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ABSTRACT
In the Watchman Route Problem (WRP), the task is to find a path

for a watchman agent such that all locations in the given map will

be visually seen by the watchman at least once during the path

traversal. Recently, the problem has been optimally solved on a

grid map using heuristic search. In this paper, we extend this work

to the case of multiple agents. We call this problem the Multiple
Watchman Route Problem (MWRP). In MWRP, the task is to find a

path for each watchman such that each location on the map will

be seen by at least one watchman. We optimally solve MWRP with

heuristic search for two different objective functions with a number

of A*-based variants, including an enhanced branching mechanism.

We then provide an experimental study on these methods and on

other attributes of this problem.
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1 INTRODUCTION AND OVERVIEW
In the Watchman Route Problem (WRP), the task is to find a path

for a traveling agent (called the watchman) on a map such that any

location on the map is visually seen from at least one location on

the path [5, 12]. As a result, a watchman that follows that path will

be able to see the entire set of locations of the map. In WRP, the

sight of the agent is modeled using a Line-of-Sight (LOS) function,
which determines whether any given two cells can visually see

each other. Trivial LOS functions on grids are the cardinal lines (4-

way), possibly combined with diagonal lines (8-way). A non-trivial

LOS function for general graphs is a transmission function that

indicates for each vertex which are the vertices that can receive the

transmission. WRP is applicable in many real-life scenarios, such as

planning a path for visiting a museum and seeing all items, finding

an efficient path for watering the garden, etc.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Optimally solving WRP was proven NP-hard for polygons [5].

Recently, WRP was solved optimally on grid maps using heuristic

search while proving that it is also NP-hard [12, 13]. Hereafter, we

refer to that paper as S20. S20 developed a variant of A* calledWRP-

A*, which is executed on a state-space derived from the problem.

A simple admissible heuristic function, called ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 , was pro-

posed. It uses the cost of reaching a location that sees the farthest

cell. More complex admissible heuristics were based on abstraction

of the grid to the Disjoint Line-of-Sight Graph (𝐺𝐷𝐿𝑆 ). The best

heuristic was based on a solution to a variant of the Traveling Sales-
man Problem (TSP) applied on 𝐺𝐷𝐿𝑆 . Yaffe et al. (2021) extended

this work and developed suboptimal variants of WRP-A*, which

run faster than the optimal solver with a relatively minor increase

in solution cost.

In this paper, we extend WRP to the case of multiple agents

(watchmen) and denote this problem as Multiple Watchman Route
Problem (MWRP). In MWRP, the task is to find a path for each of

the agents from its start cell through the grid such that all empty

cells in the map will be covered by LOS from at least one cell of one

of the paths. While in WRP the shortest path is desired, in MWRP,

we consider two objective functions: (1) The sum of the costs (SOC)

of all the paths of the agents, and (2) Makespan (MKSP) – the cost

of the longest path among these paths.

MWRP is applicable in WRP applications where multiple agents

exist. For example, consider a museumwith guards that need to tour

the venue and check that all the exhibits are in good shape before

opening the museum to the public. These guards want to arrive to

work as late as possible and still complete their tour on time. The

paths returned from solving MWRP can be calculated once and be

used by these guards for many years.
1
Note that while MWRP has

multiple agents, it is a classical combinatorial search problem with

a fully structured state-space which is solved offline. It is not to be

confused with online multi-agent systems where agents have their

own computing power, sensing and communication paradigms, and

error possibilities.

We formalize MWRP as a search problem and develop an A*-

like algorithm (MWRP-A*) for optimally solving MWRP. We then

propose two admissible heuristic functions for MWRP-A*, which

generalize two of the heuristics that were suggested by S20 for

WRP, namely, ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 and ℎ𝑇𝑆𝑃 . We then develop a method

that intelligently combines these two heuristics using Lazy A* [17].

Additionally, we propose a unique method for enhancing the search,

1
In fact, our work was sponsored by an industrial company that has very similar tasks

(not in a museum though).
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called Expanding Border (EB). When EB expands a state 𝑠 in the

search, it does not branch to the neighbors of 𝑠 but directly jumps to

farther cells that reveal new unseen cells. This significantly reduces

the size of the search tree without losing any possible solution. We

experimentally show the pros and cons of our different methods.

In addition, we study the effect of different policies for selecting

the start cells, the effect of increasing the number of agents on the

behaviors of the algorithms and on the optimal cost, and the effect

of requiring the agents to return to their start cells.

Our work is applicable to any general graph and is robust across

any LOS function. To be focused, we follow S20 and demonstrate

the problem on grid maps and experiment with the common BresLos
LOS function (see below).

2 RELATEDWORK
There are many important problems that are related to WRP. WRP

itself was researched in the field of computational geometry [5]

(mainly on polygons with different characteristics). Other related

problems are the Simultaneous Localization And Mapping problem
(SLAM) [1, 16], inspection planning [7], and the Art Gallery problem
(AGP) [8]. We refer the reader to S20 for a broad survey on these

problems and their relation to WRP.

TheMultiple Traveling Salesman Problem (MTSP) extends TSP for

multiple agents [9]. MTSP is identical to MWRP with a trivial LOS

function that returns the input cell only, i.e., an agent needs to arrive

at a location to see it. One approach for solving MWRP [4, 6, 10]

first selects a set of locations on the graph that covers the entire

graph by their LOS. Then, an MTSP solver is applied on this set of

locations. Somhom et al. (1997) solved MWRP by first abstracting

the map using Self-Organizing Maps (SOM). Then, they found paths

that cover all the map by building a neural-network on the abstract

map. In contrast to our work, all these approaches find circular

paths and do not guarantee to return an optimal solution. While

we do not require circular paths, we show how our methods can be

easily adjusted to find optimal circular solutions.

MWRP is an offline multi-agent coordination problem, and thus

can also be seen as a member of the Multi-Agent Path Finding

problems [15], where collision-free paths should be computed. In

MWRP, we do not consider collisions, namely, we assume that each

location is large enough to contain multiple agents. Also, collisions

only affect the solutions if the domain is condensed with many

agents. This is not the case in MWRP where usually the environ-

ment is large and only a few agents exist. Finally, our algorithms

below may be modified to work when collisions are not allowed.

