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ABSTRACT
Unmanned Aerial Vehicles (UAVs) are a versatile platform that can

be used for many data collection applications including emergency

response, environmental monitoring, surveillance and many others.

In this work, we investigate how to plan efficient paths that mini-

mize mission completion time for UAV data collection where the

UAV must rendezvous with a moving ground vehicle that cannot

stop and wait for the UAV. We also address the limited onboard

energy storage issue by adapting UAV speed. We propose a mixed-

integer nonlinear program solution to solve the underlying path

planning problem to optimality and provide a more tractable al-

ternative approach. We evaluate our two approaches in extensive

simulations using real UAV characteristics and prototype our solu-

tion on a physical drone testbed. We show that our two approaches

can reduce completion time by up to 23.8% and 14.5%, respectively,

when compared against other baseline approaches and demonstrate

the importance of UAV speed adaptation in route planning for UAVs.
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1 INTRODUCTION
Unmanned Aerial Vehicles (UAVs) can easily move over rough

terrain and water, are low-cost, commercially available, and can be

deployed quickly. This makes them well suited for data collection in

various applications such as environmental monitoring, emergency

response, search and rescue missions, and surveillance.

In many of these applications, the UAVs often work with ground

vehicles which provide battery recharging, battery swap, or data

offloading, etc. While a UAV completes its given tasks, the ground

vehicle deploying the UAVmay need to continuemoving rather than

wait at the starting location for the UAV to return. Examples include

large ships that cannot easily stop, disaster response scenarios

where rescue crews must cover large areas quickly, or military

applications where it is unsafe to remain stationary. Hence, UAV

path planning should account for the movement of a ground vehicle.

Another common requirement in these applications is minimiz-

ing mission completion time. Intuitively, this implies that we want

to find an optimal path for a UAV to follow while maximizing the
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UAV’s speed. However, UAVs have limited onboard energy storage

and there is a trade-off between speed and energy consumption

[23, 27]. Any robust path planning approach should consider the

speed-energy consumption trade-off and plan for recharging or

battery swaps.

Our goal is to minimize UAV mission completion time by plan-

ning efficient paths while accounting for a moving ground vehicle

that travels along a fixed path, UAV’s limited onboard energy, and

adaptive UAV speed. In particular, we make the following contribu-

tions:

(1) We formally define the problem at hand, termed Minimum-

Time while On-The-Move (MT-OTM), and propose a solution

framework that reduces the problem to amultiple depot, mul-

tiple terminal, Hamiltonian path problem with fixed depots

and terminals (fixed-MdMtHPP).

(2) We formulate two solutions for the fixed-MdMtHPP, aMixed-

integer nonlinear program (MINLP) that is tailored to op-

timize UAV speed and a more tractable heuristics-based K-

means clustering algorithm with an Integer Program (k-IP).
(3) We conduct extensive simulations and show that our MINLP

approach and the k-IP solution reduce completion time by

23.8% and 14.5%, respectively, when compared to a baseline

approach.

(4) We prototype our solution on a physical UAV testbed to

validate our methods and demonstrate how the MT-OTM

Problem can be applied in a real world scenario.

2 RELATEDWORK
In this section we review recent works in literature with a focus on

UAV path planning algorithms for mixed UAV and ground vehicle

problems. We also review UAV energy models and how they have

been applied in UAV path planning.

2.1 Mixed UAV & Ground Vehicle Path
Planning

Many previous works look at cooperative problems involving UAVs

and ground vehicles where a series of waypoints must be visited.

In [25] they consider an application where either a UAV or an

Unmanned Ground Vehicle (UGV) must be within some distance of

a set of waypoints, which is modeled as an orienteering problem, a

problem with known algorithms. A related scenario is considered

in [26], where a UGV can ferry around the UAV. The authors model

the problem as a Generalized Traveling Salesman Problem (TSP)

and apply a known solution approaches [18]. In [12] they consider

UAV path planning where a ground vehicle can be used to swap-out

batteries on the UAV but is constrained to a network of streets. They

propose treating all UAV waypoints as a single TSP, then breaking

up the route into sub-tours. This work was further expanded in
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[1, 13] where they propose a mixed-integer linear programming

(MILP) solution. A similar problem is found in [4], where they first

plan ground vehicle routes along a road network then plan UAV

routes using Conflict-Based Search. A common theme in all of these

works is that the ground vehicle can stop and wait for the UAV

to finish flying a sub-tour of waypoints, which often allows the

problem to be modeled as a traditional graph theory problem and

solved using known techniques. In contrast, our work considers

how to plan UAV paths when the ground vehicle cannot stop and

wait for the UAV.

A related set of UAV and ground vehicle problems is the UAV

parcel delivery problem, where a delivery truck, bound to a network

of streets, acts as a launching point for a UAV to deliver a package in

a last-mile delivery system [15]. Sometimes multiple UAVs are used,

as seen in [17] and [20], and sometimes the UAV can deliver multiple

packages [19]. These problems are usually solved by breaking down

the larger problem into smaller ones that can be handled using

math programming techniques. Most of the literature on this set

of problems allows for one of the vehicles to stop and wait for the

other. However, in applications over water or rugged terrain the

UAV cannot land to wait for the ground vehicle and hovering is

energy intensive.

Another set of related problems looks at selecting rendezvous

locations for a UAV to be recharged by a ground vehicle. In [14],

the authors plan where a ground vehicle should meet up with a

UAV on a fixed route by converting the problem into the Gener-

alized TSP and solve it using both integer programming and the

Lin-Kernighan-Helsgaun (LKH) heuristic [6]. In [24] both the UAV

and UGV have established paths and must select rendezvous points

that are ideal for both vehicles, which is done using a Markov Deci-

sion Process. Although this work also selects rendezvous locations,

our work differs from the current literature because we consider

planning rendezvouses with a non-stopping ground vehicle and fit

this problem into a larger, combined rendezvous and path planning

problem.

