train the clustering algorithm that groups
cities, and strong TSP heuristics (e.g., OR-Tool) to optimize the
sub-tours within each city cluster. This is fundamentally different
from ScheduleNet, which derives a complete end-to-end learned
heuristic that constructs a feasible solution from “scratch” without
relying on any existing solvers. [6] proposes a transformer-based
construction policy to solve the min-max mTSP, is the most simi-
lar approach to ScheduleNet; however, ScheduleNet shows better
scheduling performance and robustness to the input distribution
shift compared to [6].

3 PROBLEM FORMULATION
We formulate the min-max mTSP as an MDP with sparse reward
and aim to derive a scalable scheduling policy that can be shared by
all agents. Let us consider the single-depot mTSP with two types of
entities,𝑚 salesmen (i.e.,𝑚 agents) and 𝑁 cities (i.e., 𝑁 tasks). All
salesmen start their journey from the depot and come back to the
depot after visiting all cities (each city can be visited by only one
salesman). The solution to mTSP is considered to be complete when
all the cities have been visited, and all salesmen have returned to
the depot. The min-max mTSP MDP is defined as:

State.We define state 𝑠𝜏 as the 𝜏-th partial solution of mTSP (i.e.,
the completed/uncompleted tasks, the status of agents, and the se-
quence of the past assignments). To be specific, 𝑠𝜏 = ({𝑠𝑖𝜏 }𝑁+𝑚𝑖=1 , 𝑠env𝜏)
composed of two types of states: entity state 𝑠𝑖𝜏 and environment
state 𝑠env𝜏 .

• 𝑠𝑖𝜏 = (𝑝𝑖𝜏 , 1active𝜏 , 1assigned𝜏) is the state of the 𝑖-th entity. 𝑝𝑖𝜏 is
the 2D Cartesian coordinate of the 𝑖-th entity at the 𝜏-th event.
1active𝜏 indicates whether the 𝑖-th (i.e., agent/task is active agent
is working/ task is not visited). Similarly, 1assigned𝜏 indicates
whether the agent/task is assigned.
• 𝑠env𝜏 contains the current time of the environment, and the
sequences of cities visited by the salesmen.

The initial 𝑠0 and terminal state 𝑠T are defined as an empty and a
complete solution, respectively.

Action.We define action 𝑎𝜏 as the assignment of an idle agent
to one of the feasible tasks (unassigned tasks). We refer to 𝑎𝜏 as
the agent-to-task assignment. When multiple agents are idle at the
same time 𝑡 , we randomly choose one agent and assign a task to
the agent. This is repeated until no agent is idle. Note that such
randomness does not alter the resulting solutions, since the agents
are considered to be homogeneous and the scheduling policy is
shared.

Transition. The proposed MDP is formulated with an event-
based transition. An event is defined as the case where any agent
finishes the assigned task (e.g., a salesman reaches the assigned city
in mTSP). Whenever an event occurs, the idle agent is assigned to a
new task, and the status of the agent and the target task are updated
accordingly. We enumerate the event with 𝜏 to avoid confusion
from the elapsed time of the problem; 𝑡 (𝜏) is a function that returns
the time of event 𝜏 .

Reward. The proposed MDP uses the negative makespan (i.e.
total completion time of tasks) as the reward (i.e., 𝑟 (𝑠T) = −𝑡 (T))
that is realized only at 𝑠T.

4 SCHEDULENET
In this section, we explain how ScheduleNet recommends 𝑎𝜏 of an
idle agent from 𝑠𝜏 . This is done by (1) constructing the agent-task
graph G𝜏 , (2) embedding G𝜏 using TGA, and (3) computing the
assignment probabilities. Figure 1 illustrates the decision-making
process of ScheduleNet.

4.1 Constructing Agent-task Graph
ScheduleNet constructs the agent-task graph G𝜏 that reflects the
complex relationships among the entities in 𝑠𝜏 . Specifically, Sched-
uleNet constructs a directed complete graph G𝜏 = (V,E) out of 𝑠𝜏 ,

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

879

Τ

𝒕𝒕(𝟎𝟎) = 𝟎𝟎 𝒕𝒕(𝚻𝚻)Total completion time: makespan

1

⋯ ⋯

𝒔𝒔𝝉𝝉𝒔𝒔𝟎𝟎 𝒔𝒔𝐓𝐓𝒔𝒔𝝉𝝉+𝟏𝟏
Graph Embedding

with TGA
Robot-Task Graph

Construction
Assignment prob.

Computation

× 𝐇𝐇

𝒂𝒂𝝉𝝉

Figure 1: Solving mTSP with ScheduleNet. At every event of the MDP, ScheduleNet constructs the agent-task graph G𝜏 from 𝑠𝜏 , then computes
the node embedding of G𝜏 using TGA, and finally computes the agent-task assignment probabilities from the node embedding. Green triangles
and circles illustrate the depot. Blue and orange rectangles and circles illustrate agents. Arrows illustrate the tours of agents.

where V is the set of nodes and E is the set of edges. The nodes and
edges and their associated features are defined as:

• 𝑣𝑖 denotes the 𝑖-th node, which represents either an agent or
a task. 𝑣𝑖 contains the node feature 𝑥𝑖 = (𝑠𝑖𝜏 , 𝑘𝑖), where 𝑠𝑖𝜏 is
the state of entity 𝑖 , and 𝑘𝑖 is the type of 𝑣𝑖 . For example, if
the entity 𝑖 is an agent and 1active𝜏 = 1, then 𝑘𝑖 becomes active-
agent. The list of all possible node types 𝑘𝑖 are (1) assigned-
agent, (2) unassigned-agent (i.e., idle agent), (3) assigned-task,
(4) unassigned-task, (5) inactive-task (i.e., visited city) and (6)
depot.
• 𝑒𝑖 𝑗 denotes the edge between the source node 𝑣 𝑗 and the desti-
nation node 𝑣𝑖 . The edge feature𝑤𝑖 𝑗 = (𝑑𝑖 𝑗 , 𝑘𝑖 𝑗), where 𝑑𝑖 𝑗 is
the Euclidean distance between 𝑣𝑖 and 𝑣 𝑗 , and 𝑘𝑖 𝑗 = [𝑘𝑖 , 𝑘 𝑗] is
the edge type.

