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ABSTRACT
We propose a distributed planning method with asynchronous ex-
ecution for multi-agent pickup and delivery (MAPD) problems for
environments with occasional delays in agents’ activities and flex-
ible endpoints. MAPD is a crucial problem framework with many
applications; however, most existing studies assume ideal agent
behaviors and environments, such as a fixed speed of agents, syn-
chronizedmovements, and awell-designed environmentwithmany
short detours for multiple agents to perform tasks easily. However,
such an environment is often infeasible; for example, the moving
speed of agents may be affected by weather and floor conditions
and is often prone to delays. The proposed method can relax some
infeasible conditions to apply MAPD in more realistic environ-
ments by allowing fluctuated speed in agents’ actions and flexible
working locations (endpoints). Our experiments showed that our
method enables agents to perform MAPD in such an environment
efficiently, compared to the baselinemethods.We also analyzed the
behaviors of agents using our method and discuss the limitations.
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1 INTRODUCTION
Multi-agent path-finding (MAPF), in which multiple agents move
to their destinations by avoiding collisions, is an important ab-
stract problem that arises in many applications, such as robotics
and games [8, 18, 21]. For example, in an automated warehouse,
the robots (carrier agents) move to the pickup locations, load ma-
terials, and deliver them to their respective unloading locations,
by repeatedly assigning new tasks to agents consecutively. This
type of application in which MAPF problems are iteratively solved
is formulated as a multi-agent pickup-and-delivery (MAPD) prob-
lem [13]. Therefore, the objective of MAPD is that agents repeat-
edly move to their respective task endpoints, which are pickup and
delivery locations [13], without collisions.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

However, complex and restrictive environments may reduce ef-
ficiency and hence increase the chances of collisions. Furthermore,
uncertainties often exist in practice. For example, The occasional
delays in the movements of some agents will affect the plans of
others. Consequently, many agents cannot move according to their
plans as previously determined. In such a case, these agents have
to replan their paths to avoid collisions. However, replanning re-
quires considerable computational cost with an increasing number
of agents when using centralized methods or when assuming syn-
chronized movement with decentralized control. Meanwhile, we
envisioned an application for robotic material transfer in a con-
struction site and a disaster area and such uncertainty is not pre-
ventable. Thus, we focused on a distributed planning-and-executing
methodwherein agents generate their plans individually andmove
to their destinations interacting onlywith the local agents involved
to address the negative effects of delays and resource conflicts. Al-
though distributed planning for MAPD has some issues to be ad-
dressed, such as completeness and avoidance of live-/dead-lock, we
think that a distributed planning method is preferable because of
their desirable characteristics, such as robustness, scalability, and
reconfigurability [30].

Although there are several studies on planning and execution in
MAPF and MAPD, most studies assumed grid-like environments,
such as an automated warehouse wherein (1) there are many end-
points more than agents and (2) the agents move at a constant
speed andmove synchronously [13]. Moreover, these conventional
methods require a well-formed infrastructure conditions (WFI con-
ditions) [25]. For example, in the holding task endpoint (HTE) [13],
any path connecting a pair of endpoints does not traverse any
other endpoints. These types of requirements can be easily sat-
isfied in a simple grid-like environment, but are not feasible in our
target applications. For example, at a construction site, heavy-duty
robots transport heavy building materials weighing 500 kg and
above between storage locations, specific work locations, and/or
elevators that carry them to other floors, during the night for the
next day’s work; the number of these endpoints (i.e., storage and
working locations) is not large. Therefore, several agents are likely
to move to a few specific endpoints as their destinations simulta-
neously, but should not collide with each other. Furthermore, (1)
owing to a variety of working locations, theWFI conditions cannot
necessarily be met, and (2) agents cannot often move at a constant
speed because of various reasons, such as temperature, humidity,
wet floor, slopes/small steps, and sensor errors.

Our contribution is twofold. First, we introduced a problem of
MAPD with fluctuated movement speed (MAPDFS), which is an ab-
straction of our target application that involves material trans-
port tasks by multiple robots at a construction site, considering
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the characteristics discussed above, such as a smaller number of
endpoints, and uncertainty in agent’s movement speed.

Second, we presented a novel distributed planningwith an asyn-
chronous execution method for MAPD problems. Its features are
low-cost planning without considering the plans of other agents
and the adjacent movements of multiple agents, based on possi-
ble conflict detection in an environment described by the graph
consisting of several bi-connected components with small tree-
structured areas. We introduced into MAPD two types of agents:
carrier agents, simply called agents, that carrymaterials while plan-
ning paths with ignoring other agents, and node agents that man-
age the corresponding nodes in the graph and detect the possi-
bility of conflicts by communicating only with the neighboring
nodes. After a carrier agent plans a path, it communicates with the
node agent managing the current node, and then the node agent
requests the next node agent to reserve the node. Depending on the
response, the current node agent suggests to the carrier agent that
it can move to the next node, should move to another node (i.e.,
taking a detour) or should wait for a while at the current node.
Then, it moves/waits asynchronously without considering other
agents. Moreover, when it moves to another node that is not in the
current plan, it replans another path, ignoring other agents.

The basic idea behind the ignorance of other agents is the fact
that detailed planning with rigorous execution will easily become
unavailable in a real environment that may have uncertainty. Con-
versely, to reduce collisions, we introduced the orientation to the
environment such that its main area can be observed as a strongly
connected graph. Subsequently, the direct edges are used to navi-
gate the agents based on the directions and eliminate head-on col-
lisions and dead-/livelock, such as a roundabout. This may force
agents to take detours; however, it simplifies the independent plan-
ning process, makes it easier to detect potential collisions, allows
agents to delay/stop moving, and relaxes the WFI conditions with
a small number of endpoints. These features are indispensable in
real-world applications.We then experimentally evaluated the per-
formance of the proposed method by comparing it with two base-
line methods, rolling-horizon collision resolution (RHCR) [9] and
HTE [13]. We found that our proposed method outperformed the
baseline methods in the environment that meets the conditions
they require. We also showed that agents with our method can
complete all tasks without collisions, despite occasional delays in
agent speed and flexibility in locating the endpoints.