For this work, we assume that the drone is capable of landing

on the ground vehicle after rendezvousing using techniques such

as the ones discussed in [2]. Landing on a moving vehicle falls out

of the scope of this research.

2.2 UAV Energy Models
UAVs have limited onboard energy. There have been many pro-

posed methods for modeling energy consumption in UAVs includ-

ing: distance-based method [9, 12], time-based method [8, 22], dis-

cretized approaches [25, 26], and velocity-based methods [10]. The

velocity-based model maps the UAV’s speed to power consumption

based on characteristics specific to the UAV. This model was formu-

lated separately in [27] and [10] and validated in [10, 23] through

field testing on physical testbeds. In [17] it was found that the other

energy modeling approaches are not as accurate.

The velocity-based energy model has been used in various UAV

path planning problems. In [17], it was applied to the UAV par-

cel delivery problem and in [24] it was used to better model the

risk of the UAV running out of energy in a rendezvousing prob-

lem. In [20], they used this energy model to adapt UAV speed as a

post-processing step to further improve mission completion time.

However, mission completion time is the product of both the UAV’s

speed and the distance that the UAV must travel. To directly op-

timize completion time the energy model should be embedded in

the solution formulation. In our work, we add speed adaptation

using the velocity-based energy model directly in our mathemati-

cal formulation and evaluate speed adaptation against fixed-speed

approaches for a multi-waypoint UAV problem.

3 PROBLEM FORMULATION
In this section, we describe the system setup and formally define

the Minimum-Time while On-the-Move (MT-OTM) problem.

Let X be a large area with several navigational waypoints that

must be visited. A ground vehicle that acts as a moving base station

moves through X on a predetermined, fixed route described by

𝑝𝑏 (𝑡), a function that returns the ground vehicle’s position at time

𝑡 . Without loss of generality, we assume that the origin of the two-

dimensional coordinate system for X is at the ground vehicle’s

initial position at the beginning of the considered time window.

Let 𝑃 be the set of all waypoints that must be visited by a UAV

and 𝑝𝑖 be the 𝑖
𝑡ℎ

waypoint in 𝑃 . Due to energy constraints, the UAV

may not be able to visit all of the waypoints in 𝑃 in a single tour. Let

𝑚 be the number of sub-tours required to visit every waypoint in 𝑃 ,

which is initially unknown. We define the 𝑘𝑡ℎ sub-tour, denoted as

𝛿𝑘 with path length 𝑑𝑘 , as an ordered set of waypoints containing

a starting waypoint (depot), an ending waypoint (terminal), and at

least one waypoint in 𝑃 . We denote the depot of sub-tour 𝛿𝑘 as 𝑝𝑑
𝑘

and the terminal as 𝑝𝑡
𝑘
. Let 𝚫𝑚 be a set of𝑚 sub-tours such that

every waypoint in 𝑃 is visited exactly once and let the set of speeds

for each sub-tour in 𝚫𝑚 be 𝑆𝑚 . The time it takes a UAV to travel

𝛿𝑘 while moving at speed 𝑠𝑘 ∈ 𝑆𝑚 will be

𝑡𝛿 (𝛿𝑘 , 𝑠𝑘 ) =
𝑑𝑘

𝑠𝑘
. (1)

Suppose that it takes 𝑡𝑏 seconds to land the UAV on the ground

vehicle and change out the battery between each sub-tour. The total

time to complete the set of sub-tours 𝚫𝑚 will be

𝑡 (𝚫𝑚, 𝑆𝑚) = 𝑡𝑏 ∗ (𝑚 − 1) +
𝑚∑
𝑘=1

𝑡𝛿 (𝛿𝑘 , 𝑠𝑘 ). (2)

We denote the time lapsed from the start of the mission until

the start of sub-tour 𝑘 as 𝜏𝑑
𝑘
and the end of sub-tour 𝑘 as 𝜏𝑡

𝑘
. By

definition, for any sub-tour 𝑘 , 𝜏𝑡
𝑘
= 𝜏𝑑

𝑘
+ 𝑡𝛿 (𝛿𝑘 , 𝑠𝑘 ). We assume that

the UAV is launched on the first sub-tour at 𝑡 = 0 and that the UAV

is re-launched on any consecutive sub-tour as soon as the battery

has been changed. That is, 𝜏𝑑
1
= 0 and for any 𝑘 > 1, 𝜏𝑑

𝑘
= 𝜏𝑡

𝑘−1 + 𝑡𝑏 .
We say that sub-tour 𝛿𝑘 is consistent if the depot waypoint of 𝛿𝑘 is

𝑝𝑏 (𝜏𝑑𝑘 ) and the terminal waypoint is 𝑝𝑏 (𝜏𝑡𝑘 ). That is, the UAV must

start 𝛿𝑘 at the ground vehicle’s position at time 𝜏𝑑
𝑘
and end 𝛿𝑘 at

the ground vehicle’s position at time 𝜏𝑡
𝑘
for 𝛿𝑘 to be considered a

consistent sub-tour.

We formally define the MT-OTM problem as:

Definition 3.1 (MT-OTM Problem). Given search-space X with

𝑛 navigational waypoints and vehicle position function 𝑝𝑏 (𝑡), de-
termine the number of sub-tours 𝑚 and a corresponding sets of
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consistent sub-tours 𝚫𝑚 and speeds 𝑆𝑚 such that 𝑡 (𝚫𝑚, 𝑆𝑚) is the
minimum time required to visit all waypoints.

We acknowledge but ignore various factors that could also af-

fect flight performance such as wind and the energy consumed by

making turns. Although we do not consider these and other minor

factors that can impact energy consumption, our proposed solution

is versatile and can be reapplied with more comprehensive energy

models.