In the following subsections, we omit the event iterator 𝜏 for nota-
tional brevity, since the action selection procedure is only associated
with the current event index 𝜏 .

4.2 Graph Embedding Using TGA
The agent-task graph G is a hetero graph with different node and
edge types. The hetero graph is often processed via a Graph Neural
Network (GNN), which updates nodes with type-specific node/edge
updating functions [32, 37]. However, mTSP G has exceedingly
many nodes and, especially, edge types. That necessitates us to
maintain many independent node/edge updaters. Furthermore, the
imbalanced distribution of node and edge types may hinder the
representability and trainability of GNN. For example, G has one
depot type while 𝑁 and𝑚 number of city and salesmen nodes. That
risks an unbalanced training of each update depending on the input
graphs.

Furthermore, this imbalanced type distribution may also hinder
message aggregation of GNN from extracting crucial information.
For example, when the GNN aggregates the messages for the target
agent node, there exist the messages from (at most) 𝑁 “city-agent"
type edges and one message from the “city-depot" type edge. Hence,
aggregating all messages from different typed edges can diminish
the effect of the “city-depot" type edge after message aggregation.
However, the “depot-agent" type edge is crucial in deciding whether
the agent returns to the depot.

To alleviate the aforementioned issue, we propose Type-aware
Graph Attention (TGA), which is designed to explicitly consider the
type information and perform message aggregations for each edge
type while sharing the parameters of per-type node/edge updaters.

ScheduleNet computes the node embeddings from the agent-
task graph G using TGA, designed to capture the different relations
among the graph entities by applying attention mechanisms for
each relational type. TGA uses three steps to compute the updated
node/edge embedding as follows:

Type-aware edge update. The edge update scheme is designed
to reflect the complex type relationship among the entities while
updating edge features. First, the context embedding 𝑐𝑖 𝑗 of edge 𝑒𝑖 𝑗
is computed using the source and destination node type 𝑘𝑖 , 𝑘 𝑗 such
that:

𝑐𝑖 𝑗 = [Emb(𝑘𝑖), Emb(𝑘 𝑗)] (1)

where Emb(·) is a trainable lookup table function (i.e., each type
𝑘𝑖 is modeled via a trainable vector). Next, the type-aware edge
encoding 𝑢𝑖 𝑗 is computed using a multilayer perceptron (MLP) as
follows:

𝑢𝑖 𝑗 = MLP𝑒𝑡𝑦𝑝𝑒 (ℎ𝑖 , ℎ 𝑗 , ℎ𝑖 𝑗 , 𝑐𝑖 𝑗) (2)

where MLP𝑒𝑡𝑦𝑝𝑒 (·) is the type-aware edge encoding MLP. 𝑢𝑖 𝑗 can
be seen as a dynamic edge feature that varies depending on the
source and destination node type. Then, the updated edge embed-
ding ℎ′

𝑖 𝑗
and its attention logit 𝑧𝑖 𝑗 are obtained as:

ℎ′𝑖 𝑗 = MLP𝑒𝑑𝑔𝑒 (𝑢𝑖 𝑗) (3)
𝑧𝑖 𝑗 = MLP𝑎𝑡𝑡𝑛 (𝑢𝑖 𝑗) (4)

where MLP𝑒𝑑𝑔𝑒 and MLP𝑎𝑡𝑡𝑛 is the edge updater and logit function,
respectively. The edge updater and logit function produce updated
edge embedding and logits from the type-aware edge.

Type-aware message aggregation. Each entity in the agent-
task graph interacts differently with the other entities, depending on
the type of edges between them. To preserve the different relation-
ships among the entities during the graph embedding procedure,
TGA gathers messages ℎ′

𝑖 𝑗
via the type-aware message aggregation.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

880

First, TGA aggregates messages for each node type and produces
the per-type message𝑚𝑘

𝑖
as follows:

𝑚𝑘
𝑖 =

∑︁
𝑗∈N𝑘 (𝑖)

𝛼𝑖 𝑗ℎ
′
𝑖 𝑗 (5)

where N𝑘 (𝑖) = {𝑣𝑙 |𝑘𝑙 = 𝑘, 𝑣𝑙 ∈ N (𝑖)} is the type 𝑘 neighborhood
of 𝑣𝑖 , and 𝛼𝑖 𝑗 is the attention score that is computed using 𝑧𝑖 𝑗 :

𝛼𝑖 𝑗 =
exp(𝑧𝑖 𝑗)∑

𝑗∈N𝑘 (𝑖) exp(𝑧𝑖 𝑗)
(6)

Intuitively speaking, The proposed attention scheme normalizes
the attention logits of incoming edges over the types. Therefore, the
attention scores sum up to 1 over each type 𝑘 neighborhood. TGA
aggregates the per-type messages to compute the total aggregated
message𝑚𝑖 for 𝑣𝑖 as:

𝑚𝑖 =
∑︁
𝑘∈K

𝑚𝑘
𝑖 (7)

where K is the set of node types.
Type-aware node update. Similar to the edge update phase,

the context embedding 𝑐𝑖 is computed first for each node 𝑣𝑖 :

𝑐𝑖 = Emb(𝑘𝑖) (8)

where Emb(·) is a trainable lookup table function. Then, the up-
dated hidden node embedding ℎ′

𝑖
is computed as below:

ℎ′𝑖 = MLP𝑛𝑜𝑑𝑒 (ℎ𝑖 ,𝑚𝑖 , 𝑐𝑖) (9)

where MLP𝑛𝑜𝑑𝑒 (·) is the type-aware node updater.
ScheduleNet computes the node embeddings from G using TGA.