2 RELATEDWORK
Although finding (makespan/sum-of-cost)-minimal solution with
collision-free paths is a basic requirement for MAPF/MAPD, it is
known as an NP-hard problem [20, 31], which involves high com-
putational costs. Therefore, several studies attempted to find sub-
optional solutions by relaxing problems [2, 3, 6].

MAPF is often integrated into MAPD by iterating path-finding
using centralized planners [4, 7, 10, 16]. For example, Nguyen et
al. [16] solved task assignment and path-finding problems using
answer set programming. Cohen, Uras, and Koenig [4] extended
conflict-based search (CBS) [22] by adding a set of edges with the
user-specified orientation, called highways, that provide collision-
avoidance guidance by eliminating agents travel in the opposite

direction. The highways also contribute to decreasing the runtimes
and solution costs of the MAPF solver for autonomous robots in a
warehouse. However, these centralized planners do not scale be-
cause of high computational and communication costs with an in-
creasing number of agents. Our method can be considered a com-
bination of highways and the distributed planning and execution
because we also oriented edges (algorithmically) in environments
to locally navigate agents.

Other sub-optimal centralized planning methods [9, 23, 27] de-
compose iterative MAPFs into sequential path-planning problems
in which a solver replans all paths at every timestep. Because these
methods have computationally high costs, some studies attempted
to improve scalability. Švancara et al. [23] considered an online
MAPF in which new agent goals may be added dynamically and
disappear at their goals. They then proposed the online indepen-
dence detection algorithm for generating plans to reduce disrup-
tions of existing plans. Li et al. [9] proposed RHCR in which agents
find conflicts that occur in the 𝑤-timestep windows and replan
paths every ℎ timesteps. However, if the environment is dense and
crowded, many paths for other agents have to be checked to gen-
erate a collision-free path, resulting in high computational costs.

The decentralized planning of collision-free paths has also been
studied [12, 13, 17, 27, 29]. For example, Ma et al. [13] proposed
HTE, which is a prioritized path planning method wherein agents
plan their paths consecutively and the new path is required to be
collision-free with existing paths of other agents. The priority in-
heritance with back-tracking (PIBT) [17] focuses on the adjacent
movements of multiple agents based on prioritized planning in a
short time window. These methods require environmental condi-
tions to guarantee the completeness of MAPD instances. HTE re-
quires the WFI condition and PIBT requires that the environment
is a bi-connected graph. Although these environmental conditions
apply to some applications (e.g., MAPD in an automated ware-
house), the environments of other applications (e.g., construction
sites and some logistics sorting centers [26]) cannot satisfy these
conditions. Furthermore, agents are forced to synchronize move-
ments in decentralized approaches such as these and thus cannot
handle fluctuations in moving speed.

Meanwhile, we assumed that distributed approaches are more
suitable in our applications because agents canmove asynchronously
and improve scalability and robustness. However, themethods from
this approach are sometimes incomplete. For example, Wilt and
Botea [28] proposed a spatially distributed planner in which each
controller agent manages a subarea and communicates with the
adjacent controller confirming the transfer of a mobile unit to an-
other subarea. However, thismethod is partially centralized tomake
it complete. Thus, its environmental condition is somewhat in-
flexible, and agents cannot move asynchronously. Miyashita, Ya-
mauchi, and Sugawara [14] proposed a distributed planning that
enables agents to move asynchronously. Their method introduces
two types of agents such as ours, carrier agents, which carry mate-
rials, and node agents, which manage the resource conflicts. How-
ever, their method is significantly complicated to implement. Our
method takes a similar approach but is much simpler and low-cost,
and agents can move effectively even in a crowded area.
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3 PROBLEM FORMULATION
3.1 MAPD
In the MAPD problem, carrier agents, or simply agents load ma-
terials at specified locations, carry them to specified destinations,
and unload them. Let 𝐼 = {1, · · · , 𝑛} be the set of agents and T =
{𝜏1, · · · , 𝜏 | T | } be a set of tasks that should be completed by the
agents. An environment is described by a connected graph 𝐺 =
(𝑉 , 𝐸) that can be embedded into a two-dimensional space, where
𝑉 = {𝑣1, · · · , 𝑣 |𝑉 | } is a set of nodes corresponding to locations
and 𝐸 is a set of edges corresponding to connections between two
neighboring nodes. Our graph is constituted at a combination of
indirect and direct edges, and hence the edge connecting 𝑣 𝑗 and
𝑣𝑘 is denoted as either (𝑣 𝑗 , 𝑣𝑘 ) ∈ 𝐸 for the indirect edge or (𝑣 𝑗 �
𝑣𝑘 ) ∈ 𝐸 for the direct edge. Therefore, (𝑣 𝑗 � 𝑣𝑘 ) indicates the path
through which agents can move only from 𝑣 𝑗 to 𝑣𝑘 , while agents
can move to both directions between 𝑣 𝑗 and 𝑣𝑘 on (𝑣 𝑗 , 𝑣𝑘 ). Note
that we assume that agent 𝑖 cannot stop on an edge. Two agents
collide only when they exist on a single node or traverse the same
edge in opposite directions; this implies that a collision does not
occur on the direct edge.