4 ADAPTION OF UAV SPEED
Previous work has determined the amount of power consumed by a

UAV at varying speeds [10, 27]. Propulsion power consumption of a

rotary-wing UAV as a function of speed 𝑣 can be approximated [27]:

P(𝑣) ≈ 𝐶0

(
1 + 3𝑣2

𝑈 2

𝑡𝑖𝑝

)
+ 𝐶𝑖𝑣0

𝑣
+ 1

2

𝑑𝑜𝜌𝑠𝑟𝐴𝑣
3, (3)

where𝐶0 and𝐶𝑖 are constants representing blade profile power and

induced power, respectively, 𝑈𝑡𝑖𝑝 represents the tip speed of the

UAV’s propellers, 𝑣0 is what is known as the mean rotor induced

velocity while hovering, 𝑑0 is an aircraft-specific drag ratio, 𝑠𝑟 is

rotor solidity, 𝜌 is the air density and 𝐴 is the rotor disk area. This

function is highly dependent on specific aircraft parameters and

will change from aircraft to aircraft, but in general, this function

has the shape of an upwards-facing parabola as shown in Figure 1a.

However, many UAV applications depend more on the total

distance that a UAV can travel as opposed to just the amount of

energy consumed. The relationship between speed and the total

distance depends on the voltage that a battery supplies to the UAV

and the rate that the battery discharges. We can represent this

relationship as

D(𝑣) = 𝐵𝑟𝑎𝑡𝑒𝑉𝑏𝑎𝑡𝑣

P(𝑣) , (4)

where 𝐵𝑟𝑎𝑡𝑒 is the rate of battery discharge in amp-seconds and

𝑉𝑏𝑎𝑡 is the voltage of the battery. In practice, 𝑉𝑏𝑎𝑡 should be set

lower than what the battery is rated for to ensure a safety buffer

for uncertainty.

Equation (4) has the following general form (Fig. 1b):

D(𝑣) = 𝑣

𝑣3 + 𝑣2 + 1

𝑣

. (5)

(a) Plot from Ref. [23]
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(b) Plot of Eqn. 5

Figure 1: Relationship between UAV power consumption,
travel distance, and speed.

Intuitively, to minimize total mission time, we will want to max-

imize the UAV’s speed. It was found [27] and then verified experi-

mentally [23] that in order to achieve maximum traveling distance,

the UAV must travel at a lower speed than its maximum possible

speed. Let 𝑑𝑚𝑎𝑥 be this maximum achievable distance and 𝑣𝑜𝑝𝑡 be

the speed that achieves 𝑑𝑚𝑎𝑥 . Let 𝑣𝑚𝑎𝑥 be the maximum speed that

the UAV is capable of traveling and 𝑑𝑣𝑚 be the distance that the

UAV can travel when moving at 𝑣𝑚𝑎𝑥 . As shown in Figure 1b, if

𝑣𝑜𝑝𝑡 < 𝑣𝑚𝑎𝑥 , then 𝑑𝑚𝑎𝑥 > 𝑑𝑣𝑚 .

Inspired by this finding, we formulate a function 𝑣 (𝑑) that takes
a distance and gives us the maximum speed that a UAV can travel

to achieve this distance.

𝑣 (𝑑) =


𝑣𝑚𝑎𝑥 if 𝑑 ≤ 𝑑𝑣𝑚
D−1 (𝑑) if 𝑑𝑣𝑚 < 𝑑 ≤ 𝑑𝑚𝑎𝑥
𝑖𝑛𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 if 𝑑 > 𝑑𝑚𝑎𝑥

(6)

where D−1 (𝑑) is the inverse of Eqn. (4). Note that in the third case

(i.e., if 𝑑 > 𝑑𝑚𝑎𝑥 ) the UAV is not capable of actually traveling

distance 𝑑 . This is the adaptive speed we use in our approaches.

If given realistic parameters for a UAV, we could determineD(𝑣).
However, D−1 (𝑑) is not easy to work with. Therefore, we instead

propose approximating Eqn. (4) between 𝑑𝑣𝑚 and 𝑑𝑚𝑎𝑥 as a sec-

ond order polynomial then finding the inverse the polynomial to

approximate Eqn. (6). The inverse of such a polynomial will have

the form

𝑣 (𝑑) =
√
𝑐1 + 𝑐2𝑑
𝑐3

+ 𝑐4 (7)

where 𝑐1, 𝑐2, 𝑐3 and 𝑐4 will be constants.

5 OUR SOLUTION FRAMEWORK
In this section, we summarize our framework for finding an approx-

imate solution to the MT-OTM problem. Our framework simplifies

the problem by first fixing𝑚 (the number of sub-tours), estimat-

ing the time required to complete each sub-tour, then treating the

problem as a multi-Hamiltonian paths problem.

Algorithm 1: MT-OTM Solver

Input :𝑃 : set of waypoints to visit, 𝑝𝑏 (𝑡) : ground vehicle

position function

Output :𝚫𝑜 : optimal set of routes, 𝑆𝑜 : optimal set of UAV

speeds

1 function MT-OTM-Solver(𝑃, 𝑝𝑏 (𝑡))
2 𝚫

𝑜 ← ∅, 𝑆𝑜 ← ∅, 𝑚 ← 0

3 do
4 𝑚 ←𝑚 + 1
5 𝚫𝑚, 𝑆𝑚 ← path-planning(𝑃, 𝑝𝑏 (𝑡),𝑚)
6 if 𝑡 (𝚫𝑚, 𝑆𝑚) < 𝑡 (𝚫𝑜 , 𝑆𝑜 ) then
7 𝚫

𝑜 ← 𝚫𝑚 , 𝑆𝑜 ← 𝑆𝑚

8 end
9 while 𝑡 (𝚫𝑚, 𝑆𝑚) ≰ 𝑡 (𝚫𝑚−1, 𝑆𝑚−1) and𝑚 <

��𝑃 ��;
10 return 𝚫

𝑜 , 𝑆𝑜

11 end
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Algorithm 1 depicts our approach for determining a value for

𝑚. We do this by setting 𝑚 = 1, solving for 𝚫𝑚 and 𝑆𝑚 using

function path-planning(), then incrementing 𝑚 until we do not

see an improvement in mission completion time, 𝑡 (𝚫𝑚, 𝑆𝑚). The
problem becomes writing a function path-planning() that can find

a 𝚫𝑚 and 𝑆𝑚 that can minimize total mission time for any𝑚.