The embedding procedure first encodes the features of G into the
initial node embeddings {ℎ (0)

𝑖
|𝑣𝑖 ∈ V}, and the initial edge em-

beddings {ℎ (0)
𝑖 𝑗
|𝑒𝑖 𝑗 ∈ E} by using linear projections. ScheduleNet

then performs TGA 𝐻 times on all nodes to compute the final node
embeddings {ℎ (𝐻)

𝑖
|𝑣𝑖 ∈ V} and edge embeddings {ℎ (𝐻)

𝑖 𝑗
|𝑒𝑖 𝑗 ∈ E}

by using the shared one TGA layer.

4.3 Computing Assignment Probability
Using {ℎ (𝐻)

𝑖
|𝑣𝑖 ∈ V} and {ℎ (𝐻)𝑖 𝑗

|𝑒𝑖 𝑗 ∈ E}, ScheduleNet selects the
assignment action 𝑎𝜏 for the target idle agent. It computes the
assignment probability of the target agent 𝑖 to the unassigned task
𝑗 as follows:

𝑙𝑖 𝑗 = MLPactor (ℎ (𝐻)𝑖
, ℎ
(𝐻)
𝑗

, ℎ
(𝐻)
𝑖 𝑗
) (10)

𝑝𝑖 𝑗 = softmax({𝑙𝑖 𝑗 } 𝑗∈A(G𝜏)) (11)

where A(G𝜏) denotes a set of feasible actions that is defined as
{𝑣 𝑗 |𝑘 𝑗 = Unassigned-task, 𝑣 𝑗 ∈ V}.

The proposed MDP formulated mTSP is designed to have only
one target idle agent at a given event 𝜏 . Due to the design of MDP,
computing one agent’s action probability becomes enough for de-
ciding an action at each 𝜏 . This allows us to solve mTSP without
explicitly modeling the joint actions of agents, unlike many multi-
agent RL approaches.

5 TRAINING SCHEDULENET
We utilize the sparse team reward as the reward to train the scalable
scheduler that aims to complete the tasks as quickly as possible
by coordinating multiple agents. Even though this team reward is
the most direct signal that can be used for solving min-max mTSP,
training a cooperative policy using a single sparse and delayed
reward is notoriously difficult [13, 31]. The high variance of the
reward, due to the combinatorial nature of mTSP, adds an addi-
tional difficulty. To handle such difficulties, we employ two training
stabilizers, reward normalization and Clip-REINFORCE.

5.1 Reward Normalization
We denote the makespan induced by policy 𝜋𝜃 as 𝑀 (𝜋𝜃). We ob-
serve that𝑀 (𝜋𝜃) is highly volatile depending on the problem size
(𝑁 ,𝑚) and 𝜋𝜃 . To reduce the variance of the reward incurred from
the problem size, we propose to use the normalized makespan
𝑀̄ (𝜋𝜃 , 𝜋𝑏) computed as:

𝑀̄ (𝜋𝜃 , 𝜋𝑏) =
𝑀 (𝜋𝜃) −𝑀 (𝜋𝑏)

𝑀 (𝜋𝑏)
(12)

where 𝜋𝜃 and 𝜋𝑏 are the current and baseline policies, respectively.
A similar normalization scheme that only measures the perfor-

mance difference between 𝜋 and 𝜋𝑏 has been investigated in RL
applications for solving single-agent scheduling problems [6, 20, 21].
Such normalization can provide consistent learning signals when
the training instance sizes (i.e. 𝑁) are fixed, which is a common
practice for training RL methods to solve single-agent scheduling
problems. However, we observed that even if 𝑁 is fixed, the (op-
timal) makespan of mTSP can differ severely as 𝑚 changes. To
reduce the variability of the makespan due to𝑚, we further divide
the makespan difference by𝑀 (𝜋𝑏).

Effect of the baseline selection. A proper selection of 𝜋𝑏 is
essential to assure stable and asymptotically better learning of
ScheduleNet. Intuitively speaking, choosing too strong baseline
(i.e., policy having smaller makespan such as LKH3 and OR-tools)
can make the entire learning process unstable since the normalized
reward tends to have larger values. On the other hand, employ-
ing too weak baseline can lead to virtually no learning since the
𝑀̄ (𝜋, 𝜋𝑏) becomes nearly zero.

We select 𝜋𝑏 as Greedy(𝜋𝜙), where 𝜋𝜙 is the soft target network
of 𝜋𝜃 as proposed in [23] and Greedy(𝜋) is the argmax of 𝜋 . This
baseline selection has several advantages from selecting a fixed/pre-
existing scheduling policy: (1) Entire learning process becomes
independent from existing scheduling methods and trainable via
solely RL. (2) Greedy(𝜋𝜙) serves as an appropriate 𝜋𝑏 (either not
too strong or weak) during policy learning. We experimentally
confirmed that the baseline section Greedy(𝜋𝜙) results in a better
scheduling policy similar to the several literature [20, 34].