Task 𝜏𝑘 ∈ T is specified by a tuple 𝜏𝑘 = (𝑣𝑙
𝑘
, 𝑣𝑢
𝑘
, 𝜇𝑘 ), where

𝜇𝑘 is the material to carry, 𝑣𝑙
𝑘
is the pickup node where to load

𝜇𝑘 , and 𝑣𝑢𝑘 is the destination node where to unload 𝜇𝑘 . The nodes
where agents load and unload materials are called task endpoints.
We introduce discrete time 𝑡 ≥ 0, whose unit is timestep. When
agent 𝑖 ∈ 𝐼 is allocated task 𝜏𝑘 ∈ T at time 𝑡 , it individually plans
to generate a path from node 𝑣𝑖c (𝑡) to 𝑣𝑙𝑘 to load 𝜇𝑘 and a path from
𝑣𝑙
𝑘
to 𝑣𝑢

𝑘
to unload it, where 𝑣𝑖c (𝑡) is the node on which 𝑖 is at 𝑡 .

Then, 𝑖 moves to 𝑣𝑙
𝑘
and 𝑣𝑢

𝑘
along the paths and load/unload 𝜇𝑘 . If

a collision is possible, 𝑖 has to modify the path to avoid it.
Initially (𝑡 = 0), agent 𝑖 starts from its own parking node, 𝑣pk𝑖

(= 𝑣𝑖c (0)), and then begins to execute the given tasks in T with
other agents. An agent can move to one of neighboring nodes in
𝑇mv timesteps if possible, but may need longer time𝑇lu (≥ 𝑇mv ) for
loading/unloading. It can also wait at a node for any timesteps. We
may assume fluctuations in the agent’s speed; that is, it occasion-
ally takes longer than 𝑇mv to move to a neighboring node. When
𝑖 has completed the current task, one element in T is allocated to
it. When T = ∅, 𝑖 returns to its parking node. We define that an
endpoint is a task endpoint or a parking node.

3.2 Required Environmental Conditions
Weassume our environment𝐺 = (𝑉 , 𝐸) consists of some bi-connected
components with small trees. We define it more formally. Let𝐺 be
a undirected graph and𝐺 ′ = (𝑉 ′, 𝐸′) be a subgraph of𝐺 associated
with 𝑉 ′ ⊂ 𝑉 , that is, (𝑣1, 𝑣2) ∈ 𝐸′ iff 𝑣1, 𝑣2 ∈ 𝑉 ′ and (𝑣1, 𝑣2) ∈ 𝐸.

Definition 3.1. (Bi-connected component)
(a) 𝐺 ′ is a bi-connected subgraph of 𝐺 iff, for ∀𝑣1, 𝑣2 ∈ 𝑉 ′, 𝐺 ′

contains a cycle connected 𝑣1 and 𝑣2.
(b) Bi-connected subgraph 𝐺 ′ of 𝐺 is maximal if �𝑣 ∈ 𝑉 \ 𝑉 ′

s.t. the subgraph of 𝐺 associated with 𝑉 ′ ∪ {𝑣} is the bi-
connected subgraph.

(c) Amaximal bi-connected subgraph of𝐺 is called a bi-connected
component.

(a) Environment 1 (Env. 1) (b) Environment 2 (Env. 2)

Figure 1: Example environments.

Let 𝐺1, . . . ,𝐺𝐾 be all bi-connected components of 𝐺 . We de-
note 𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘 ). We call 𝐺main = 𝐺1 ∪ · · · ∪ 𝐺𝐾 the main
area of 𝐺 , where we define the union of graphs as 𝐺𝑘 ∪ 𝐺𝑘 ′ =
(𝑉𝑘 ∪𝑉𝑘 ′ , 𝐸𝑘 ∪ 𝐸𝑘 ′ ). We assume that our environment𝐺 holds the
following structural (SC) and agent (AC) conditions:
SC1. 𝐺main is a connected graph.
SC2. For ∀𝑣 ∈ 𝑉 \ 𝑉main, 𝑣 is a node in one of 𝐿 tree-structured

subgraphs of 𝐺 , 𝐺1
tree, . . . ,𝐺

𝐿
tree , and for 1 ≤ 𝑘 ≤ 𝐿, 𝐺𝑘tree ∩

𝐺main is a singleton whose element is the root node of𝐺𝑘tree .
SC3. Parking nodes are end nodes in tree-structured subgraphs

that have no task endpoints.
AC1. Agents are at least two fewer than the nodes in the main

area, |𝐼 | ≤ |𝐺main | − 2, but we suggest that agents be fewer
than half of |𝐺main | for efficiency. This topic will be dis-
cussed later.

We denote the set of all root nodes as𝐺root = (𝐺1
tree ∪ · · ·∪𝐺𝐿tree) ∩

𝐺main. By definingmarginal zone as𝐺mar = 𝐺1
tree∪· · ·∪𝐺𝐿tree\𝐺root ,

𝐺 = 𝐺main∪𝐺mar is evidently a disjoint union. Then, the following
proposition is true.

Proposition 1. Suppose that𝐺main = 𝐺1 ∪ · · · ∪𝐺𝐾 is a connected
graph and 𝐺𝑘 is the bi-connected component. If 𝑉𝑘 ∩ 𝑉𝑘 ′ ≠ ∅, the
𝑉𝑘 ∩𝑉𝑘 ′ is a singleton.

Proof. If𝑉𝑘 ∩𝑉𝑘 ′ has two nodes,𝑉𝑘 ∪𝑉𝑘 ′ is bi-connected; thus,
𝑉𝑘 and 𝑉𝑘 ′ are not bi-connected components, and this is a contra-
diction(the detailed proof is provided in our report [15]). □

We can set a task endpoint to any nodes in 𝐺 subject to Con-
dition SC3 If an agent loads/unloads a material on the nodes in
the main area, the movement of other agents may temporarily im-
peded. However, because working places are possible anywhere
on a construction site, we believe that it is inevitable and agents
should carry the required materials to such places.