Algorithm 2 describes our proposed path-planning function. We

start by guessing at the total time, 𝑡 , that it will take to visit the

waypoints in 𝑃 based on 𝑝𝑏 (𝑡) and 𝑚. Vector 𝐴 represents the

time required for each of the𝑚 sub-tours. In the while loop, we

set our guess for the total time and sub-tour times to 𝑡 ′ and 𝐴′,
respectively. We then form graph 𝐺 ′𝑚 using 𝑃 , 𝑝𝑏 (𝑡),𝑚, and 𝐴 in

function form-graph(), which determines the locations of all 𝑝𝑑
𝑘

and 𝑝𝑡
𝑘
(the depots and terminals of each sub-tour) using 𝐴. This

graph can be described mathematically as 𝐺 ′𝑚 = (𝑉𝑚, 𝐸𝑚), where
𝑉𝑚 = 𝑃 ∪ {𝑝𝑑

1
, · · · , 𝑝𝑑𝑚} ∪ {𝑝𝑡1, · · · , 𝑝

𝑡
𝑚} and

𝐸𝑚 = {(𝑝𝑖 , 𝑝 𝑗 )
��
1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑖 ≠ 𝑗}

∪ {(𝑝𝑑
𝑘
, 𝑝𝑖 )

��
1 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑖 ≤ 𝑛}

∪ {(𝑝𝑖 , 𝑝𝑡𝑘 )
��
1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑚}.

Once we find 𝐺 ′𝑚 the problem becomes solving an underlying

Hamiltonian Path problem (function solve-HP()). We set 𝚫 and 𝑆 as

the found set of sub-tours and set of assigned speeds, respectively,

then update the value of 𝑡 based on the actual total mission time

to run all sub-tours in 𝚫 given 𝑆 . We update 𝐴 using function sub-
tour-times(), which updates each sub-tour 𝑘’s entry in 𝐴 based on

the time required to travel sub-tour 𝛿𝑘 while moving at speed 𝑠𝑘 .

The loop continues until one of the following conditions is met:

(1) The predicted mission time, 𝑡 , is within some epsilon of the

actual time, 𝑡 ′, and every entry of our predicted vector 𝐴′ is
within some epsilon of the actual vector 𝐴, or

(2) Some iteration limit has been met.

We then return the last found graph 𝐺 ′ and the corresponding

set of sub-tours 𝚫. If an iteration time-out condition occurs, we

propose updating𝐺 ′ based on 𝑡 and 𝐴 without changing the found

set of tours 𝚫.

To make an initial guess for 𝑡 , we find the minimum spanning

forest of𝑚 trees on 𝑃 ∪ {𝑝𝑑
1
}, determine the minimum time that

a UAV needs to fly the total distance of the forest while making

𝑚− 1 stops to swap batteries. We can use this time to predict where

the base station will be located for each of the𝑚 − 1 stops. Using
this intermediate guess, we can create a 𝐺 ′𝑚 , find a new minimum

forest of𝑚 trees in𝐺 ′𝑚 then use the distance of this new forest to

get a guess on the time required to complete the search.

In the following section we further describe the underlying

Hamiltonian path problem and show how to find an optimal solu-

tion for it.

6 FINDING FIXED HAMILTONIAN PATHS
Our solution framework reduces the MT-OTM problem into an

underlying fixed multi-depot, multi-terminal Hamiltonian path

problem (fixed-MdMtHPP). This is a special case of the more gen-

eral MdMtHPP, which is formally defined as: “Given𝑚 salesmen

that start from distinct depots,𝑚 terminals and 𝑛 destinations, the

Algorithm 2: Path Planning

Input :𝑃 : set of waypoints to visit, 𝑝𝑏 (𝑡) : ground vehicle

position function,𝑚 : number of sub-tours

Output :𝚫 : set of routes, 𝑆 : set of UAV speeds

1 function path-planning(𝑃, 𝑝𝑏 (𝑡),𝑚)
2 𝑡 ← guess-time(𝑃, 𝑝𝑏 (𝑡),𝑚)
3 𝐴← { 𝑡𝑚 , · · · ,

𝑡
𝑚 }

4 do
5 𝑡 ′ ← 𝑡 , 𝐴′ ← 𝐴

6 𝐺 ′𝑚 ← form-graph(𝑃, 𝑝𝑏 (𝑡),𝑚,𝐴′)
7 𝚫, 𝑆 ← solve-HP(𝐺 ′𝑚)
8 𝑡 ← 𝑡 (𝚫, 𝑆)
9 𝐴← sub-tour-times(𝚫, 𝑆)

10 while
(��𝑡 − 𝑡 ′�� ≥ 𝜖𝑡 or ��𝑚𝑎𝑥𝑖 (𝐴 −𝐴′)�� ≥

𝜖𝐴
)
and iterations < iteration-limit;

11 return 𝚫, 𝑆

12 end

problem is to choose paths for each of the salesmen so that (1) each

salesman starts at his respective depot, visits at least one destination

and reaches any one of the terminals not visited by other salesmen,

(2) each destination is visited exactly once, and (3) the cost of the

paths is minimum among all possible paths for the salesmen” [3].

fixed-MdMtHPP differs from the traditional MdMtHPP in that the

depots and terminals are fixed. Each tour that starts at some depot

(𝑝𝑑
𝑘
) must end at a specific terminal (the corresponding 𝑝𝑡

𝑘
).

MdMtHPP is NP-Hard ([3]). Fixing the matching between depots

and terminals does not make the problem easier to solve.

