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ABSTRACT
We study a fundamental NP-hard motion coordination problem for

multi-robot/multi-agent systems: We are given a graph 𝐺 and set

of agents, where each agent has a given directed path in 𝐺 . Each

agent is initially located on the first vertex of its path. At each time

step an agent can move to the next vertex on its path, provided

that the vertex is not occupied by another agent. The goal is to

find a sequence of such moves along the given paths so that each

agent reaches its target or to report that no such sequence exists.

The problem models guidepath-based transport systems, which

is a pertinent abstraction for traffic in a variety of contemporary

applications, ranging from train networks or Automated Guided

Vehicles (AGVs) in factories, through computer game animations,

to qubit transport in quantum computing. It also arises as a sub-

problem in the more general multi-robot motion-planning problem.

We provide a fine-grained tractability analysis of the problem

by considering new assumptions and identifying minimal values of

key parameters for which the problem remains NP-hard. Our anal-

ysis identifies a critical parameter called vertex multiplicity (VM),

defined as the maximum number of paths passing through the same

vertex. We show that a prevalent variant of the problem, which is

equivalent to Sequential Resource Allocation (concerning deadlock

prevention for concurrent processes), is NP-hard even when VM

is 3. On the positive side, for VM ≤ 2 we give an efficient algo-

rithm that iteratively resolves cycles of blocking relations among

agents. We also present a variant that is NP-hard when the VM is 2

even when 𝐺 is a 2D grid and each path lies in a single grid row

or column. By studying highly distilled yet NP-hard variants, we

deepen the understanding of what makes the problem intractable

and thereby guide the search for efficient solutions.
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1 INTRODUCTION
We study the problem of coordinating the motion of a fleet of

robots/agents
1
with assigned paths. The problem arises in the con-

text of guidepath-based vehicles, such as Automated Guided Ve-

hicles and overhead monorail systems that are used in industrial

environments [28]. Such environments are typically highly struc-

tured and constrain the vehicles to move along predefined paths in

a centrally controlled manner. A crucial component of such systems

is ensuring liveness, which is the ability of the vehicles to complete

their assigned tasks and perform similar future tasks. Liveness can

be lost due to deadlocks, which can arise due to the fact that certain

vehicle motions are irreversible, for example, when a vehicle cannot

move backward on a railway. Before entering a new state, such

as giving a vehicle a new assigned path, it is desirable to check if

liveness can be preserved. In general, this check amounts to de-

termining the existence of a sequence of motions that allows all

agents to complete their current trips, which in turn boils down

to solving our problem. This problem of checking state liveness is

known as liveness-enforcing supervision and has received interest

from the Discrete Event Systems (DES) community [27].

Another motivation comes from the world of smart transporta-

tion. Recent years have demonstrated that operating autonomous

vehicles in mixed traffic/urban areas remains highly challenging

and is therefore unlikely to prevail soon. A more viable setting for

operating them safely is using dedicated infrastructure (e.g., guide-

ways, rails, or dedicated lanes), which is simpler due to limited

interaction with human drivers, pedestrians, and obstructions. Un-

like regular road networks, such infrastructures constrain vehicles

to move on a limited set of paths, which ultimately lends itself to

our setting. Such constrained autonomous systems are expected to

evolve beyond simple topologies and fixed schedules (e.g., in airport

shuttles) [18] and hence demand more complex motion coordina-

tion. For example, to cater for increased demand, which will also be

flexible (e.g., as a result of on-demand service), a system’s efficiency

might be increased by allowing vehicles heading in opposite direc-

tions to use the same path segments. Indeed, developing algorithms

for the special structure of dedicated infrastructure transport sys-

tems has been recently highlighted as a research direction in urban

mobility and logistics [18].

1
We interchangeably use the terms agents and robots in this work. In the terminology of

the motion-planning literature, robots are typically used when moving in continuous

domains, and agents (or pebbles, among others) are used for motion on graphs. The

distinction is sometimes blurred since often continuous motion-planning problems

are reduced to motion planning of agents on graphs.
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Our problem belongs in the wider context of Multi-Robot Motion
Planning (MRMP). In MRMP, instead of having the whole path

specified, we are given only the start and target for each robot/agent,

and the goal is to find a collision-free motion that brings all the

robots to their targets. The general problem has been shown to be

PSPACE-hard in various planar settings [5, 14, 16, 33]. The problem

is remains NP-hard even when all the robots move one by one [12].

Relaxations involving assumptions on the spacing between robots

in their start and target placements have been introduced in order

to make the problem tractable [2, 32, 34]. The discrete counterpart

of MRMP, where agents move on a graph, is solvable in polynomial

time [19, 38]. However, when optimal solutions are sought, e.g.,

with respect to a time or distance objective, the problem becomes

NP-hard, even on 2D grid graphs [3, 9, 11]. This intractability has

been recently tackled by approximation algorithms [9, 36, 37]. We

remark that there is a tremendous body of work on MRMP variants,

for which it is impossible to do justice here.