The example of our environment is shown in Fig. 1, where (forty)
green dots are parking nodes for individual agents and blue dots
are task endpoints (i.e., loading and unloading locations). Another
example is shown in Fig. 2; Fig. 2a shows the environment, and
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(a) Graph structure. (b) Main area.

Figure 2: Example environment.

(a) Graph (b) Main area is disconnected.

Figure 3: Graph that does not hold the conditions.

Fig. 2b is its main area. Fig. 3 shows the graph that does not meet
our conditions: actually, the main area is not connected (Fig. 3b),
and some nodes in 𝐺mar are not nodes in trees.

4 PROPOSED METHOD
One feature of the proposed algorithm is simple planning by ig-
noring the other agents’ current plans. Instead, for ∀𝑣 ∈ 𝑉main, we
introduce the node agent, which manages the resource of 𝑣 and de-
tects the possibility of conflict, that is, collisions between agents.
While a (carrier) agent communicates only with the current node
agent that manages the resource of the current node, a node agent
communicates with the neighboring node agents and checks the
possibility of movement of the agent on itself. The node agent is
also represented hereinafter by 𝑣 . A carrier agent generates a path,
which is a sequence of nodes to the destination independently and
asynchronously, and moves to the next node based on the path
while making sure that another agent does not stay at the next
node or move toward it by asking the current node agent.

Note that node agents are not necessarily located on the corre-
sponding nodes because they only manage the reservation of the
corresponding nodes. Thus, they can run on a single machine, on
different servers in a cloud, or on intelligent sensors near the loca-
tions. The only requirement is that the node agent should be able
to communicate with the node agents that manage the neighbor-
ing nodes and with the carrier agent that is currently reserving the
node.

4.1 Orienting Graphs with Reachability
Our basic idea is to introduce a strong orientation in the main area
to prevent crossing the same edge, particularly moving in opposite
directions along a long straight path consisting of multiple edges.
This may result in detours, but conversely allows consistent struc-
tural direction for the flows of movements. Thus, agents can avoid
collisions with only local information and resource allocation, ad-
dress travel delays, or sudden stops in an opportunistic manner.
This also eliminates the need for costly planning considering other
agents’ paths and negotiation to avoid collisions.

Figure 4: Example of orienting graphs.

First, we introduce the basic concepts related to graph theory.

Definition 4.1. A directed graph is a strongly connected iff any
pair of nodes has paths in both directions between them.

Definition 4.2. An edge in an undirected connected graph is called
a bridge iff the graph is not connected anymore if it is eliminated.

Evidently, our main area 𝐺main, is bridgeless (or 2-edge con-
nected) and connected. Then, the following theorem is known as
the one-way street theorem [19].

Theorem 4.3. A bridgeless connected undirected graph can be
made into a strongly connected graph by consistently orienting (and
vice versa).

Several efficient algorithms (linear and log |𝐸 |) to orient a bridge-
less connected undirected graph to make it strongly connected
have been proposed [1, 5, 24]. We orient 𝐺main using one of these
algorithms. Note that edges in𝐺mar remain undirected, whichmeans
bi-directional edges that an agent travels in both directions. An ex-
ample of the oriented environment of Fig. 2a is shown in Fig. 4.

4.2 Behavior of Carrier Agents
We assume that the environment 𝐺 has already been oriented, as
described in the previous section. When task 𝜏𝑘 = (𝑣𝑘𝑝 , 𝑣𝑘𝑑 , 𝜇

𝑘 ), is
allocated to carrier agent 𝑖 , 𝑖 will move to its load location 𝑣𝑘𝑝 , and
to its unload location 𝑣𝑘

𝑑
. Therefore, 𝑖 sets the destination node,

𝑣dst ∈ 𝑉 , to 𝑣𝑘𝑝 or 𝑣𝑘
𝑑
in 𝜏𝑘 , depending on the phase of the task

progress and then generates the shortest path 𝑝𝑖 (or appropriate
path from another perspective) from the current node 𝑣𝑖c , to 𝑣dst ,
using a conventional method (e.g., 𝐴∗-search) in the (partly) di-
rected graph 𝐺 . Herein, we define a path 𝑝 from node 𝑣 to node
𝑣 ′ as the sequence of nodes 𝑝 = (𝑣𝑝0 , 𝑣

𝑝
1 , . . . 𝑣

𝑝
|𝑝 | ), where 𝑣

𝑝
0 = 𝑣

and 𝑣
𝑝
𝑘
= 𝑣 ′ and 𝑣

𝑝
𝑘−1 and 𝑣

𝑝
𝑘
are connected by edge (𝑣𝑝

𝑘−1, 𝑣
𝑝
𝑘
) or

(𝑣𝑝
𝑘−1 � 𝑣

𝑝
𝑘
). Note that, unlike other methods for MAPD, we can

generate a path by ignoring time information, that is, when agents
arrive and leave nodes. After generating path 𝑝𝑖 , 𝑖 attemptsmoving
to 𝑣dst in line with 𝑝𝑖 .