3 PROBLEM DEFINITION
The input for MWRP is a grid map. The set of empty (traversable)

cells is denoted by 𝑀 . Blocked cells are denoted as obstacles. We

are also given a set of agents 𝐴 = {𝑎1, . . . , 𝑎𝑚}, where each agent

𝑎𝑖 has a start cell 𝑠𝑡𝑎𝑟𝑡𝑖 ∈ 𝑀 . Time is discrete and between two

consecutive timesteps each agent located in cell 𝑠 can perform a

move action to one of its empty neighboring cells (denoted as 𝑁 (𝑠)),
along the four cardinal directions (up, down, left, right).

All agents have a Line-of-Sight function (LOS) which determines

whether any given two cells can visually see each other and it can be

any arbitrary function. S20 experimented with three possible LOS

Figure 1: (a) BresLos (b) Optimal MKSP (red), SOC (green)

functions on grids: 4-way, 8-way, and Bresenham LOS (BresLos) [3].
BresLos is commonly used in computer graphics, video games, and

bitmap pictures. It is perhaps the most suitable LOS function that

discretizes real-world continuous domains into grids and simulates

a continuous field of view. Intuitively, it approximates a straight line

between two cells that does not pass through any obstacles. Thus, it

allows to see more cells beyond the cardinal and diagonal lines. The

exact definition of BresLos is complex and is given by Bresenham

(1965). The gray cells in Figure 1(a) have LOS to 𝑎1 according to

BresLos, where black cells are obstacles. S20 showed that the relative
performance of different algorithms is robust across these LOS

functions. So, following Yaffe et al. (2021), in this paper, we only

work with BresLos. We also assume a symmetric LOS, i.e., 𝑠1 ∈
𝐿𝑂𝑆 (𝑠2) ⇔ 𝑠2 ∈ 𝐿𝑂𝑆 (𝑠1). Our work can be easily adjusted to

other (possibly asymmetric) LOS functions or to cases where agents

can perform other movements, e.g. diagonal movements or more

complex moves [11].

The output for MWRP is a set of paths 𝜋 = {𝜋1, . . . , 𝜋𝑚}, where
path 𝜋𝑖 = ⟨𝑠0 = 𝑠𝑡𝑎𝑟𝑡𝑖 , ..., 𝑠𝑘 ⟩ for agent 𝑎𝑖 ∈ 𝐴 is a sequence of

neighbouring cells starting from 𝑠𝑡𝑎𝑟𝑡𝑖 . The requirement for 𝜋 is

that for every cell 𝑠 ∈ 𝑀 , there is LOS from at least one cell from at

least one path. That is, if all agents follow their paths then every

cell will be seen by at least one of the agents.

The cost 𝑐 (𝜋𝑖 ) of a single path 𝜋𝑖 is the number of actions per-

formed in 𝜋𝑖 (𝑐 (𝜋𝑖 ) = |𝜋𝑖 | − 1). A set of paths 𝜋 is optimal iff it

has the minimal cost 𝑐 (𝜋) among all sets of paths, according to

a given objective function for aggregating the costs of multiple

paths. We consider the following objective functions, commonly

used in multi-agent problems [15]: (1) Sum of Costs (SOC), which
is the sum of the cost of all paths in 𝜋 , i.e., 𝑆𝑂𝐶 (𝜋) = ∑

𝜋𝑖 ∈𝜋 𝑐 (𝜋𝑖 ).
(2) Makespan (MKSP), which is the cost of the longest path in 𝜋 ,

i.e., 𝑀𝐾𝑆𝑃 (𝜋) = max𝜋𝑖 ∈𝜋 𝑐 (𝜋𝑖 ). We denote the shortest distance

between two cells 𝑠1, 𝑠2 ∈ 𝑀 by 𝑑 (𝑠1, 𝑠2).
Following S20, we assume that agents do not return to their start

cells and the whereabouts of agents after all cells have been seen

is of no importance (they can leave via the closest door, they can

stand still waiting for new tasks, or they can destroy themselves).

S20 showed that the problem can be simply reduced to handle the

case where agents need to return to their start locations. Indeed,

we show below how our methods can find such circular paths.

Figure 1(b) shows an example of an instance with two agents.

Blue cells represent the start cells of the agents, grey cells are those

that have LOS to/from the start cells (with BresLos), and white cells

represent unseen cells. The red arrows (𝜋𝑟 ) and the green arrows

(𝜋𝑔) demonstrate two possible solutions for this example. Note that,

in 𝜋𝑟 the middle cells in the rightmost column are seen by 𝑎2 from
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the bottom row. By contrast, in 𝜋𝑔 , agent 𝑎2 stands still in its start

cell and these cells are seen by 𝑎1 from the top row. Observe that

𝑆𝑂𝐶 (𝜋𝑟 ) = 6 and 𝑆𝑂𝐶 (𝜋𝑔) = 5. Thus, 𝜋𝑔 is better (and optimal)

for minimizing SOC. However,𝑀𝐾𝑆𝑃 (𝜋𝑟 ) = 4 and𝑀𝐾𝑆𝑃 (𝜋𝑔) = 5,

and hence 𝜋𝑟 is better (and optimal) for minimizing MKSP.

4 MWRP AS A SEARCH PROBLEM
To solve MWRP with heuristic search, we first define the corre-

sponding search tree which generalizes that of S20.
Node. A node is the pair ⟨𝐿, seen⟩. 𝐿 = {𝑙1, . . . , 𝑙𝑚} is a set of

locations, where 𝑙𝑖 ∈ 𝑀 represents the current location of agent

𝑎𝑖 . seen ⊆ 𝑀 is the set of cells that have already been seen by at

least one of the agents during its movement. The complement of

seen is the unseen set (the cells that have not been seen yet by any

of the agents).

Root Node. The root node (Root) contains the start cells of

all agents (Root .𝐿 = {start1, . . . , start𝑚}) and Root .𝑠𝑒𝑒𝑛 contains all

cells that are seen from these start cells (Root .𝑠𝑒𝑒𝑛 =
⋃

start𝑖 𝐿𝑂𝑆 (start𝑖 )).
Goal Node. A node 𝑛 is a goal node iff 𝑛.𝑠𝑒𝑒𝑛 = 𝑀 . Note that

the agents can finish the task in many sets of locations (𝑛.𝐿), as

long as all cells have been seen.