Using 𝑀̄ (𝜋𝜃 , 𝜋𝑏), we compute the normalized return𝐺𝜏 (𝜋𝜃 , 𝜋𝑏)
as follows:

𝐺𝜏 (𝜋𝜃 , 𝜋𝑏) = −𝛾𝑇−𝜏 𝑀̄ (𝜋𝜃 , 𝜋𝑏) (13)

where 𝑇 is the index of the terminal state, and 𝛾 is the discount
factor ofMDP. Theminus sign is forminimizing themakespan. Note
that, in the early phase of mTSP (when 𝜏 is small), it is difficult to
estimate the makespan. Thus, we place a smaller weight (i.e, 𝛾𝑇−𝜏)
on 𝑀̄ (𝜋𝜃 , 𝜋𝑏), which is evaluated when 𝜏 is small (early stage).

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

881

5.2 Clip-REINFORCE
Even a small change in a single assignment can result in a dramatic
change to the makespan due to the combinatorial nature of mTSP.
Hence, training the value function that predicts 𝐺𝜏 reliably is diffi-
cult. We thus propose to utilize Clip-REINFORCE, a variant of PPO
[33] without the learned value function, for training ScheduleNet.
The objective of the Clip-REINFORCE is given as follows:

L(𝜃) = E
(G𝜏 ,𝑎𝜏)∼𝜋𝜃

[min(clip(𝜌𝜏 , 1 − 𝜖, 1 + 𝜖)𝐺𝜏 , 𝜌𝜏𝐺𝜏)] (14)

where clip(𝑥, 𝑎, 𝑏) = {𝑎 if𝑥 ≤ 𝑎, 𝑥 if𝑎 < 𝑥 < 𝑏, 𝑏 if𝑥 ≥ 𝑏}, 𝜖 is the
clipping parameter, 𝐺𝜏 is a shorthand notation for 𝐺𝜏 (𝜋𝜃 , 𝜋𝑏), and
𝜌𝜏 = 𝜋𝜃 (𝑎𝜏 |G𝜏)/𝜋 (𝑎𝜏 |G𝜏).

6 EXPERIMENTS
In this section, we evaluate the performance of ScheduleNet on
mTSP. To calculate the inference time, we run all experiments on
the server equipped with AMD Threadripper 2990WX CPU. We
use a single CPU core for evaluating all algorithms.

6.1 mTSP Experiments
We denote (𝑁 ×𝑚) as the mTSP with 𝑁 cities (tasks) and𝑚 sales-
men (agents). To generate a random mTSP instance, we sample
𝑁 and 𝑚 from 𝑈 (15, 30) and 𝑈 (3, 4), respectively. Similarly, the
Euclidean coordinates of 𝑁 cities are sampled uniformly from the
unit square. ScheduleNet is trained on random mTSP instances that
are generated on-the-fly. For all experimental results, we evaluate
the performance of the trained ScheduleNet model without any
additional training (i.e., zero-shot performances).

Training details. ScheduleNet is composed of three compo-
nents. The first components generates the initial node embedding
{ℎ (0)

𝑖
} and edge {ℎ (0)

𝑖 𝑗
} by using linear projections. The second

component (TGA), which utilizes MLP(64) as MLPetype, MLPedge,
MLPattn, and MLPnode, repeatedly updates the node and edge em-
bedding 3 times to generate {ℎ (3)

𝑖
} and edge {ℎ (3)

𝑖 𝑗
}. The last com-

ponent MLPactor, which is parametrized as MLP(64, 32), generates
action logits from the set of node and edge embedding. All input
and output dimensions of MLPs are 64 and hidden actions are
LeakyReLU. We then present a pseudocode for training Schedu-
leNet (see Algorithm 2). We set the MDP discounting factor 𝛾 to
0.99, learning rate 𝛼 to 0.0001, 𝐸 to 128, 𝐾 to 4, 𝛽 to 0.01, and the
clipping parameter 𝜖 of Clip-REINFORCE to 0.2. We set the training
seed as 1234.

Results on random mTSP datasets. To investigate the gen-
eralization capacity of ScheduleNet to various problem sizes, we
evaluate ScheduleNet on the randomly generated mTSP datasets.
Each (𝑁 ×𝑚) dataset consists of 100 random uniform mTSP in-
stances.

We consider four baseline algorithms to measure the perfor-
mance of ScheduleNet. As the non-learning baselines, LKH3 [14]
and Google OR-Tools [29] are used. It is noteworthy that LKH3 is
known to find the optimal solutions for mTSP problems which have
known optimal solutions. Thus, we use the makespans computed by
LKH3 as the proxies for the optimal solutions. As the RL baselines,
GNN-DisPN [15] and DAN [6] are considered. To the best of our

Algorithm 2: ScheduleNet Training
input :Training policy 𝜋𝜃 , baseline policy 𝜋𝜙
output :Optimized policy 𝜋𝜃

1 Initialize the baseline policy with parameters 𝜙 ← 𝜃

2 for update step do
3 Initialize sample buffer D ← ∅
4 for number of episodes E do
5 Generate a random mTSP instance 𝐼
6 𝜋𝑏 ← Greedy(𝜋𝜙)
7 Construct mTSP MDP from the instance 𝐼
8 Collect samples

S = {G𝜏 , 𝑎𝜏 , 𝜋𝜃old (𝑎𝜏 |G𝜏),𝐺𝜏 (𝜋𝜃 , 𝜋𝑏)}𝑇𝜏=0 with 𝜋𝜃
and 𝜋𝑏 from the MDP.