We denote the current node of agent 𝑖 at 𝑡 by 𝑣𝑖c (𝑡). Agent 𝑖 has
the facilitator node agent (or simply, facilitator), 𝑣𝑖Fcl (𝑡) ∈ 𝑉main,
which is identical to the current node 𝑣𝑖Fcl (𝑡) = 𝑣𝑖c (𝑡) if 𝑣𝑖c (𝑡) ∈
𝑉main, and if 𝑖 is in a tree (i.e., 𝑣𝑖c (𝑡) ∈ 𝐺𝑘tree), its facilitator node
is set to the root node, 𝑣𝑖Fcl (𝑡) ∈ 𝐺𝑘tree ∩ 𝐺main. If 𝑣𝑖c (𝑡) and the
next node 𝑣𝑖next ∈ 𝑝𝑖 are not in 𝑉main, 𝑖 moves to 𝑣𝑖next without
confirmation. Otherwise (i.e., if 𝑣𝑖c (𝑡) ∈ 𝑉main or 𝑣𝑖next ∈ 𝑉main),
before 𝑖 at 𝑣𝑖c (𝑡) moves to next node 𝑣𝑖next ∈ 𝑝𝑖 , 𝑖 sends a request
message to node agent 𝑣𝑖Fcl with 𝑝𝑖 to reserve 𝑣𝑖next . Then, it will
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Wait

Agent.1

Agent.2

(a) Wait (b) Wait (c) Detour

Next

Detour

Next

Agent.1Wait

Next

Agent.1

Figure 5: Example of the denial message with SOM.

receive its reply from 𝑣𝑖Fcl . If it is an acceptance message, 𝑖 leaves
the current node for 𝑣𝑖next at 𝑡 + 1 and releases the reservation for
𝑣𝑖c (𝑡). Note that it may take some time 𝑇mv ≥ 1 to reach 𝑣𝑖next ;
however, we assume that 𝑣𝑖c (𝑡 + 1) = 𝑣𝑖next until 𝑖 leaves there. It
also means that their activities are asynchronous if 𝑇mv > 1; that
is, when an agent starts leaving the current node, other agents may
already be in the middle of edges. After 𝑖 reaches the next node, 𝑖
attempts to reserve the next node 𝑣𝑖next based on plan 𝑝𝑖 .

Meanwhile, if 𝑖 receives a denial message from node agent 𝑣𝑖Fcl
for reserving 𝑣𝑖next , the message contains the suggestion of move-
ment (SOM), wait (i.e., waiting for a while) or detour with an-
other next node in 𝑉main (i.e., taking a detour) which neighbors
𝑣𝑖c (𝑡). When the SOM is detour, 𝑖 leaves for the specified next
node and generates another (shortest) path 𝑝𝑖 from that node to
the destination using a conventional algorithm without consider-
ing the planned paths of other agents. Note that it is probable that
the generated new path contains 𝑣𝑖next that was denied; however,
all edges in𝐺main are directed, thus 𝑖 should take a detour to return
to 𝑣𝑖next , therefore, its surrounding situation becomes different.

4.3 Node Agent Behavior for Conflict Detection
Node agent 𝑣 ∈ 𝑉main manages the reservation of the correspond-
ing node 𝑣 for the staying (carrier) agent 𝑖 at 𝑣 as the facilitator.
It confirms whether 𝑖 can move to the next node by communicat-
ing with the neighboring node to determine the possibility of a
collision. This implies that more than two agents 𝑖, 𝑗 ∈ 𝐼 attempt
to reserve the same node simultaneously, but we assume that the
node agent reads them from its message queue one by one.

When node agent 𝑣 receives a requestmessage tomove to neigh-
boring node 𝑣𝑖next ∈ 𝑉main from agent 𝑖 on 𝑣 = 𝑣𝑖c (𝑡), 𝑣 asks the va-
cancy to node agent 𝑣𝑖next by sending a reservationmessage. If 𝑣𝑖next
is reserved by no other agent at 𝑡 +1, 𝑣𝑖next reserves its resource for
𝑖 and 𝑣𝑖next sends the acceptance message 𝑣 and it is forwarded to
𝑖 . If 𝑣𝑖next is already reserved at 𝑡 + 1 or another agent 𝑗 on 𝑣𝑖next is
not decided to move to 𝑣

𝑗
next at 𝑡 + 1, facilitator 𝑣 forwards a de-

nial message from 𝑣𝑖next to 𝑖 with the possible action label, which
is among the following SOMs:

Wait: Node agent 𝑣 suggests for 𝑖 to extend the current stay
until 𝑡 + 1 (thus the extension is not necessarily 𝑇mv ). This
is always possible because 𝑣 accepts the reservation request
from another agent only after 𝑖 has reserved the next node.

Detour: Suppose that 𝑣 has multiple outward-direct edges.
𝑣 sends the reservation message to the neighboring node,
consecutively, except 𝑣𝑖next , and if one of them 𝑣𝑖next accepts

it, 𝑣 sends the denial message with detour and the reserved
node 𝑣𝑖next for 𝑖 .

Node agent 𝑣 should select which SOM, wait or detour, de-
pending on the situation. Both SOMs have their pros and cons;
the wait SOM may block other agents, whereas the detour SOM
may force 𝑖 to take a detour. However, in our experiments, node
agent 𝑣 attempted to send the detour, and when it was not possi-
ble, it sentwait, because ensuring that the agent’s flow is not dis-
rupted is effective in the efficient execution of tasks, particularly in
a crowded situation. Examples are shown in Fig. 5; the facilitator of
Agent 1 sends a denial message withwait in Figs. 5a and b because
all neighboring nodes are already reserved, whereas the facilitator
sends the message with detour in Fig. 5c because two neighbor-
ing nodes are not reserved and one of them is randomly selected,
although the next node planned in Agent 1 has been reserved.