Successor Function. Recall that each agent 𝑎𝑖 positioned in 𝑙𝑖
can perform a move action to an empty neighboring cell in 𝑁 (𝑙𝑖 ).
Additionally, as the solution may contain paths of different lengths,

we add a terminate action which costs 0 and prevents the agent

from further exploration (i.e., it is out of the game). For each node

𝑛, we divide 𝐴 and 𝐿 into two groups: 𝐴+ and 𝐿+ refer to non-

terminated agents and 𝐴− and 𝐿− refer to terminated agents. Let

𝑛 = ⟨𝐿, 𝑠𝑒𝑒𝑛⟩ be the node selected for expansion and let 𝑁𝑖 repre-

sent the set of locations that agent 𝑎𝑖 can reach by performing an

action from its current location 𝑙𝑖 ∈ 𝑛.𝐿. If agent 𝑎𝑖 has not termi-

nated yet (𝑎𝑖 ∈ 𝐴+), the agent can either perform a move action to

one of its neighbors cells 𝑁 (𝑙𝑖 ) or perform a terminate action, i.e.,

𝑁𝑖 = 𝑁 (𝑙𝑖 ) ∪ {𝑡𝑖 }, where 𝑡𝑖 indicates that 𝑎𝑖 has just terminated (it

can be seen as a virtual cell where the agent can no longer move). If

agent 𝑎𝑖 has already terminated (𝑎𝑖 ∈ 𝐴−), then 𝑁𝑖 = {𝑡𝑖 }. When 𝑛

is expanded, a new node 𝑛′ is generated for each possible combina-

tion in the Cartesian product of actions. However, we exclude the

combination of all agents performing a terminate action because

it will lead to a dead-end. Formally, the set of successors of 𝑛 is

{{𝑁1× · · · ×𝑁𝑚}\{𝑡1, 𝑡2, . . . , 𝑡𝑚}} (coupled with the corresponding

seen sets that are determined according to the new seen cells).

For example, for two non-terminated agents, where each can

move to its four neighbors or perform a terminate action, there

are 5 × 5 − 1 = 24 possible combinations of actions. For each such

successor, locations of non-terminated agents are placed in 𝐿+ and
the last locations of terminated agents are placed in 𝐿−. The pseudo-
code for the expansion procedure is provided in Algorithm 1.

5 MWRP-A*: A*-LIKE SEARCH ALGORITHM
Following S20 (which introduced WRP-A*), we propose MWRP-A*,

an A*-like search algorithm for optimally solving MWRP. In MWRP-

A*, each node 𝑛 is associated with 𝑔(𝑛) and ℎ(𝑛). 𝑔(𝑛) represents
the cost of reaching 𝑛 from the root, and is calculated according

to SOC or MKSP of 𝑛.𝐿 (naturally, 𝑔(Root) = 0). ℎ(𝑛) estimates the

remaining cost for reaching a goal from 𝑛 and we introduce below

Algorithm 1: Basic expansion
1 BE(Node 𝑛)
2 foreach 𝑙𝑖 ∈ 𝑛.𝐿 do
3 Init 𝑁𝑖

4 if 𝑙𝑖 ∈ 𝑛.𝐿+ then
5 𝑁𝑖 ← 𝑁 (𝑙𝑖 )
6 𝑁𝑖 ← 𝑁𝑖 ∪ {𝑡𝑖 }
7 return {{𝑁1 × · · · × 𝑁𝑚 }\{𝑡1, 𝑡2, . . . , 𝑡𝑚 }}

a number of admissible heuristic functions. As usual, we use Open
and Closed lists for tracking the search process. In MWRP-A*, Open
is ordered according to 𝑓 (𝑛) = 𝑔(𝑛)+ℎ(𝑛) of each node𝑛. MWRP-A*

extracts fromOpen the node𝑛 with the lowest 𝑓 -value and performs

a goal test. If 𝑛 is a goal, the search halts and a solution is returned.

Otherwise, the search activates the successor function on node 𝑛

and for each new generated node 𝑛′ it sets 𝑓 (𝑛′) = 𝑔(𝑛′) +ℎ(𝑛′). If
𝑛′ is a duplicate or dominated node (explained next), it is discarded.

Otherwise, 𝑛′ is inserted to Open. Finally, 𝑛 is moved to Closed and

another expansion cycle is performed.

Duplicate/dominance Detection. Note that the paths associ-
ated with a given node 𝑛 are not directly described in the node, and

can be derived from the current branch of 𝑛 in the search tree. This

enables us to prune duplicates, which have the same set of locations

and the same seen set as they represent the same situation for the

search task. We extend this to a dominance relation as follows. Let𝑛1
and 𝑛2 be two nodes (in our case one of them is a newly generated

node and the other is a node in Open∪Closed). If (1) 𝑛1 .𝐿+ ⊆ 𝑛2 .𝐿+,
(2) 𝑛1 .𝑠𝑒𝑒𝑛 ⊆ 𝑛2 .𝑠𝑒𝑒𝑛, and (3) 𝑔(𝑛2) ≤ 𝑔(𝑛1) then 𝑛1 can be dis-

carded. Note that, 𝑛1 .𝐿
+ ⊆ 𝑛2 .𝐿+ means any permutation of the

individual agents into the same set of locations. For example, two

agents 𝑎1 and 𝑎2 that start in locations 𝑠𝑡𝑎𝑟𝑡1 and 𝑠𝑡𝑎𝑟𝑡2 may be in

locations 𝑠1 and 𝑠2 in 𝑛1 .𝐿
+
, but in locations 𝑠2 and 𝑠1 in 𝑛2 .𝐿

+
and

still 𝑛1 .𝐿
+ = 𝑛2 .𝐿+. This is done before ℎ is computed.

6 HEURISTIC FUNCTIONS FOR MWRP
In this section, we define admissible heuristic functions that esti-

mate the remaining cost for a given node 𝑛.