Theorem 6.1. The fixed multiple depot, multiple terminal, Hamil-
tonian path problem (fixed-MdMtHPP) is NP-Hard.

Before beginning the proof for Theorem 6.1, we would like to

remind the reader of the fixed destination multi-salesmen, multi-

depot Traveling Salesman Problem (MmTSP). In MmTSP, there

is a given set of depots with one or more salesmen and a set of

destination vertices that must be visited by exactly one salesman.

In fixed-destination MmTSP, each salesman must end their tour at

the vertex they started at, which is known to be NP-Hard.

Proof. We form a reduction from fixed-destination MmTSP

to fixed-MdMtHPP as follows. Let 𝐺 be the graph for the fixed-

destination MmTSP problem. Form a new graph 𝐺 ′ by taking the

set of destination vertices and depots from𝐺 . If any depot has more

than one salesman that starts at it, then form a new depot at this

same location and assign the additional salesman to this depot. For

every salesman, create a terminal vertex that lies on top of the

salesman’s starting vertex. Solve the fixed-MdMtHPP that we have

just formed. The routes from our solution to fixed-MdMtHPP will

also be a solution to the fixed-destination MmTSP.

This reduction can be performed in linear time in terms of the

number of vertices in 𝐺 . As we have found a polynomial time

reduction from fixed-destination MmTSP to fixed-MdMtHPP, and

we know that fixed-destination MmTSP is NP-Hard, then fixed-

MdMtHPP must also be NP-Hard. □
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6.1 MINLP Formulation for fixed-MdMtHPP
In this sub-section we formulate a MINLP to solve the underlying

fixed-MdMtHPP for our UAV path planning problem. We also show

how a simplified version of the formulation can be used to solve

the general case of the fixed-MdMtHPP.

Our MINLP formulation minimizes mission completion time by

jointlyminimizing the distance of each sub-tour andmaximizing the

speed that the UAV travels on each sub-tour. Due to the relationship

between travel distance and speed discussed in Section 4, we cannot

simply use a fixed UAV speed but must adapt the speed based on

distance, which is why we optimize these two jointly. We use a

variation of the Miller-Tucker-Zemlin formulation [7, 16] for the

capacitated vehicle routing problem because it provides us the

flexibility to force fixed depots and terminals. Although we cannot

guarantee an optimal solution to the MT-OTM problem, our MINLP

can find an optimal solution to the underlying fixed-MdMtHPP.

For the set of waypoints 𝑖, 𝑗 ∈ 𝑃 and sub-tour 𝑘 in the set of

tours 𝐾 , let 𝑋𝑖 𝑗𝑘 be a binary decision variable that determines if

edge (𝑖, 𝑗) is included in tour 𝑘 . We denote the Euclidean distance

between 𝑖 and 𝑗 as 𝑑𝑖 𝑗 . We use binary variables 𝑌𝑘𝑖 and 𝑍 𝑗𝑘 to

connect each depot 𝑘 to some waypoint 𝑖 , and some waypoint 𝑗 to

some terminal 𝑘 , respectively. Let 𝐿𝑘 and 𝑆𝑘 be continuous variables

for the total distance that the UAV must fly on sub-tour 𝑘 and the

constant speed of the UAV on 𝑘 , respectively. To prevent cycles

within each sub-tour, we use the integer variable𝑈𝑖 to give ordering

assignments to each waypoint.

Our MINLP formulation of the problem is as follows.

min

∑
𝑘∈𝐾

𝐿𝑘

𝑆𝑘
(8)

subject to:

𝐿𝑘 =
∑
𝑖∈𝑃

∑
𝑗 ∈𝑃

𝑑𝑖 𝑗𝑋𝑖 𝑗𝑘

+
∑
𝑖∈𝑃

𝑑𝑘𝑖𝑌𝑘𝑖 +
∑
𝑗 ∈𝑃

𝑑 𝑗𝑘𝑍 𝑗𝑘 , ∀𝑘∈𝐾 (9)

𝑆𝑘 ≤
√
𝑐1 − 𝑐2𝐿𝑘
𝑐3

+ 𝑐4, ∀𝑘∈𝐾 (10)

1 −M(1 − 𝑋𝑖 𝑗𝑘 )
≤ 𝑈 𝑗 −𝑈𝑖 ≤

1 +M(1 − 𝑋𝑖 𝑗𝑘 ), ∀𝑖, 𝑗 ∈𝑃 ,∀𝑘∈𝐾 (11)

1 ≤ 𝑈𝑖 −𝑈𝑑𝑘 𝑌𝑘𝑖 ≤ 1 +M(1 − 𝑌𝑘𝑖 ), ∀𝑖∈𝑃∀𝑘∈𝐾 (12)∑
𝑗 ∈𝑃

𝑋 𝑗,𝑖,𝑘 + 𝑌𝑘,𝑖 =
∑
𝑗 ∈𝑃

𝑋𝑖, 𝑗,𝑘 + 𝑍𝑖,𝑘 , ∀𝑖∈𝑃∀𝑘∈𝐾 (13)∑
𝑗 ∈𝑃

∑
𝑘∈𝐾

𝑋 𝑗,𝑖,𝑘 +
∑
𝑘∈𝐾

𝑌𝑘,𝑖

+
∑
𝑗 ∈𝑃

∑
𝑘∈𝐾

𝑋𝑖, 𝑗,𝑘 +
∑
𝑘∈𝐾

𝑍𝑖,𝑘 = 2, ∀𝑖∈𝑃 (14)∑
𝑖∈𝑃

𝑌𝑘,𝑖 = 1, ∀𝑘∈𝐾 (15)∑
𝑖∈𝑃

𝑍𝑖,𝑘 = 1, ∀𝑘∈𝐾 (16)

𝑆𝑘 ≤ 𝑣𝑚𝑎𝑥 , ∀𝑘∈𝐾 (17)

𝐿𝑘 ≤ 𝑑𝑚𝑎𝑥 , ∀𝑘∈𝐾 (18)

Our objective function (8) is minimizing the total time required

for the UAV to travel all sub-tours. Note that we can remove possi-

ble domain violations in the objective using an additional auxiliary

variable, 𝐴𝑘 , to separate 𝐿𝑘 and 𝑆𝑘 as 𝐿𝑘 = 𝐴𝑘𝑆𝑘 then minimizing

𝐴𝑘 . We forego adding additional variables here for brevity. Con-

straint (9) forces variable 𝐿𝑘 to equal the distance of sub-tour 𝑘 .