4.4 Collision Detection in the Marginal Zone
First, suppose that tree-structured subgraph (area) 𝐺𝑘tree does not
include parking nodes. If node agent 𝑣 ∈ 𝑉root is the root of𝐺𝑘tree , 𝑣
also manages to restrict the number of agents entering 𝑉𝑘tree \ {𝑣}
to one. Therefore, if agent 𝑖 on 𝑣 at time 𝑡 (i.e., 𝑣 = 𝑣𝑖c (𝑡) = 𝑣𝑖Fcl )
attempts to move to 𝑣𝑖next ∈ 𝑉𝑘tree , 𝑖 sends a request message to
𝑣 . Then, 𝑣 sends back an acceptance message to 𝑖 only when no
other agent is currently in𝐺𝑘tree∪𝐺mar ; otherwise, 𝑣 sends a denial
message with detour as a SOM if possible. Moreover, if 𝑣 cannot
find the neighboring node to which 𝑖 can move, 𝑣 sends the denial
message with wait.

Meanwhile, when 𝑣𝑖next = 𝑣 and 𝑣𝑖c (𝑡) ∈ 𝑉𝑘tree ∩𝑉mar , 𝑖 sends the
request to its facilitator agent 𝑣 (= 𝑣𝑖Fcl = 𝑣𝑖next ) to reserve 𝑣𝑖next . If
𝑣 can reserve itself for 𝑖 at 𝑡 + 1, 𝑣 sends an acceptance message
to 𝑖 , otherwise, it sends a denial message with wait. Agent 𝑖 on
𝑣𝑖c ∈ 𝐺𝑖tree ∩𝐺mar does not send a request message if 𝑣𝑖next ∉ 𝑉main.

When 𝐺𝑘tree includes several parking nodes, its root node 𝑣 ∈
𝑉root has two techniques to manage the number of agents entering
it. One technique is tomake it one-way as theMAPDFS progresses;
that is, at the beginning of a MAPDFS instance, 𝑣 restricts the di-
rection of movement only to the main area and thereafter only
to the interior of the tree area. However, once an agent returns
to the parking node, it cannot go back to the main area. Another
method is by managing agents entering the tree area with end-
points; 𝑣 restricts the number of agents entering𝑉𝑘tree \ {𝑣} to one;
however, when it arrives at the parking node, 𝑣 ignores it; thus,
another agent can enter this area. Meanwhile, when agent 𝑖 at the
parking node attempts to go to the main area, it asks its facilitator
𝑣𝑖Fcl = 𝑣 for the possibility of leaving. Then, 𝑣 accepts it only when
there are no other moving agents in𝐺𝑘tree ; otherwise, 𝑣 sends a de-
nial message withwait as a SOM to 𝑖 . We used the first technique
in our experiments below.

4.5 Number of Open Nodes in the Main Area
Finally, we discuss the efficiency and difference between the num-
bers of agents and nodes in themain area.We call a node that is not
reserved by any agent as an open node, and any agents can move
to the next nodes only when they are open. Because each agent
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Table 1: Experimental parameter values.

Parameter description and symbol Value

Normal required time for neighboring node, 𝑇mv 3
Time to load/unload, 𝑇lu 3 or 6
Moving delay probability, 𝜈 0 to 0.2
Moving delay time, 𝑇nse 1 or 2

reserves one different node, if |𝑉main | = |𝐼 |, then all agents can-
not move anyhow. If |𝑉main | − |𝐼 | = 1 and all agents are in 𝐺main,
agents are confined within the current bi-connected components
and cannot move to neighboring bi-connected components. This
is because, when agent 𝑖 in𝐺𝑘 successfully reserves the next open
node, the current node becomes open in the next time; thus, an
open node looks like moving backward. Therefore, for agent 𝑖 to
enter to another neighboring bi-connected component 𝐺𝑘 ′ \ 𝐺𝑘 ,
an open node should also be in𝐺𝑘 ′ \𝐺𝑘 and in front of 𝑖 . However,
this situation cannot happen if there is only one open node.

When |𝑉main | − |𝐼 | = 2, it is possible that agent 𝑖 enters to
a neighboring bi-connected component 𝐺𝑘 ′ \ 𝐺𝑘 only when two
open nodes are in 𝐺𝑘 \ 𝐺𝑘 ′ and 𝐺𝑘 ′ \ 𝐺𝑘 . However, such a situa-
tion can happen but is mostly coincidental. Therefore, agents can
reach their destination but almost randomly; agents can complete
all tasks but it will take a long time (we have provided a video in
this case at https://youtu.be/0ap6Vq9JbBw). Consequently, it is ev-
ident that the more open nodes are in the main area, the easier it is
for agents to move to the desired neighboring node. Thus, it is rec-
ommended that more than half of the main area have open nodes
for efficiency.

5 EXPERIMENTS AND DISCUSSION
5.1 Experimental Setting
We evaluated the proposed method using MAPDFS instances in
two environments that satisfy our required conditions (SC1- SC3)
and are likely to appear in our application (Fig. 1). They have a
small number of task endpoints (blue dots) that correspond to load
and unload nodes for tasks. The first environment (Env. 1) in Fig. 1a
has 10 task endpointswhich are placed at the ends of tree-structured
areas and satisfy the WFI condition for other methods (e.g., HTE).
The second environment (Env.2) in Fig. 1b also has 10 task end-
points, but they are placed in the main area; thus, it does not sat-
isfy the WFI condition. When an agent loads or unloads at the
task endpoint, it may block other agents for a while until the load-
ing/unloading is completed; however, we think that this is a com-
mon practice in construction sites and an inevitable part of the
process.

For comparison, we implemented two existing methods as base-
line, HTE [13] and RHCR [9]. HTE is a decentralized method in
which agents plan their paths consecutively by referring to the
synchronized sharedmemory block that contains information about
the task set and all agents’ paths, including visit and leave times.
RHCR decomposes a MAPD problem into a sequence of windowed
MAPF instances. Then, agents in RHCR find and resolve conflicts
that occur within the next 𝑤 timesteps and replan paths every ℎ

timesteps. Although RHCR does not require theWFI condition un-
like HTE, the deadlock avoidance in RHCR is incomplete. Note that
we used the priority-based search [11] for MAPF solver of RHCR,
and set 𝑤 = 60 and ℎ = 15 by referencing the original experi-
ments [9], in which𝑤 = 20 and ℎ = 5; thus, we multiplied them by
𝑇mv = 3.