6.1 Singleton Heuristic
Given a cell 𝑠 and an agent 𝑎𝑖 (located in cell 𝑙𝑖 ), the minimum cost

for 𝑎𝑖 of moving and seeing cell 𝑠 is:

𝑞(𝑠, 𝑙𝑖 ) = min

𝑤∈𝐿𝑂𝑆 (𝑠)
𝑑 (𝑙𝑖 ,𝑤) (1)

As each of the agents can be the one selected for seeing cell 𝑠 , the

lowest cost for that purpose is:

𝑞(𝑠) = min

𝑙𝑖 ∈𝑛.𝐿+
𝑞(𝑠, 𝑙𝑖 ) (2)

In MWRP all cells need to be seen. Thus, we calculate the cost of

seeing each unseen cell (in 𝑛.𝑢𝑛𝑠𝑒𝑒𝑛) using Equation 2 and take the

maximum value as a heuristic:

ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 (𝑛) = max

𝑠∈𝑛.𝑢𝑛𝑠𝑒𝑒𝑛
𝑞(𝑠) (3)

As each cell in 𝑛.𝑢𝑛𝑠𝑒𝑒𝑛 needs to be seen, it is easy to see that

ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 is admissible for both SOC and MKSP. We note that
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ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 proposed by S20 is a special case where only one agent

exists. Thus, it omits Equation 2.

6.2 MTSP Heuristic
S20 abstracted the grid into a graph and showed that a TSP solution

on that graph is an admissible heuristic to WRP. We next generalize

this heuristic and use the solution to MTSP [9] (where multiple

traveling agents exist) as an admissible heuristic to MWRP.

Graph Abstraction for the MTSP Heuristic. We say that two cells

in 𝑀 are 𝐿𝑂𝑆-𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 if there is no cell that they both see. We

say that a set of cells 𝑃 is 𝐿𝑂𝑆-𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 if every pair of cells in 𝑃 is

𝐿𝑂𝑆-𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 . For node 𝑛, a Disjoint LOS Graph𝐺𝐷𝐿𝑆 (𝑛) = (𝑉 , 𝐸) is
a weighted, directed graph which is abstracted from the grid.𝐺𝐷𝐿𝑆

is built by first identifying a set of 𝐿𝑂𝑆-𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 cells 𝑃 ⊆ 𝑛.unseen.
Each cell in 𝑃 is called a pivot. There are different methods for

choosing a set of pivots. We suggest one such method below. For

each pivot 𝑝 ∈ 𝑃 , we refer to all cells in 𝐿𝑂𝑆 (𝑝) as watchers of 𝑝 .
Figure 2(a) depicts a problem instance with two agents 𝑎1 and 𝑎2,

which start in the blue cells (𝐿 = {𝑎1, 𝑎2}). Let node 𝑛 = ⟨𝐿, 𝑠𝑒𝑒𝑛⟩
(𝑛 is the root in our case) be the node for which we calculate the

MTSP heuristic. The grey cells can be seen from these start locations

and are in 𝑛.𝑠𝑒𝑒𝑛. Figure 2(b) shows an example of selected pivots

𝑝1, 𝑝2, 𝑝3 (green cells) and their watchers (yellow cells).

In 𝐺𝐷𝐿𝑆 , we create a vertex for each pivot (pivot vertex). We

add an undirected edge between every two pivots 𝑝𝑖 and 𝑝 𝑗 with a

weight of 𝑑 (𝑤𝑖 ,𝑤 𝑗 ) where𝑤𝑖 and𝑤 𝑗 are watchers of 𝑝𝑖 and 𝑝 𝑗 with

the minimal distance between them among all pairs of watchers

of 𝑝𝑖 and 𝑝 𝑗 . Figure 2(c) presents the constructed 𝐺𝐷𝐿𝑆 (the pivot

vertices are colored green). As the shortest path between a watcher

of 𝑝1 and a watcher of 𝑝2 is 4, the cost of the edge between those

vertices in𝐺𝐷𝐿𝑆 is 4. The current locations of the agents𝑛.𝐿 are also

added as vertices to 𝐺𝐷𝐿𝑆 (agent vertices, blue). We add a directed

edge from each agent vertex (located in 𝑙 ) to each pivot vertex with

a cost of 𝑑 (𝑙,𝑤) where𝑤 is a watcher of pivot 𝑝 with the shortest

distance to 𝑙 . In our example, we add a directed edge from 𝑎1 to

𝑝1 with a weight of 2 (the shortest path from the location of 𝑎1 to

a watcher of pivot 𝑝1). Finally, we add a base vertex for all agents

(𝑉 ∗, purple) and undirected edges with cost 0 between 𝑉 ∗ and any

agent vertex. Additionally, we add directed edges with cost 0 from

each pivot vertex to 𝑉 ∗. In MTSP, the agents do not have to start

from the same vertex. We add 𝑉 ∗, as well as the edges related to

𝑉 ∗, mainly for the EB enhancement described below.

ℎ𝑀𝑇𝑆𝑃 uses the optimal solution to theMTSP problem on𝐺𝐷𝐿𝑆 (𝑛)
as an admissible heuristic. An optimal MTSP solution for our ex-

ample is shown in Figure 2(d) where both agents start at 𝑉 ∗: agent
𝑎1 goes to see pivot 𝑝1 and agent 𝑎2 goes to see pivot 𝑝3 and then

pivot 𝑝2 (both return to 𝑉 ∗).

Theorem 1 (Admissibility). The cost of an optimalMTSP solution
for 𝐺𝐷𝐿𝑆 (𝑛) is admissible for 𝑛 in MWRP.

Proof outline. All pivots are 𝐿𝑂𝑆-𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 and they must all

be seen. As in S20, visiting a pivot vertex (in 𝐺𝐷𝐿𝑆 ) corresponds

to the lowest cost of moving and seeing this pivot in MWRP. The

weight of an edge between two vertices in 𝐺𝐷𝐿𝑆 (excluding 𝑉 ∗)
is the shortest distance between some watcher of a pivot and an

agent location (or a watcher of another pivot). So, an optimal MTSP

solution on 𝐺𝐷𝐿𝑆 (𝑛) is a lower bound of a solution for MWRP. It

might underestimate the real solution because only the pivots are

covered by theMTSP. Also, in𝐺𝐷𝐿𝑆 (𝑛), traveling betweenwatchers
of the same pivot costs 0. □

Solving MTSP. We formulated MTSP as a constraint programming
problem, as done by Kivelevitch et al. (2013). We force all agents

to leave 𝑉 ∗ to their start cells. We then used the CPLEX opti-
mizer (https://www.ibm.com/analytics/cplex-optimizer) for solving

it. However, any MTSP solver can be used here.