9 D ← D ∪ S.
10 end
11 for inner updates K do
12 Calculate the loss L(𝜃) with D
13 𝜃 ← 𝜃 + 𝛼∇𝜃L(𝜃)
14 end
15 𝜙 ← 𝛽𝜙 + (1 − 𝛽)𝜃
16 end
17 return 𝜋𝜃

knowledge, these are the only RL algorithms that tried to solve the
min-max mTSP.

Table 1 shows the average makespans and average gaps (i.e.,
the relative makespan w.r.t LKH3) of ScheduleNet and the baseline
algorithms on various-sized random mTSP instances. ScheduleNet
generally shows leading performances compared to the baseline
algorithms even though it is trained on the smallest test setup
(30×3). In addition, Figure 2 compares the average computation
times and their standard deviations for each problem size, clearly
indicating that ScheduleNet is significantly faster than traditional
heuristic solvers (LKH3 and OR-Tools). The computational time
difference among RL approaches is almost not noticeable. We also
provide the experiment results for larger datasets in Table 2.

Results on public benchmarks. Next, to explore the gener-
alization of ScheduleNet to problems that come from completely
different distributions (e.g., real-world data), we present the results
on the mTSPLib dataset defined by Necula et al. [28]. Note that
mTSPLib consists of four instances of size 51, 52, 76 and 99 from
TSPLib [30], each of which is extended to multi-agent setups where
𝑚 equals to 2, 3, 5, and 7.

Table 3 shows the makespans and average gaps w.r.t CPLEX of
the algorithms. ScheduleNet still exhibits comparable performance
to OR-tools, while DAN shows significant performance drops. We
further inspect the solutions of DAN and ScheduleNet in eli51-2 and
belin52-2 where the cities are distributed (relatively) uniformly and
non-uniformly, respectively. As shown in Figure 3a, both learning
algorithm shows similar solution patterns in eli51-2. However, for
non-uniformly distributed cities (belin52-2), the solution quality
of DAN deteriorates (see Figure 3b). ScheduleNet performs better
than DAN, even when the city distributions differ from the training.
From the results, we can observe that ScheduleNet is effective in

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

882

Table 1: RandommTSP results. GNN-DisPN results are reproduced from Hu et al. [15]. (g.)
indicate the results of greedy decoding, (s.n) indicates the result of best costs of 𝑛 sampled.

𝑁 30 50 100 200 Gap

𝑚 3 5 5 7 10 5 10 15 10 15 20

LKH3 2.17 1.94 2.00 1.95 1.91 2.20 1.97 1.98 2.04 2.00 1.97 1.00
OR-Tools 2.25 1.95 2.04 1.96 1.96 2.36 2.29 2.25 2.57 2.59 2.59 1.12

GNN-DisPN - - 2.12 - 1.95 2.48 2.09 - - - - -
DAN (g.) 2.58 2.11 2.29 2.11 2.03 2.72 2.17 2.09 2.40 2.20 2.15 1.12
DAN (s.64) 2.32 2.00 2.12 1.99 1.95 2.55 2.05 2.00 2.29 2.13 2.07 1.05

ScheduleNet (g.) 2.32 2.02 2.17 2.07 1.98 2.59 2.13 2.07 2.45 2.24 2.17 1.09
ScheduleNet (s.64) 2.22 1.96 2.07 1.99 1.92 2.43 2.03 1.99 2.25 2.08 2.05 1.04

30
x 3
30

x 5
50

x 5
50

x 7

50
x 1

0

10
0 x

5

10
0 x

10

10
0 x

15

20
0 x

10

20
0 x

15

20
0 x

20

100

101

102

103

Ru
nt
im

e
(s
ec

)

LKH OR-Tools ScheduleNet

Figure 2: mTSP runtimes. X-axis shows the
size of mTSP instances and Y-axis shows
the run time (in seconds) of each algorithm.

20 40 60

10

20

30

40

50

60

70

Optimal

20 40 60

DAN (g.)

20 40 60

ScheduleNet (g.)

(a) Eli51-2 results

0 500 1000 1500

0

200

400

600

800

1000

1200

Best-known

0 500 1000 1500

DAN (g.)

0 500 1000 1500

ScheduleNet (g.)

(b) Berlin52-2 results

Figure 3: Example routes of Optimal (or Best-known) solutions, DAN, and ScheduleNet (a) Greedy decoding results of DAN and ScheduleNet on
Eli52-2. (b) Greedy decoding results of DAN and ScheduleNet on Berlin52-2.

Table 2: Extended random mTSP results. (g.) indicate the results of
greedy decoding.

𝑁 ×𝑚 300 × 30 500 × 50 700 × 50 Gap

LKH 2.05 2.94 2.25 1.00

OR-Tools 2.94 7.55 10.90 3.45

ScheduleNet (g.) 2.25 2.31 2.50 1.14

solving both randomly generated and real-world mTSPs problems
(i.e., robust transferability over data distribution shift).

6.2 mTSP Variants Experiments
While most state-of-the-art neural (multi-agent) schedulers focus
on solving classical scheduling problems, they overlook the ap-
plication of such methods in practical scenarios. In this section,
we further investigate the performance of ScheduleNet in more
practical scenarios of mTSP: (1) limited observation and (2) online
routing.

Limited observation. In a real-world application of mTSP, some
salesmen may not be able to gather all the information about the
other salesmen due to the limited communication capabilities (e.g.,
delivery trucks are located in distant). In such a scenario, the agent
should decide the next city to visit with local observations. To

consider this realistic scenario, we limit the number of observable
salesmen 𝑁𝑟 from G𝜏 and investigate performances.