Constraint (10) adapts a sub-tour speed based on the distance of

sub-tour 𝑘 and is derived from Eqn. (7).

Constraint (11) enforces a tight numbering scheme for consecu-

tive waypoints in each sub-tour whereM is some sufficiently large

number which will be further discussed shortly. Constraint (12)

forces the waypoint after depot 𝑘 to be assigned a sequence number

of𝑈𝑑
𝑘
+ 1, where𝑈𝑑

𝑘
is an implied, fixed sequence number assigned

to depot 𝑘 that remains constant. For each waypoint 𝑖 on sub-tour

𝑘 , we want to assign a sequence number to 𝑈𝑖 that is within a

designated range to force waypoints that are on the same sub-tour

to be numbered together. We define the bounds of this numbering

range for sub-tour 𝑘 using implied depot and terminal sequence

numbers𝑈𝑑
𝑘
and𝑈 𝑡

𝑘
, respectively. If 𝑙𝑚 is the maximum number of

waypoints that can be assigned to a sub-tour then we want to have

𝑙𝑚 sequence numbers available between 𝑈𝑑
𝑘
and 𝑈 𝑡

𝑘
. When given 𝑛

waypoints to visit on𝑚 sub-tours with at least one waypoint on

each sub-tour, by the pigeon hole principle, 𝑙𝑚 = 𝑛 −𝑚 + 1. For the
first sub-tour, if we set 𝑈𝑑

1
= 0 then𝑈 𝑡

1
must be 𝑙𝑚 + 1. This makes

𝑈𝑑
2
= 𝑙𝑚 + 2. Following this trend, we find that for any sub-tour 𝑘 ,

𝑈𝑑
𝑘
= (𝑙𝑚 +2) (𝑘−1) and𝑈 𝑡𝑘 = 𝑘 (𝑙𝑚 +1) + (𝑘−1). In constraints (11)

and (12) we want a value forM that is large enough to allow for

all feasible sequence number assignments for each 𝑈𝑖 . To keep a

tight bound on our constraints, we setM = 𝑈 𝑡𝑚 =𝑚𝑙𝑚 + 2𝑚 − 1.
Constraint (13) ensures that the in-degree is equal to the out-

degree of each waypoint while constraint (14) forces each waypoint

to have a degree of two. Constraint (15) and (16) force every de-

pot and terminal to be used, respectively. Finally, constraints (17)

and (18) bound the maximum allowable speed of the UAV and max-

imum allowable distance of any sub-tour, respectively.

The numbering scheme described above is what allows us to fix

the depots with their corresponding terminals. We are also ensuring

that each sub-tour contains at least one waypoint by not defining

an edge from depot 𝑘 to terminal 𝑘 in our formulation.

We can modify our MINLP formulation to solve the general case

of fixed-MdMtHPP by making the objective function to be

min

∑
𝑘∈𝐾

𝐿𝑘 (19)

and removing constraints (10), (17) and (18). The general fixed-

MdMtHPP formulation avoids the additional complexity of variable

multiplication seen in our MINLP formulation but does not adapt

UAV speed and is not directly optimizing mission completion time.

6.2 k-IP Approach for fixed-MdMtHPP
Mixed-Integer Non-Linear Programs are often very hard to solve,

even for commercial solvers on high-performance computers, so in
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this sub-section we propose a more tractable approach that com-

bines a heuristics-based k-means clustering algorithm and an Inte-

ger Program (k-IP). The general concept for k-IP is to partition the

waypoints into𝑚 groups then form sub-tours by solving a traveling

salesman problem (TSP).

To partition the waypoints, we use Lloyd’s algorithm to form

k-means clusters [11]. We use the centroid of each 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
pair as

the initial cluster centroids. We then limit the number of iterations

that the algorithm runs which prevents the cluster centroids from

migrating too far away from their corresponding 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
pairs.

Once we have put each waypoint into a cluster, we combine the

clusters with the corresponding 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
. We then solve a TSP

on the resulting graph and force the edge connecting 𝑝𝑑
𝑘
and 𝑝𝑡

𝑘
to

be part of the solution. To do this we use the IP formulation found

in [21] that uses sub-cycle cuts to enforce closed tours. To avoid

an exponential number of sub-cycle cuts, we treat these as lazy

constraints where the constraint is only added to the solver when

a found solution would break the constraint, a feature available in

many commercially available solvers such as Gurobi.

To adapt sub-tour speeds for the k-IP approach, we first solve the

problem as described above then assign a speed to each sub-tour

using the distance of the found sub-tour and Eqn. (6).

7 SIMULATION EVALUATION
In this section we discuss our evaluation of our framework for

solving the MT-OTM Problem in simulation using parameters from

previous field testing and commercially available hardware. Our

simulations were conducted on a machine with an Intel 3.4 GHz

16-Core CPU and 64 GiB of RAM. We use Gurobi Optimizer ver-

sion 9.5.1 for our optimization solver. Our solution framework is

implemented in C++ and provided as open-source
1
.