Choosing Pivots. In this work, for each node 𝑛 we chose the pivots

with the highest farness centrality (FC) [2] as follows: (1) We add

all cells in 𝑛.unseen to a set 𝑆 . (2) We calculate 𝐹𝐶 (𝑠) for each cell

𝑠 ∈ 𝑆 , where 𝐹𝐶 (𝑠) = ∑
𝑠′∈𝑆 𝑑 (𝑠, 𝑠 ′). (3) We add the cell 𝑠 with the

highest farness centrality in 𝑆 to the set of pivots 𝑃 . (4) We remove

from 𝑆 each cell that is not 𝐿𝑂𝑆-𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 with at least one cell in

𝑃 . (5) We go back to step (3) for choosing another pivot. In our

experiments, we limit the maximum number of pivots to six. We

tried other ways of choosing pivots and found this method to be

the most effective. This is reasonable as it chooses pivots that are

far and have a high cost to reach.

6.3 Combining Heuristics
Our two heuristic functions can be considered as a simple heuristic

(ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛) and a complex heuristic (ℎ𝑀𝑇𝑆𝑃 ). As both are admissi-

ble, they can be admissibly combined. Thus, we also consider two

knownmethods. (1)Max, which calculates both heuristic functions
for each node and takes their maximum as a heuristic. (2) Lazy
A* [17], which first calculates ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 (𝑛) for each node and in-

serts 𝑛 to Open. Then, when 𝑛 is extracted from Open, it calculates
ℎ𝑀𝑇𝑆𝑃 (𝑛) and inserts 𝑛 back to Open with its new 𝑓 -value. A node

is expanded only if it is extracted from Open and both heuristics

have already been calculated. The benefit of Lazy A* over the stan-

dard Max is that, for many nodes with 𝑓 ≥ 𝐶∗ (𝐶∗ is the cost of
the optimal solution), Lazy A* only calculates the simple heuristic,

while Max must calculate both heuristics for each generated node.

7 EXPANDING BORDER ENHANCEMENT
In the standard expansion, when node 𝑛 is expanded, new nodes are

generated for each combination of move/terminate actions for the

agents. For some of these actions, 𝑠𝑒𝑒𝑛 may not change as no new

information is revealed. We therefore suggest a more advanced

expansion mechanism, called the Expanding Border mechanism

(EB). A pseudo-code for EB is given in Algorithm 2.

In EB, we want to move each agent 𝑎𝑖 to a closest location where

it can see new cells (that are not in 𝑠𝑒𝑒𝑛). Such locations may be

farther than the immediate neighbors of 𝑙𝑖 . As a result, in EB, in

a generated node, different agents may have paths of different

costs. Hence, in EB, for each node 𝑛, we maintain (in 𝑛.𝐿) a pair

⟨𝑙𝑖 , 𝑐𝑖 ⟩ of a location 𝑙𝑖 and cost 𝑐𝑖 — the aggregated cost of the agent

from 𝑠𝑡𝑎𝑟𝑡𝑖 to 𝑙𝑖 . We build the set 𝑁𝐸𝐵𝑖
that includes all location-

cost pairs for agent 𝑎𝑖 that satisfy this as follows. For each non-

terminated agent 𝑎𝑖 ∈ 𝐴+, a breadth-first search (BFS) is executed

from location 𝑙𝑖 . When the BFS encounters a cell 𝑠 whose 𝐿𝑂𝑆 (𝑠)
includes some cell that is not in 𝑛.𝑠𝑒𝑒𝑛, we add ⟨𝑠, 𝑐𝑖 + 𝑑 (𝑙𝑖 , 𝑠)⟩ to
𝑁𝐸𝐵𝑖 and the BFS does not expand 𝑠 . When the BFS halts, 𝑁𝐸𝐵𝑖
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Figure 2: (a-d) MTSP heuristic example. (e-g) Basic Expansion vs. Expanding Border.

Algorithm 2: The EB enhancement

1 EB(Node 𝑛)
2 foreach ⟨𝑙𝑖 , 𝑐𝑖 ⟩ ∈ 𝑛.𝐿 do
3 Init 𝑁EB𝑖 ,Open,Closed
4 if ⟨𝑙𝑖 , 𝑐𝑖 ⟩ ∈ 𝑛.𝐿+ then
5 Insert ⟨𝑙𝑖 , 0⟩ into Open
6 while Open is not empty do
7 ⟨𝑙, 𝑐 ⟩ ← Extract from Open // lowest 𝑐
8 if ∃𝑙 ′ ∈ 𝐿𝑂𝑆 (𝑙) s.t. 𝑙 ′ ∉ 𝑛.𝑠𝑒𝑒𝑛 then
9 𝑁EB𝑖 ← 𝑁EB𝑖 ∪ ⟨𝑙, 𝑐 + 𝑐𝑖 ⟩

10 else
11 foreach 𝑙 ′ ∈ 𝑁 (𝑙) do
12 if 𝑙 ′ ∉ Closed then
13 Insert ⟨𝑙 ′, 𝑐 + 1⟩ into Open

14 Insert 𝑙 into Closed

15 𝑁EB𝑖 ← 𝑁EB𝑖 ∪ {𝑡𝑖 }
16 return {{𝑁1 × · · · × 𝑁𝑚 }\{𝑡1, 𝑡2, . . . , 𝑡𝑚 }}

includes a perimeter of cells (border) around 𝑙𝑖 such that they all

see new cells that are not currently in 𝑠𝑒𝑒𝑛. For non-terminated

agents, we also add a terminate action to 𝑁𝐸𝐵𝑖 . For terminated

agents, we just set 𝑁𝐸𝐵𝑖 = {𝑡𝑖 }. Then, a new node 𝑛′ is generated
for each possible combination of the Cartesian product of pairs in

{{𝑁𝐸𝐵1 × · · · × 𝑁𝐸𝐵𝑚}\{𝑡1, 𝑡2, . . . , 𝑡𝑚}} (again, we do not allow to

terminate all agents).
2

For example, Figure 2(e) presents a problem instance with two

agents located in start cells 𝑎1 and 𝑎2 (denoting agents and cells).