We employ ScheduleNet to solve the test instances, whose sizes
are (50×5), (100×10), and (200×20), by varying 𝑁𝑟 . As shown in Fig-
ure 4, the makespan decreases as 𝑁𝑟 increases because the extended
communication scope (i.e., close to the global observation) can in-
duce enhanced coordination among salesmen. Note that 𝑁𝑟 = 0
indicates the case where each salesman makes entirely independent
actions without considering the other salesmen at all. It is notewor-
thy that ScheduleNet maintains the scheduling performance when
a few numbers of salesmen are observable. The results imply that
ScheduleNet learns an effective policy that is operated on partial ob-
servations and performs robustly even with limited communication
capabilities (i.e., the lack of global observation).

Online routing. Unlike the neural methods that are trained for
generating complete scheduling solutions [6, 20], ScheduleNet can
solve the dynamic scheduling problem, where agents and cities ap-
pear during the execution of scheduled actions, in an online manner,
due to our MDP formulation. We evaluate this capability by solving
the online mTSP problem where new cities appear dynamically
within the scheduling problems.

To generate the online scenarios, we first fix the number of
cities added during the online routing. Once the number of cities
is given, we then decide the locations of the cities by taking the
midpoints of cities. We assign the location of the city that will be
first added as the midpoint between the first and second cities of
the mTSP map. Similarly, the location of the second city is set as the

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

883

Table 3: mTSPLib results. CPLEX results with ∗ are optimal solutions. Otherwise, the best-known upper bound of CPLEX results are reported.

Instance eil51 berlin52 eil76 rat99 Gap

𝑚 2 3 5 7 2 3 5 7 2 3 5 7 2 3 5 7

CPLEX 222.7∗ 159.6 124.0 112.1 4110.2 3244.4 2441.4 2440.9 280.9∗ 197.3 150.3 139.6 728.8 587.2 469.3 443.9 1.00

LKH3 222.7 159.6 124.0 112.1 4110.2 3244.4 2441.4 2440.9 280.9 197.3 150.3 139.6 728.8 587.2 469.3 443.9 1.00
OR-Tools 243.3 170.5 127.5 112.1 4665.5 3311.3 2482.6 2440.9 318.0 212.4 143.4 128.3 762.2 552.1 473.7 442.5 1.03

DAN (g) 274.2 178.9 158.6 118.1 5,226.0 4,278.4 2,758.8 2,696.8 361.1 251.5 170.9 148.5 930.8 674.1 504.0 466.4 1.18
DAN (s. 64) 252.9 178.9 128.2 114.3 5,097.7 3,455.7 2,677.1 2,494.5 336.7 228.1 157.9 134.5 966.5 697.7 495.6 462.0 1.11

ScheduleNet (g.) 257.9 185.3 131.7 113.9 4,826.1 3,644.2 2,747.6 2,514.6 330.2 228.8 163.9 144.4 843.8 650.8 500.7 469.9 1.13
ScheduleNet (s.64) 239.3 173.5 125.8 112.2 4,591.6 3,276.1 2,517.3 2,441.4 317.7 220.8 153.8 131.7 781.2 627.1 502.3 464.4 1.05

0 1 2 3 4 5

1.0

1.1

1.2

1.3

No
rm

.a
ve
ra
ge

m
ak
es
pa

n

50 x 5

0 3 5 7 9 10

100 x 10

0 11 15 17 19 20

200 x 20

Nr

Figure 4: Limited observation scenario results. X-axis shows 𝑁𝑟 (i.e.,
the number of observable agents), and Y-axis shows the normalized
average makespans.

10% 30% 50%

2.4

2.6

2.8

Av
er
ag

e
m
ak
es
pa

n
10% 30% 50%

2

4

6

Ru
nt
im

e
(s
ec
)

Na

Oracle ScheduleNet Ortools-(R)

Figure 5: Online routing scenario results. [Left] Average makespans
of algorithms in online routing. X-axis shows 𝑁𝑎 (i.e., percentage of
added cities), and Y-axis shows average makespans. [Right] Increased
run times over 𝑁𝑎 . X-axis shows 𝑁𝑎 , and Y-axis shows average run
times in seconds. The solid lines visualize the average runtimes, and
shadow areas visualize the standard deviation of the runtimes.

0 1000 2000 3000 4000 5000
Training steps

1.0

1.2

1.4

1.6

1.8

2.0

2.2

No
rm

al
ize

d
m

ak
es

pa
n

REINFORCE-Reward
REINFORCE-Norm.R
CR-Reward
CR-Norm.R

(a) Training method ablation

0 1000 2000 3000 4000 5000
Training steps

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

No
rm

al
ize

d
m

ak
es

pa
n

TGA
GN

(b) Representation method ablation

Figure 6: Normalizedmakespan curves over training steps. (a) Trainingmethod ablation results.
(b) Representation method ablation results. X-axis shows the training steps. Y-axis shows the
averaged normalized makespans of validation instances during training. The shadow regions
visualize the standard deviations of normalized makespans over five different random seeds.

Figure 7: Representation method ablation
(makespans on the large instances)

𝑁 𝑚 GN TGA

100 5 2.67 2.59
10 2.26 2.13
15 2.36 2.07

200 10 2.61 2.45
15 2.41 2.24
20 2.52 2.17

midpoint between the second and third cities. Using the same logic,
we decide all positions of the newly added cities. Lastly, we decide
the timing of city addition by using (near) optimal solutions (e.g.,
LKH3)𝑀∗ (𝜋). We first compute divide𝑀∗ (𝜋) by 1.0 < 𝑠 and then
evenly allocate the timing of additions from 0.0 to𝑀∗ (𝜋)/𝑠 . This
ensures all “to be added" cities are added during the online routing
simulation, no matter what scheduling policies are evaluated. We
set 𝑠 = 2.