In the first experiment (Exp. 1), we compared the performance
of our method with those of the two baseline methods in Env. 1,
which satisfied the WFI condition for HTE with constant moving
speed, because the baseline methods cannot handle delays. In the
second experiment (Exp. 2), we confirmed whether agents in our
method could complete all tasks in Env. 2, which did not meet WFI
condition and had a small negative swing (i.e., delay). Therefore,
we conducted Exp. 2 only using our method. We set 𝑇lu = 6 in
Exp. 2, whereas𝑇lu = 3 in Exp. 1. Thus, agents blocked other agents
longer. We used three evaluation measures: (1) the rate of comple-
tion of MAPD instances, (2) makespan (i.e., the time required to
complete all tasks), and (3) planning (CPU) time.

All agents started from their parking nodes (green dots in Fig. 1).
The loading and unloading nodes for a task were randomly se-
lected from the set of task endpoints (blue dots), and the initial
tasks were assigned simultaneously to all agents. An agent was
assigned a new task after completing the current task, and this
process was repeated until all tasks in T were completed. If an
agent was not assigned a task because all tasks had already been
assigned, it returned to its parking node.

To model more realistic robotic movements, we added noise to
the moving speed 𝑇nse at probability 𝜈 (0 ≤ 𝜈 ≤ 1) when an agent
moved to the next node in Exp. 2. Therefore, for agents to often
move to the neighboring node in𝑇mv = 3 timesteps, but with prob-
ability 𝜈 , it required𝑇mv +𝑇nse timesteps, where𝑇nse was randomly
selected by either 1 or 2. We set the number of agents from 2 to 40
and the number of tasks to |T | = 100. We have listed all other
parameter values in Table. 1. All experimental data are as the av-
erage of 50 independent trials using apple M1 Max CPU with 64
GB RAM.

5.2 Performance Comparison
5.2.1 Completion Rate. We investigated the rate of completeness
in our 50 runs. Table 2 lists the rate of completed MAPDFS in-
stances with different numbers of agents in Exp. 1. Here, we con-
sidered it as a failure if running time exceeded the limit of timestep
(10000 timestep), the planner could not find a collision-free path,
or a collision occurred. Table 2 indicates that agents in our method
could complete all instances in Exp.1 without failures and colli-
sions. HTE could also complete all instances in Exp. 1 because
Env. 1 meets the WFI condition. However, the completion rate of
RHCR rapidly decreased with the increasing number of agents 𝑛
and became zero eventually when 𝑛 ≥ 18. This is because agents
often headed for the few same task endpoints as their destinations
and the areas near the task endpoints were congested. Thus, the
prioritized planning in RHCR seemed difficult to avoid collisions
in these situations. Note that the data are not listed here, but we
also conducted Exp. 2 using the baseline methods but they failed
in all instances, although our method completed all instances.
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Table 2: Completion rate and planning time of MAPDFS instances.

Number of agents

Alg. 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 35 40

completion rate Proposed 𝜈 = 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
HTE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
RHCR 1.0 0.92 0.86 0.78 0.52 0.28 0.18 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

planning time Proposed 𝜈 = 0 0.09 0.15 0.22 0.29 0.36 0.46 0.54 0.63 0.71 0.84 0.96 1.09 1.20 1.36 1.56 2.09 2.78
HTE 11.2 11.6 12.2 13.6 15.0 15.1 14.9 15.0 15.1 15.1 15.1 15.5 15.4 15.1 15.3 15.5 15.5
RHCR 90.8 128.1 167.5 209.1 270.4 358.7 421.9 640.4 - - - - - - - - -

Figure 6: Makespans in Exp. 1.

Figure 7: Makespans in Exp. 2.

Figure 8: Planning time per instance (s) in Exp. 1.

5.2.2 Makespans. Figure 6 plots the averagemakespan (in timesteps)
with different numbers of agents in Exp. 1. Note that the failure

Figure 9: Planning time per instance (s) in Exp. 2.

instances were excluded from the average calculation. This figure
shows that, even if the number of agents 𝑛 increased to approx-
imately six, the makespan could be shortened regardless of the
methods employed.

However, when 𝑛 ≥ 8, we observed performance differences
with these methods; agents with the proposed method exhibited
the best performance. They could gradually decrease theirmakespans
with an increasing number of agents up to 22, but the performance
slightly degraded when 𝑛 ≥ 24. This small degradation was caused
by over-crowded areas near task endpoints by increasing the num-
ber of agents. Meanwhile, when 2 ≤ 𝑛 ≤ 6, the performances of the
baseline methods were better than that of the proposed method.
Even if the number of task endpoints was larger than number of
agents, the baseline methods enabled the agent to move the envi-
ronment in parallel. However, agents with the proposed method
were sometimes forced to take longer detours by following the di-
rections of edges.

Conversely, the performance of the agents with HTE was al-
most constant when, 𝑛 ≥ 8. Whereas Env. 1 met the WFI condi-
tions, it had a small number of task endpoints that were fewer than
the agents. Thus, HTE could assign a limited number of tasks to
agents because an agent could not select or be assigned the task
whose loading or unloading node was already reserved as the task
endpoints of other being executed tasks.

Although RHCR considerably outperformed other methods un-
til 𝑛 ≤ 16 in Exp. 1, after the number exceed 16, we could not
calculate themakespan because no instances of theMAPDFS prob-
lem could be completed by RHCR owing to the congestion as dis-
cussed before. Even when 𝑛 = 12, the completion rate by agents
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with RHCR was 0.28 from Table 2; it is not realistic to use RHCR
in our target applications because of the low completion rate.