The neighbors of cells 𝑎1 and 𝑎2 are {𝑏} and {𝑐, 𝑑}, respectively. Fig-
ure 2(f,g) shows the basic expansion method and EB for expanding

the root node. Red fonts denote a terminated agent. In EB, a BFS

for each agent is performed to see the white cells, which are not

in 𝑠𝑒𝑒𝑛. For 𝑎1, the BFS halts with (𝑓 , 3) and, for 𝑎2, the BFS halts
with (𝑒, 2). Thus, the root is expanded accordingly. Three nodes are
generated including those where one of the agents is terminated.

Singleton Heuristic. Here, we differentiate the treatment of

SOC from that of MKSP.

For SOC, the 𝑔-costs are 𝑔(𝑛) = ∑
⟨𝑙𝑖 ,𝑐𝑖 ⟩∈𝑛.𝐿 𝑐𝑖 . Recall that we

defined (Equation 1) the cost 𝑞(𝑠, 𝑙𝑖 ) = min𝑤∈𝐿𝑂𝑆 (𝑠) 𝑑 (𝑙𝑖 ,𝑤) of
moving and seeing a given cell 𝑠 from location 𝑙𝑖 . As each of the

agents can be the one selected for seeing cell 𝑠 , the lowest cost for

that purpose is:

𝑞𝐸𝐵 (𝑠) = min

⟨𝑙𝑖 ,𝑐𝑖 ⟩∈𝑛.𝐿+
𝑞(𝑠, 𝑙𝑖 )

2S20 used a different mechanism (JF). That mechanism removes some pivots if they

are on the way to other pivots. This removal is only possible for a single agent.

In MWRP, all cells need to be seen. Thus, we calculate the cost of

seeing each unseen cell using 𝑞𝐸𝐵 (𝑠) and take the maximum value

as a heuristic:

ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐸𝐵 (𝑛) = max

𝑠∈𝑛.𝑢𝑛𝑠𝑒𝑒𝑛
𝑞𝐸𝐵 (𝑠)

Then, for SOC:

𝑓𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐸𝐵 (𝑛) = 𝑔(𝑛) + ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐸𝐵 (𝑛) (4)

For MKSP, we combine all costs directly into the 𝑓 -value as

follows. For each cell 𝑠 , we define

𝑓𝐸𝐵 (𝑠) = min

⟨𝑙𝑖 ,𝑐𝑖 ⟩∈𝑛.𝐿+
𝑞(𝑠, 𝑙𝑖 ) + 𝑐𝑖

The MKSP can also be determined by a terminated agent:

𝑓TER = max

⟨𝑙𝑖 ,𝑐𝑖 ⟩∈𝑛.𝐿−
𝑐𝑖

Then, for MKSP:

𝑓𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐸𝐵 (𝑛) = max( max

𝑠∈𝑛.𝑢𝑛𝑠𝑒𝑒𝑛
𝑓𝐸𝐵 (𝑠), 𝑓TER) (5)

𝑓𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐸𝐵 is equal to the cost of the longest (highest-cost) path

among all paths of either terminated or non-terminated agents.

MTSP Heuristic. To adjust the MTSP heuristic for EB, 𝐺𝐷𝐿𝑆

needs to consider the costs of the agents. Recall that, in𝐺𝐷𝐿𝑆 , there

is an edge with cost 0 between 𝑉 ∗ and each location of an agent.

We split this edge into two directed edges. For each agent 𝑎𝑖 in

location 𝑙𝑖 and cost 𝑐𝑖 , we define a directed edge from 𝑉 ∗ to the

corresponding agent vertex with cost 𝑐𝑖 , and a directed edge from

the agent vertex to 𝑉 ∗ with cost 0. This assures that the cost of

each path (in MTSP) contains the cost of each agent arriving at that

current node. Thus, the cost of the MTSP solution is not the ℎ-value

for 𝑛 but is used as the 𝑓 -value for 𝑛.

Duplicate Detection. Recall that for two nodes 𝑛1 and 𝑛2, with-
out EB, we defined that 𝑛1 can be discarded if three conditions are

satisfied. For MKSP, 𝑔-values are not defined and condition 3 above

(𝑔(𝑛2) ≤ 𝑔(𝑛1)) must be modified. For MKSP, node 𝑛1 can be dis-

carded if 𝑛1 cannot lead to a solution that costs less than a solution

reached from 𝑛2, that is, if max⟨𝑙 𝑗 ,𝑐 𝑗 ⟩∈𝑛2 .𝐿 𝑐 𝑗 ≤ max⟨𝑙𝑖 ,𝑐𝑖 ⟩∈𝑛1 .𝐿 𝑐𝑖

and ∀⟨𝑙𝑖 , 𝑐𝑖 ⟩ ∈ 𝑛1 .𝐿+ ∃⟨𝑙 𝑗 , 𝑐 𝑗 ⟩ ∈ 𝑛2 .𝐿+ s.t. 𝑙𝑖 = 𝑙 𝑗 and 𝑐 𝑗 ≤ 𝑐𝑖 .

Theorem 2 (Optimality). MWRP-A* with EB obtains optimality.

Proof outline. Assume a node𝑛 that represents a set of location-

cost pairs for the agents that is part of the optimal solution to the

problem. When node 𝑛 is expanded, at least one of the agents must

arrive at the closest location that sees new unseen cells. In EB,

we consider the shortest path for each agent that leads to such a

location. As we consider all possible combinations for such agent
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Figure 3: 11 × 11, 13 × 13 grids and 19 × 19 grid maps

Figure 4: Success rate: 11 × 11 grid (Figure 3(a)) for MKSP

movements, one of the newly generated nodes 𝑛′ also represents
a set of location-cost pairs for the agents that is part of the opti-

mal solution. As the initial set of such pairs belongs to the optimal

solution, inductively, the optimal solution must be reached.