We first randomly generate 100 (30×3) test instances. Then, while
simulating these scenarios with the scheduling policies, we sequen-
tially add 30×𝑁𝑎% cities to the simulation (the location and times of
the cities are unknown to policies before the addition) and evaluate
how the policies effectively replan the schedules according to such
online scenarios. We compare the makespan of ScheduleNet with (1)
oracle planning that plans once while knowing all future demands
(its appearing locations and times), and (2) re-planing heuristics that

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

884

replans the future actions whenever 𝑠𝜏 is updated. To implement
the oracle planning, we reformulate the online routing problem
as a vehicle routing problem with time constraints (VRP-TW). In
the VRP-TW, we set the time window constraints for the originally
existing cities as (0,𝑀), where𝑀 is a large number. For the newly
added cities, the lower and upper bounds of the time window are
set as their addition times and 𝑀 . The re-planing heuristics are
implemented with OR-tools [29].

Figure 5 shows the average makespans computed using 100
random online scenarios. As shown in the left plot, ScheduleNet
always produces a shorter makespan and shorter runtime than
the replanning heuristic for all 𝑁𝑎 values, proving its effective
adaptability and robustness to dynamically changing cities. Note
that as 𝑁𝑎 increases, the makespan and the runtime increase for
all methods due to the increased uncertainty and the number of
replanning.

7 ABLATION STUDIES
In this paper, we propose TGA as the representation learning mod-
ule and Reward normalization and Clip-REINFORCE (CR) as the
training methods. Here, we provide the experimental results that
show the effect of the proposed representation module and training
methods on the training and testing performance of ScheduleNet.
We first validate the effectiveness of the proposed training methods
by evaluating the following ScheduleNet variants:
• REINFORCE-Reward: the model receives unnormalized reward
and is trained by REINFORCE [38].
• REINFORCE-Norm.R: the model receives normalized reward
and is trained by REINFORCE
• CR-Reward: themodel receives normalized reward and is trained
by CR
• CR-Norm.R (ScheduleNet): the model receives normalized
reward and is trained by CR
Figure 6a compares the average normalized makespans (over

the five independent runs) of the models on the test instances (size
of 30×3) during training. As shown in Figure 6a, only CR-Norm.R
(ScheduleNet) successfully converges to the lowest makespans.
On the other hand, the other models minimize makespans at the
early training phase; however, their performances start to dete-
riorate and converge to ∼2.1 as the training proceeds. From the
experimental results, we can confirm that the proposed training
methods stabilize the training of ScheduleNet.

We then validate the effectiveness of the proposed representation
module (i.e., TGA) compared to GN, a well-known node, and edge
encoding GNN layer [3]. We evaluate the Schedulent variants of
the following:
• GN: the model using the graph network (GN) layer is trained by
CR with the normalized reward.
• TGA (ScheduleNet): the model using TGA and is trained by CR
with the normalized reward.

By comparing the learning curves in Figure 6b, we can see the effect
of TGA as a representation module. TGA induces more stabilized
and faster performance improvement. In addition, as shown in
Table 7, TGA (ScheduleNet) consistently shows better performance
than GN in the test datasets. The performance difference between
the two models becomes severe as 𝑁 and𝑚 increase.

8 CONCLUSION
In this work, we proposed ScheduleNet, an RL-based scheduler that
solves the min-max mTSP in a scalable manner. The core compo-
nents of ScheduleNet are (1) the agent-task state representation
that is effective in solving mTSP, (2) the type-aware graph attention
(TGA) network to effectively embed the agent-task graph, and (3)
Clip-REINFORCE that stably learns the cooperative and scalable
policy using sparse team reward (makespan). Through extensive
experiments, we empirically verified that ScheduleNet effectively
solves the classical static min-maxmTSPwhile showing exceptional
generalization to the change of the number of cities and city coor-
dinate distribution. Furthermore, ScheduleNet also showed that it
solves the limited communication or online mTSP variants.

ACKNOWLEDGMENTS
This work was supported by Institute of Information & commu-
nications Technology Planning & Evaluation (IITP) grant funded
by the Korean government (MSIT) (2022-0-01032, Development of
Collective Collaboration Intelligence Framework for Internet of
Autonomous Things)

REFERENCES
[1] Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. 2020. Learning What to Defer for

Maximum Independent Sets. In Proceedings of the 37th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé
III and Aarti Singh (Eds.). PMLR, 134–144.

[2] Sungjun Ann, Youdan Kim, and Jaemyung Ahn. 2015. Area allocation algorithm
for multiple UAVs area coverage based on clustering and graph method. IFAC-
PapersOnLine 48, 9 (2015), 204–209.

[3] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks.

[4] Tolga Bektas. 2006. The multiple traveling salesman problem: an overview of
formulations and solution procedures. omega 34, 3 (2006), 209–219.

[5] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio.
2017. Neural Combinatorial Optimization with Reinforcement Learning. https:
//openreview.net/forum?id=rJY3vK9eg

[6] Yuhong Cao, Zhanhong Sun, and Guillaume Sartoretti. 2021. DAN: Decentral-
ized Attention-based Neural Network to Solve the MinMax Multiple Traveling
Salesman Problem. arXiv preprint arXiv:2109.04205 (2021).

[7] Omar Cheikhrouhou and Ines Khoufi. 2021. A comprehensive survey on the
Multiple Traveling Salesman Problem: Applications, approaches and taxonomy.
Computer Science Review 40 (2021), 100369.