7.1 Realistic Energy Model from Field Tests
In Section 4 we presented P(𝑣), a theoretical equation that repre-

sents the power consumed by a UAV based on speed 𝑣 . P(𝑣) was
verified through field testing in [23]. For their specific UAV, P(𝑣)
can be approximated as

P(𝑣) = 0.07𝑣3 + 0.0391𝑣2 − 13.196𝑣 + 390.95 (20)

If we equip the UAV with a commercially available LiPo battery

rated at 2,200 mAh, 12.6 volt, then we can plug Eqn. (20) into Eqn. (4)

and get

𝑑 (𝑣) = 99, 792𝑣

0.07𝑣3 + 0.0391𝑣2 − 13.196𝑣 + 390.95
(21)

We can use Eqn. (21) to determine𝑑𝑚𝑎𝑥 , the maximum distance that

the UAV can travel. By approximating the curve of Eqn. (21) between

𝑑𝑣𝑚 and 𝑑𝑚𝑎𝑥 as a polynomial, we can find an approximation for

D−1
between 𝑣𝑜𝑝𝑡 and 𝑣𝑚𝑎𝑥 in the form of Eqn. (4).

7.2 Baseline Approach
For a baseline, we adapt the heuristics-based approach found in

[13]. This approach finds a TSP tour on the entire set of waypoints

using the LKH heuristic [6] then has the UAV follow this tour until

it runs out of energy. We refer to this as tour-splitting (TS). We chose

1
github.com/pervasive-computing-systems-group/MT-OTM-Solver

this approach because it avoids repeatedly solve for Hamiltonian

paths, allows us to adapt UAV speeds to sub-tour distances, and has

been proposed for similar problems in recent literature [1, 13].

This approach as proposed in [13] solves for a cycle while we

wish for the UAV to generally follow the path of the ground vehicle.

This requires us to slightly adapt the original approach instead

of using it directly. To adapt this approach, we find a minimum

distance Hamiltonian path using the LKH heuristic that starts from

the waypoint closest to vehicle’s starting point and ends where

we predict the ground vehicle to be at the end of the entire data-

collection mission, as described in Section 5. We then divide this

total path into𝑚 roughly equal segments. For each segment, we

form a sub-tour by determining where the ground vehicle will be

at for the beginning of the sub-tour based on the previous sub-

tour. We then iteratively approximate the maximum possible UAV

speed allowed for the sub-tour using Eqn. (6) and determine a

corresponding sub-tour terminating location until we settle on a

consistent solution. The approach is plugged in to algorithm 1 as

the path-planning() function.

7.3 Comparison of Approaches
We ran all three approaches on randomized graphs with 𝑛 ranging

from 5 up to 80 at increments of 5. We generated 50 graphs at each

increment. To keep the results comparable across each input graph,
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(a) UAV paths generated using MINLP
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(b) UAV paths generated using k-IP

Figure 2: Sample UAV paths generated using our approaches.
The blue circles are the navigational waypoints, the dashed,
black line is the ground vehicle’s trajectory, the green dia-
monds are UAV launch points and the orange squares are
UAV receiving points along the ground vehicle’s path.
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Figure 3: Simulation results for the three considered ap-
proaches on randomized graphs with 𝑛 up to 80. Top plot
shows impact of number of waypoints on mission comple-
tion time. Bottom plot shows the ratio of graphs where each
approach failed to find a solution.

we had the ground vehicle move at a fixed speed of 2.5𝑚/𝑠 along
the x-axis.

Figure 2a shows the output of the MINLP approach and Figure 2b

shows the output of the k-IP approach on one of the randomly

generated graphs with 25 waypoints. The MINLP approach found

a superior solution with a mission completion time of 307.5 𝑠 while

the k-IP approach found a solution with a completion time of 382.4 𝑠 .

However, the k-IP only took 0.038 𝑠 to compute this solution while

using the MINLP formulation took 130.9 𝑠 to compute a solution.

In the following sections we further analyze this trade-off between

performance (mission completion time) and computation time.

7.4 Mission Completion time Evaluation
Figure 3 (top) shows how the number of waypoints affects average

mission completion time. The error bars show the standard devi-

ation for each approach. We stopped the MINLP at 𝑛 = 30 due to

long computation times, which are further discussed below. The TS

and k-IP approaches were not always able to find a feasible solution

and their failure rates are also documented below.

On average, the MINLP and k-IP approaches provide a 23.8%

and 14.5% improvement over the TS approach, respectively. k-IP’s
performance is not as good as the MINLP solution but only aver-

ages a 3.8% increase in mission completion time over the MINLP

approach and provides a nice alternative to the MINLP in larger

sized problems.

We acknowledge this as a limitation in this work and observe

how well each approach can find a solution. Figure 3(bottom) shows

the ratio of graphs where each approach failed to find a solution.

The k-IP approach failed to find a valid solution for 6.6% of the

graphs while the TS approach failed at 4.3% of the graphs. This

suggests that although k-IP outperforms TS in mission completion

time, TS may be able to find more solutions than k-IP. The MINLP

approach was able to find a solution of all graphs up to the cut-off

point (𝑛 = 30).

It can be particularly hard to find solutions for some combina-

tions of waypoints and ground vehicle paths. In our evaluation,
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Figure 4: Simulation results for adaptive speed compared to
fixed speeds on randomized graphs with 𝑛 up to 80. Top plot
shows impact of number of waypoints on mission comple-
tion time. Bottom plot shows the ratio of graphs where each
approach failed to find a solution.

we observed that the k-IP approach struggles on inputs with sub-

regions with a high concentration of waypoints while the rest of

the graph is sparse. On these graphs, the clustering algorithm forms

a single cluster with too many waypoints while the rest of the clus-

ters are fairly small creating many short sub-tours with one very

long tour that cannot be completed in a single flight.

7.5 Impact of Speed Evaluation
We also evaluated how our approach to adaptive speed affected

mission completion time. Using the k-IP approach, we compared

how well fixing the UAVs speed at 𝑣𝑚𝑎𝑥 , 𝑣𝑜𝑝𝑡 , and the speed that

minimizes energy consumption (termed best endurance, or 𝑣𝑏𝑒 )

performed against our adaptive speed approach (AS). We chose

these different speed settings because they have all been proposed

for UAV path planning problems in recent literature [17, 19, 24].