□

8 EXPERIMENTAL RESULTS
We experimented with all our variants on a large number of test

domains for both MKSP and SOC. Here, we report representative

results (sometimes only for one cost function) that demonstrate

the major trends that were also seen across the other non-reported

experiments. Experiments were implemented in Python 3.8 and

executed on an AMD EPYC 7702P 2.00GHz. MTSP was solved by

CPLEX V:20.1.0.1.

8.1 Comparing Solvers
We first evaluate the following variants of MWRP-A* for minimiz-

ing MKSP, with and without EB: (1) Standard breadth-first search

with no heuristic (denoted by BFS). (2)MWRP-A* with ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛
(Singleton). (3) MWRP-A* with ℎ𝑀𝑇𝑆𝑃 (MTSP). (4) The maximum

between both heuristics (Max). (5) Lazy A* that first calculates

ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 and, if needed, also calculates ℎ𝑀𝑇𝑆𝑃 (Lazy A*). In our

figures, we use "+EB" to denote the activation of EB.

We experimented on 100 problem instances for 2–6 agents whose

start cells were randomly allocated on the 11 × 11 map presented

in Figure 3(a), taken from S20.
Figure 4 shows the success rate (𝑦-axis) under a time limit of

5 minutes for different numbers of agents (𝑥-axis) for MKSP. As

expected, for all solvers, increasing the number of agents decreases

#Agents Solved h (+EB)

MKSP SOC

Cost Exp. Time Cost Exp. Time

2 94%

Singleton

30.1

6,901 38.6

52.9

21,714 47.4

MTSP 108 16.1 387 6.6

Max 101 15.5 365 6.8

Lazy A* 101 10.2 366 5.5

3 74%

Singleton

19.1

2,124 26.9

43.6

23,731 55.3

MTSP 51 20.3 432 9.8

Max 41 19.1 368 9.9

Lazy A* 41 3.9 368 6.7

4 66%

Singleton

14.9

790 26.2

36.1

17,646 57.7

MTSP 94 50.9 632 19.7

Max 34 35.6 457 18.0

Lazy A* 34 2.1 457 9.5

5 61%

Singleton

12.2

493 23.4

30.5

11,009 59.4

MTSP 73 48.0 334 16.7

Max 14 26.8 234 16.8

Lazy A* 14 3.0 233 7.4

6 47%

Singleton

10.1

299 17.8

23.7

3,664 60.5

MTSP 99 52.9 114 12.6

Max 15 34.0 73 12.5

Lazy A* 18 3.0 73 6.8

Table 1: Results on the 11 × 11 grid for MKSP and SOC

the success rate. Not using any heuristic (BFS), even with EB, per-

formed poorly and the success rate dropped close to 0 already at

3 agents. Clearly, EB increased the success rate. In fact, without

EB the success rate of all variants dropped to 60% or below at 6

agents, while all the EB variants were still above 65%. MTSP tends

to outperform Singleton for a small number of agents but Singleton

is better for more agents (the cross points are marked in the figure)

due to the large overhead of calculating MTSP for many agents.

Max had a better success rate than both heuristics alone, and Lazy

A* was always the best. In fact, the success rate for Lazy A*+EB was

very close to 100%. We also experimented with minimizing SOC on

the same map, and similar trends were observed.

Table 1 presents the results, only for our solvers with EB and

excluding BFS, for 2–6 agents (1st column). The percentage of

instances that were solved by all solvers (MKSP and SOC) are pre-

sented in column 2. For these instances, we measured the average

cost, #expansions, and time (in sec). For each heuristic (column 3),

columns 4–6 present results for MKSP and columns 7–9 for SOC.

Naturally, the average cost for SOC is higher than that of MKSP

because in SOC we sum up the costs of all paths while in MKSP

the cost is determined by the longest path. As a result, the number

of valid optimal solutions for MKSP is larger than that of SOC, i.e.,

in MKSP, the agents that do not have the longest path can have

paths of different lengths. Consequently, all solvers performed more

expansions in SOC than in MKSP. For minimizing MKSP, MTSP

consumed larger runtime as the number of agents increased (due

to its exponential overhead), while Singleton consumed shorter

runtime as the number of agents increased. Hence, for more than

4 agents, Singleton outperforms MTSP, in terms of runtime. By

contrast, for minimizing SOC, MTSP always outperforms Singleton.

There are two reasons for this: (1) Singleton is less accurate when

minimizing SOC, as it only estimates the cost of a single path. (2)
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Figure 5: Increasing #agents on the various grids

Figure 6: Comparison of SS, RS, and PS on the 11 × 11 grid

As shown by Kivelevitch et al. (2013), it is computationally harder

for MTSP solvers that use constraint programming to minimize

MKSP than minimizing SOC. Again, Lazy A* performed best. In

general, there is a trade-off between the branching factor and the

depth of the solution. More agents increases the branching factor

but decreases the solution depth. We have experimented with other

maps and while also varying the densities of obstacles and the same

trends were observed.

To summarize, the best balance between simplicity and efficiency

is achieved by Singleton, which is easy to implement and achieves

a reasonable success rate. Lazy A* achieved the best performance,

but is harder to implement. Next, as we consider other research

questions, we only continue with our best solver, Lazy A*.

8.2 Varying the Number of Agents
Sometimes one can choose how many agents to employ. The aim is

to minimize the number of agents while keeping the solution cost

relatively low. We tested how the cost changes when the number of

agents increases. Figure 5 shows the cost of the paths for MKSP (top)

and SOC (bottom) for all maps of Figure 3. Adding more agents has

a diminishing return in terms of the cost. Future work can explore

the effect of additional features of the domain on the cost returned.

8.3 Analyzing Different Start Locations
In some cases, the locations from which the agents start their paths

can be determined in advance. Thus, we evaluated on the grid of

Figure 3(a) three policies for selecting the start locations: (1) Single

Figure 7: Cost of SS, on the 11 × 11 grid

start (SS), in which all agents start at the same location. (2) Random
starts (RS), where every agent is randomly placed (as done in the

experiments so far). (3) Pivots starts (PS), where the agents start by
the method in which we select the locations of the pivots (as defined

above). For SS, all 72 possible locations for placing all agents on the

grid were tested. For RS, 100 random sets of start locations were

tested (same instances as in previous experiments on Figure 3(a)).