We plotted the average makespan for Exp. 2 in Fig. 7 to inves-
tigate the effects of the fluctuation on movement speed on the
makespan in MAPDFS. This figure shows that the performance
gradually decreased with increasing moving delay probability 𝜈 .
However, their difference is insignificant. Therefore, the result in-
dicates that the proposed methods are robust against the fluctu-
ation in movement speed. We also conducted the experiments by
setting𝑇lu = 3; however, the difference was quite small. We believe
that this effect was caused by the orientation in the main area; al-
though an agent had to wait for loading/unloading of other agents,
they started to move in the same direction according to the orien-
tation. Thus, agents did not have to worry about head-on collisions
and could wait next to where it was loading/unloading.

5.2.3 Planning (CPU) time. Figure 8 shows the averaged planning
time for all agents per instance with a different number of agents
in Exp. 1. We have also listed the detail of the total planning time
in Table 2. Clearly, the planning time with the proposed method is
much smaller than those of other methods, regardless of the num-
ber of agents. This is because, unlike HTE, agents with the pro-
posed method could generate paths without time information and
without considering other agents’ paths.

From the figure, the planning time with HTE was almost iden-
tical when the number of agents was 𝑛 ≥ 10 because the num-
ber of agents moving in parallel was limited and only the active
agents generated plans. Conversely, in the proposed method, the
planning time was slightly increased based on the increase in 𝑛,
because all agents move in parallel and require time for their plan-
ning. However, even when 𝑛 = 40, the total planning time of the
proposed method was only 2.78 seconds owing to the simple dis-
tributed planning. Meanwhile, RHCR required large planning time
(Fig. 8) because all agents are required to replan at least once in
ℎ = 15 timesteps by interleaving planning and execution.

Figure 9 shows the averaged planning time per instance with
the moving delay probability 𝜈 = 0, 0.1, 0.2 in Exp. 2. Unlike Exp.1,
agents often were forced to stay longer at the same nodes in the
main area due to delay by other agents and loading/unloading ac-
tions of other agents. Thus, agents might receive denial messages
more frequently. However, the effect of fluctuation in movement
speed on planning time was significantly small from this figure.

5.3 Discussion
The proposed method completed all tasks without collision or en-
tering deadlock states using distributed planning with asynchro-
nous execution in the environments that satisfy our required con-
ditions, such as the robustness to fluctuated speed. This is because
node agents prevented carrier agents frommoving to the next nodes
that are already reserved and/or stayed by other agents, regardless
of delay owing to the speed variations, and direct edges prevented
agents from crossing the same edge in opposite directions.

Furthermore, our method outperformed the baseline methods
(HTE and RHCR) in environments with a small number of end-
points when the number of agents was more than 10. Our ex-
perimental results show that the proposed method can increase
the concurrency of task execution and mitigate the performance

degradation caused by crowded regions. HTE was unable to in-
crease the number of concurrent task executions because the num-
ber of task endpoints was smaller than the number of agents. Fur-
ther, RHCR required to replan repeatedly in all agents with syn-
chronous planning and execution, which increased computational
cost and could not complete all tasks within a reasonable time be-
cause of many live and deadlock situations caused by congestion.

In the proposed method, after an agent generated a path to the
destination, it moved to the next node with local communications
to check the availability and modify the path if necessary. There-
fore, it was considered similar to the family of local repair algo-
rithms with limited window size, such as traditional local repair
A* [32], its extension algorithms, and RHCR. A drawback of this
type of algorithm is that, whenmany agents gather at a small num-
ber of nodes, they may cause a high likelihood of collisions, many
livelock states, andmany costly repairs/replanning because of con-
gestion. However, as the proposed method introduces an orienta-
tion into the graph, it prevents, for example, an agent from being
sandwiched between other agents coming from the left and right.
Moreover, because agents are navigated in the direction in which
they can move, even when agents’ destinations are concentrated
and crowded, agents can be moved temporarily to surrounding ar-
eas to maintain their mobility. We have also conducted another
experiments in an environment in which almost all agents set to a
single endpoint as their destinations.

Finally, we have to discuss more on the number of open nodes
in the main area and the number of (carrier) agents. As mentioned
in Section 4.5, when |𝑉main | − |𝐼 | = 2, only two agents can start
moving simultaneously but almost randomly. This restriction is
significantly different in decentralizedmethods assuming synchro-
nous movements [12, 13, 17, 27], in which all agents move syn-
chronously; thus, agents can move even when |𝑉main | = |𝐼 |. How-
ever, we assumed the asynchronous movements, and such move-
ments are impossible. Furthermore, because of the asynchrony in
the distributed environments, how to move is affected by the tim-
ing of activities, such as the time/order of message arrivals. Thus,
the performance is partially affected by randomness. However, in
our extensive experiments using our method, agents completed all
tasks.

6 CONCLUSION
We presented a distributed planning with asynchronous execution
methods which is an efficient and robust solution for realistic en-
vironments. Our method is simple yet applicable to environments
that have a smaller number of task endpoints than agents and in-
clude the fluctuated movement speed of agents. From our exper-
iments, the proposed method outperformed baseline methods for
MAPD problem and even in the environments to which they are
not applicable because of variable speed and flexible endpoint loca-
tions. Our method completed all tasks efficiently without collision
and deadlock in such environments.

In the future, we plan to extend ourmethod; for example, wewill
relax environmental graph conditions, propose appropriate graph
orienting to improve the effectiveness and efficiency, and address
complex tasks (e.g., a task can be executed by multiple agents).
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