[8] Xinyun Chen and Yuandong Tian. 2019. Learning to Perform Local Rewriting
for Combinatorial Optimization. In Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

[9] Paulo R d O da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay.
2020. Learning 2-opt Heuristics for the Traveling Salesman Problem via Deep
Reinforcement Learning. In Proceedings of The 12th Asian Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 129), Sinno Jialin Pan
and Masashi Sugiyama (Eds.). PMLR, Bangkok, Thailand, 465–480.

[10] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. 2021. Generalize a Small Pre-
trained Model to Arbitrarily Large TSP Instances. arXiv:2012.10658 [cs.LG]

[11] Kenneth C Gilbert and Ruth B Hofstra. 1992. A new multiperiod multiple travel-
ing salesman problem with heuristic and application to a scheduling problem.
Decision Sciences 23, 1 (1992), 250–259.

[12] Samuel Gorenstein. 1970. Printing press scheduling for multi-edition periodicals.
Management Science 16, 6 (1970), B–373.

[13] Joshua Hare. 2019. Dealing with sparse rewards in reinforcement learning. arXiv
preprint arXiv:1910.09281 (2019).

[14] Keld Helsgaun. 2017. An extension of the Lin-Kernighan-Helsgaun TSP solver for
constrained traveling salesman and vehicle routing problems. Roskilde: Roskilde
University (2017).

[15] Yujiao Hu, Yuan Yao, and Wee Sun Lee. 2020. A reinforcement learning approach
for optimizing multiple traveling salesman problems over graphs. Knowledge-
Based Systems 204 (2020), 106244.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

885

https://openreview.net/forum?id=rJY3vK9eg
https://openreview.net/forum?id=rJY3vK9eg
https://arxiv.org/abs/2012.10658

[16] Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, Thomas Laurent,
and Xavier Bresson. 2020. Learning TSP Requires Rethinking Generalization.
arXiv:2006.07054 [cs.LG]

[17] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learn-
ing combinatorial optimization algorithms over graphs. In Advances in Neural
Information Processing Systems. 6348–6358.

[18] Minsu Kim, Jinkyoo Park, et al. 2021. Learning Collaborative Policies to Solve
NP-hard Routing Problems. Advances in Neural Information Processing Systems
34 (2021).

[19] Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling.
2021. Deep Policy Dynamic Programming for Vehicle Routing Problems.
arXiv:2102.11756 [cs.LG]

[20] Wouter Kool, Herke van Hoof, and Max Welling. 2019. Attention, Learn to
Solve Routing Problems!. In International Conference on Learning Representations.
https://openreview.net/forum?id=ByxBFsRqYm

[21] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon,
and Seungjai Min. 2020. POMO: Policy Optimization with Multiple Optima for
Reinforcement Learning. Advances in Neural Information Processing Systems 33
(2020).

[22] Jan Karel Lenstra and AHG Rinnooy Kan. 1975. Some simple applications of the
travelling salesman problem. Journal of the Operational Research Society 26, 4
(1975), 717–733.

[23] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and DaanWierstra. 2016. Continuous control with
deep reinforcement learning.. In ICLR (Poster). http://arxiv.org/abs/1509.02971

[24] Hao Lu, Xingwen Zhang, and Shuang Yang. 2020. A Learning-based Iterative
Method for Solving Vehicle Routing Problems. In International Conference on
Learning Representations.

[25] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. 2020.
Reinforcement learning for combinatorial optimization: A survey.

[26] LIU Ming and ZHANG Pei-yong. 2014. New hybrid genetic algorithm for solving
the multiple traveling salesman problem: an example of distribution of emergence
materials. Journal of Systems & Management 23, 2 (2014), 247.

[27] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác.
2018. Reinforcement learning for solving the vehicle routing problem. InAdvances

in Neural Information Processing Systems. 9839–9849.
[28] Raluca Necula, Mihaela Breaban, and Madalina Raschip. 2015. Tackling the bi-

criteria facet of multiple traveling salesman problem with ant colony systems. In
2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).
IEEE, 873–880.

[29] Laurent Perron and Vincent Furnon. 2022. OR-Tools. Google. https://developers.
google.com/optimization/

[30] Gerhard Reinelt. 1991. TSPLIB—A traveling salesman problem library. ORSA
journal on computing 3, 4 (1991), 376–384.

[31] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas De-
grave, Tom Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. 2018.
Learning by playing solving sparse reward tasks from scratch. In International
Conference on Machine Learning. PMLR, 4344–4353.

[32] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms.

[34] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[35] Joseph A Svestka and Vaughn E Huckfeldt. 1973. Computational experience with
an m-salesman traveling salesman algorithm. Management Science 19, 7 (1973),
790–799.

[36] Lixin Tang, Jiyin Liu, Aiying Rong, and Zihou Yang. 2000. A multiple traveling
salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron &
Steel Complex. European Journal of Operational Research 124, 2 (2000), 267–282.

[37] XiaoWang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.
2019. Heterogeneous graph attention network. In The world wide web conference.
2022–2032.

[38] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[39] YaoxinWu,Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. 2020. Learning
Improvement Heuristics for Solving Routing Problems. arXiv:1912.05784 [cs.AI]

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

886

https://arxiv.org/abs/2006.07054
https://arxiv.org/abs/2102.11756
https://openreview.net/forum?id=ByxBFsRqYm
http://arxiv.org/abs/1509.02971
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://arxiv.org/abs/1912.05784

	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 ScheduleNet
	4.1 Constructing Agent-task Graph
	4.2 Graph Embedding Using TGA
	4.3 Computing Assignment Probability

	5 Training ScheduleNet
	5.1 Reward Normalization
	5.2 Clip-REINFORCE

	6 Experiments
	6.1 mTSP Experiments
	6.2 mTSP Variants Experiments

	7 Ablation studies
	8 Conclusion
	Acknowledgments
	References