For PS, a single set of start locations was tested. Only our best

solver Lazy A* was considered and it solved more than 86% of the

instances (5 minutes time limit) for each number of agents (2–6),

for both MKSP and SOC.

For the solved instances, Figure 6 presents the average solution

cost (top) and the average time (bottom). Finding SOC solutions

consumed more time than MKSP, and solving SS instances con-

sumed more time than solving RS instances which itself consumed

more time than solving the PS instance. Moreover, the cost of SOC

is higher than the cost of MKSP, and the cost of SS is higher than

the cost of RS, which is higher than PS. While RS and PS scatter

the agents across the map, SS forces them to share a start location.

Thus, in SS, the paths of the agents are longer. We also compared

the lowest cost solution found by each policy for both MKSP and

SOC (instead of average). Here also, PS was always the best, then RS

and then SS. Thus, for obtaining a solution of low cost, we suggest

using PS. It is for future work to suggest additional policies for

selecting start locations for the agents.

Experiments with SS. In some cases, all agents must start at the same

location, e.g., at a charging area. To understand which locations are

better for SS, we iterated over all 72 locations and placed 4 agents in

the same location. Figure 7 (left) shows the cost for these instances

in increasing order for MKSP and SOC. The difference between the

best and worst cases is ≈ 20% for SOC and ≈ 30% for MKSP. In order

to save this margin, one might decide to find the best location to

start. Figure 7 (right) shows the locations of these instances colored

according to their costs. Between two neighboring cells, the cost

can change (at most) by𝑚 for SOC and by 1 for MKSP. However, in

SOC, cells are highly correlated with their neighbors. For example,

all three optimal locations are adjacent to each other. For MKSP, this

correlation is less evident and colors are more scattered. Naturally,

cells in the center achieved lower costs than cells on the border.
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Figure 8: Varying obstacle percentage: 13 × 13 grid for Circu-
lar MWRP and (non-circular) MWRP solutions, for SOC.

Figure 9: Varying obstacle percentage: 13 × 13 grid for Circu-
lar MWRP and (non-circular) MWRP solutions, for MKSP.

This is unfortunate since, for example, in buildings, natural start

locations (doors) are on the border. By contrast, elevators tend to

be more at the center of the floor.

8.4 Circular Variants of MWRP
As mentioned, we focused on a variant of MWRP in which the

agents can finish their paths in any location. However, in some

realistic cases the agents must return to their corresponding start

locations and circular paths should be returned. Therefore, we

explain how to find optimal circular paths, and compare the two

variants of the problem, namely, circular and non-circular MWRP.

Above, we modeled MWRP as a search problem. To model Circular-

MWRP as a search problem, two definitions are modified, as follows.

Goal Node. In MWRP, a goal node is determined when all cells

are seen. In Circular-MWRP, a node is goal iff all cells are seen and

also all agents are at their start cells.

Successor Function. In MWRP, each agent can either move to a

neighboring cell or perform a terminate action. In Circular-MWRP,

each agent can either move to a neighboring cell or return to its

start cell (via the shortest path from its current cell) and terminate.

Naturally, an optimal circular solution always has a higher cost

than an optimal non-circular solution.
3
Given a non-circular solu-

tion, each agent can return to its start cell through the same path

it performed. Thus, in the worst case, an optimal circular solution

costs twice than an optimal non-circular one. Nevertheless, we are

interested to explore the differences between the costs of optimal

solutions to the two problems. For this we do not have to modify

our heuristics but can use them as is because they are also admissi-

ble heuristics for the circular variant of the problem. Future work

can improve our heuristics for other variants as well.

To examine the effect of varying the number of obstacles on our

solvers, we performed a similar experiment on the 13 × 13 grid

3
Note that deleting the last edge of an optimal circular path results in a non-circular

path, but not necessarily in an optimal one.

#Agents Circular MWRP MWRP Ratio

1 98.3 71.4 1.38

2 88.6 55.7 1.59

3 82.0 48.4 1.69

4 73.5 40.7 1.81

Table 2: Varying #agents: 13×13 grid for CircularMWRP and
(non-circular) MWRP solutions, for minimizing SOC.

#Agents Circular MWRP MWRP Ratio

1 98.3 71.4 1.38

2 58.0 34.6 1.67

3 38.3 22.4 1.71

4 30.0 16.9 1.78

Table 3: Varying #agents: 13×13 grid for CircularMWRP and
(non-circular) MWRP solutions, for minimizing MKSP.

map as done by S20 for a single agent. Iteratively, we randomly

removed two obstacles from the grid, resulting in a new grid with

fewer obstacles. For each such percentage of obstacles, we created

50 instances of three randomly placed agents and measured the

average cost of circular and non-circular solutions. Figures 8 and 9

show the result of this experiment for minimizing SOC and MKSP,

respectively. As expected, the cost of circular solutions was no more

than twice the cost of non-circular solutions. Also, increasing the

number of obstacles increases the difference between the cost of

the two solutions. When more obstacles exist, some agents must

reach farther cells which also increases the cost of their return.

We also experimented on the full 13 × 13 grid while varying the

number of agents (1–4). The results are shown in Tables 2 and 3

for SOC and MKSP, respectively. Here, we also present the ratio

between the cost of both solutions. Interestingly, as the number of

agents increases, the ratio gets closer to two, i.e., the circular solu-

tion worsens compared to the non-circular one. When more agents

exist, in MWRP, some agents can be sent directly to distant loca-

tions and terminate there. With fewer agents, in both standard- and

Circular-MWRP solutions, each agent will have to move around the

map to see a relatively large number of locations and the difference

between the costs of the two versions will not be large.

9 CONCLUSIONS AND FUTUREWORK
We generalized WRP for multiple agents (MWRP). We suggested

two heuristics for MWRP: ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 and ℎ𝑀𝑇𝑆𝑃 . We proposed EB,

which enhances the search. Our experiments show that Lazy A*,

which combines both heuristics, performs best. We also observed

that selecting the pivots locations for start cells is the best pol-

icy in terms of cost. Future work can (1) propose other heuristics

for MWRP. (2) Develop decoupled approaches for solving MWRP,

which search for paths for each agent separately. (3) Suggest addi-

tional policies for selecting locations for the agents. (4) Consider

the case of avoiding collisions between agents.
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