Figure 4 shows the results of comparing our adaptive speed ap-

proach against using a fixed-speed. On average, the adaptive speed

approach improved the mission completion by 11.9%, 31.9%, and

47.1% compared against fixing the velocity at 𝑣𝑚𝑎𝑥 , 𝑣𝑜𝑝𝑡 , and 𝑣𝑏𝑒 ,

respectively. With speed fixed at 𝑣𝑚𝑎𝑥 , 𝑣𝑜𝑝𝑡 , and 𝑣𝑏𝑒 the solver only

found solutions for 69.3%, 52.5%, and 25.9% of the graphs, respec-

tively, while using an adaptive speed approach found a solution

for 93.4% of the inputs. In fact, when fixing speed at 𝑣𝑏𝑒 no graphs

were solved with 𝑛 ≥ 35.

These results show that our proposed UAV speed adaptation

greatly outperforms approaches where the UAV’s speed is kept

fixed. These results also show the impact that UAV speed has on

UAV path planning problems and the necessity for considering

speed adaptation for UAV path planning.

7.6 Computational Efficiency
Table 1 shows the minimum, average, and maximum computation

times required to solve the randomized graph set for the three

approaches. This data only includes the results from graphs that

each approach was able to find a feasible solution on.

Session 3B: Multiagent Path Finding
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

929



Figure 5: UAV path generated using MINLP approach for a
case study in an urban environment.

The table shows that the computational time of the MINLP in-

creases exponentially with the number of waypoints and is not an

ideal approach for larger graphs. Both of the TS and k-IP approaches
solve the MT-OTM problem very quickly, with the TS approach

generally outperforming k-IP. However, we showed above that the

k-IP approach greatly outperforms the TS approach in mission

completion time.

Table 1: Computation Times (in seconds)

𝑛 = 10 20 30 40 50 60 70 80

T
S Avg. 0 0 0 0 0.001 0.002 0.004 0.007

95% CI 0 0 0 0 0 0 0 0.001

k-
I
P Avg. 0.01 0.03 0.06 0.11 0.20 0.32 0.46 0.74

95% CI 0.001 0.005 0.008 0.011 0.024 0.031 0.066 0.090

M
P Avg. 0.73 135 5139 - - - - -

95% CI 0.151 48.34 3215 - - - - -

Average computation time and 95% confidence interval (95% CI) for the tour-splitting
(TS), k-IP, and MINLP (MP) approaches with varying number of waypoints (𝑛).

7.7 Urban Environment Simulation
To demonstrate how our MT-OTM solution framework can be used

in real-world scenarios, we apply it to an example in an urban

environment where the UAV must visit a set of waypoints in a city

while the ground vehicle follows a set route on city streets, i.e., not

a straight line as in the previous simulation settings. We selected

20 waypoints for the UAV to visit in the urban environment. We

selected these point using Google Earth, then converted the GPS

coordinates into relative distances and generated a graph for our

MT-OTM solution framework to solve. The ground vehicle follows

a series of city streets, moving at a constant 3
𝑚
𝑠 .

Figure 5 shows the UAV path generated using the MINLP ap-

proach. It took the MINLP approach 43.1 seconds to find this so-

lution. We argue that this demonstrates that for most common

scenarios the number of waypoints will be small enough that the

MINLP approach can be used to find superior solutions. The solu-

tion found using the MINLP has a mission completion time of 355.8

seconds while the k-IP finds a solution with 373.1 seconds.

8 FIELD TEST
To further validate our solution framework we created a field proto-

type of the MT-OTM Problem using our own physical UAV testbed

(a) UAV paths generated using k-IP (b) GPS trace of UAV path

Figure 6: Field prototype results. (a) UAV path generated us-
ing k-IP approach. (b) UAV’s GPS trace while following the
path found offline.

[5]. We selected 18 waypoints in an empty field using Google Earth

with the ground vehicle moving in a straight line across the field at

2.5
𝑚
𝑠 . For simplicity, we landed the UAV manually at the end of

each sub-tour and substituted the ground vehicle by walking the

path of the vehicle on foot. Because the UAVs in [5] can travel up

to 8 km, we shortened the max flying distance to 1.7 km and set a

max velocity of 11
𝑚
𝑠 to scale down the physical prototype.

Figure 6a shows the UAV path found using the k-IP approach.

Figure 6b shows the GPS trace of the UAVwhile following the found

paths. The result on the physical prototype demonstrates that our

approach works well when the MT-OTM problem is applied in real

world scenarios.

9 CONCLUSIONS
In this paper, we formulated the Minimum-Time while On-The-

Move (MT-OTM) problem and presented an algorithm that solves

the MT-OTM problem by boiling the problem down into an under-

lying fixed Multi-Depot, Multi-Terminal Hamiltonian Path Prob-

lem (fixed-MdMtHPP). We developed two approaches for solving

fixed-MdMtHPP, a Mixed-integer nonlinear program (MINLP) that

optimizes UAV speeds and a k-means clustering algorithm paired

with an Integer Program (k-IP approach).

Our field-test-based simulation results show that on graphs that

have 30 waypoints or less ourMINLP finds superior mission comple-

tion time results while maintaining reasonable computation times.

For larger graphs we recommend our k-IP approach, which gives

good mission completion time results while reducing computation

time. Our simulation results also show that UAV speed adaptation

can reduce mission completion time and should be considered when

planning paths for UAVs. We also demonstrated how our solution

framework can still be used when the MT-OTM problem is applied

to new scenarios such as urban environments. We further validated

our solution in a case study of the MT-OTM problem on a physi-

cal UAV testbed. Our case study demonstrates how the MT-OTM

problem can be used in real-world scenarios.

For future work, we will expand our energy model to include

other factors such as making turns and the influence of wind. We

will also consider the multi-UAV version of the MT-OTM problem

and look at how to determine where along the ground vehicle’s

path the UAVs should start being launched.
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