Although MRMP has more freedom than our problem due to not

constraining paths a priori, MRMP with given paths (MRMP-GP

for short) is useful as a subroutine for solving MRMP. A common

paradigm for solving MRMP, known as decoupled planning, is to
first plan the path of each robot without taking other robots into

account. Then, some form of coordination between robots given

their individual paths follows, such as adjusting the robots’ speeds

along paths. Early works focused on variants of the problem for a

constant number of robots [17]. In [22], the coordination diagram,

which represents placements along each robot’s path at which mu-

tual collisions might occur, was used for two robots. The diagram

has later been generalized for multiple robots [20] and has since

been used to coordinate their motion along assigned paths [23, 31].

However, the size of the diagram has a worst-case exponential

dependency on the number of robots. A different flavor of works

focuses on the execution of paths (more precisely, trajectories) that

have already been planned. In practice, there is no guarantee that

a robot will follow a planned trajectory. An external interference

might invalidate an initially valid plan. Therefore, there is a perpet-

ual need to verify and coordinate the motion of robots while they

move along planned paths (possibly replanning them). Some works

of this flavor include [4, 6, 7, 15].

Despite sustained interest in the problem, the first NP-hardness

results explaining the lack of efficient algorithms appeared, to our

knowledge, only relatively recently [27, 28]. These results have been

presented as part of a line of work on deadlock prevention in re-

source allocation problems [24], affiliated with the DES community,

which have wide applicability in various automation scenarios [25].

Such problems involve allocating a finite set of reusable resources

to a set of concurrently executing processes, where each process

can only be executed by acquiring resources in a certain order. Our

problem can be seen as being equivalent to the simplest class of re-

source allocation problems, known as Linear Single-Unit Resource

Allocation Systems (L-SU-RAS), which is NP-hard [24, 28]. In the

terms of L-SU-RAS, each robot emulates a process that needs to

“acquire” one location at a time from a sequence of locations, each

of which can host only a single robot at a time.

We observe the following undesirable properties of previous

hardness constructions: (i) Unbounded vertex multiplicity, i.e., there

is a “congested” location that has to be visited by an unbounded

number of robots. (ii) There are path segments that have to be

traversed in opposite directions, i.e., an inherent potential for a

head-on collision exists. (iii) The robot’s paths are not the shortest

between their endpoints. In particular, robots have to visit the same

vertex multiple times along their path (in proofs for the planar case).

We summarize the previous hardness results in 𝑇𝑎𝑏𝑙𝑒 1. Arguably,

these properties do not necessarily represent real systems, which

prompts new analysis for cases where they do not hold.

Contribution. In this work, we perform a fine-grained complexity

study of the problem of coordinating the motion of robots along

fixed paths. We consider two parameters: vertex multiplicity and

the path shape complexity, which is the maximum number of turns

made on the grid (exact definitions are provided in Section 2). We

consider two main problem variants: (1) a prominent variant that

corresponds to the L-SU-RAS resource allocation problem, and

(2) a lesser-studied variant where the aforementioned property

(ii) of opposite direction paths does not hold. For each variant,

we identify the critical values of the parameters for which the

problem remains NP-hard, such that below this value the problem

is efficiently solvable. By that, we establish a sharper boundary

between negative and positive results.

Our main positive result is for variant (1) where we present an

efficient algorithm solving the problem for any graph such that the

vertex multiplicity is 2. By that, we expand the class of efficiently

solvable instances. At the heart of our solution is an iterative pro-

cedure for resolving cycles of blocking relations among agents. For

each such cycle, we construct a special type of a directed graph,

which we call a graph composed of paths. We repeatedly contract

this graph until it reaches a problem-equivalent simplified and irre-

ducible state in which it is easy to determine whether the blocking

can be untangled or otherwise a deadlock is detected and the in-

stance has no solution. The algorithm runs in time linear in the

total lengths of the given paths.

On the negative side, we show that for a vertex multiplicity of 3,

the problem is NP-hard. Furthermore, for variant (2) we show that

the problem is NP-hard for agents moving along straight paths

on a 2D grid graph where the vertex multiplicity is 2, which is

considerably more restricted than previous hardness results.

Table 1: Comparison to previous hardness results. For exact defi-
nitions of problem variants and parameters see Section 2. A check
mark in the last column (“Shortest paths?”) indicates that each given
path in the construction is the shortest between its start and target
vertices. We use “min” to indicate that a parameter is the minimum
value below which the problem variant is efficiently solvable.

Problem

variant

Paper

Graph

type

Vertex

multiplicity

Max. # turns

in path

Shortest

paths?

NBT

[21] general unbounded n/a ✓
[27] planar unbounded n/a

[28] 2D grid unbounded >20

ours general 3 (min) n/a ✓
2D grid 4 1 (min) ✓

UNI ours 2D grid 2 (min) 0 (min) ✓
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Our fine-grained complexity analysis echoes recent calls for

deepening the understanding of what makes multi-agent motion

coordination problems hard [10, 13, 29]. Such an improved under-

standing can guide the search towards improved algorithms and

new efficiently solvable problem variants. We discuss potential

developments in this spirit in the conclusion.

Due to space constraints, we omit certain details and proofs,

which can be found in the full version [1].

2 PROBLEM DEFINITION AND ASSUMPTIONS
In this section, we formally define the problem that we study, along

with the assumptions and parameters we consider.

Multi-robot motion planning with given paths (MRMP-GP).. We

are given a set 𝑅 of 𝑛 robots that operate in a workspace𝑊 , which

is a finite undirected graph. The vertices of𝑊 , denoted by 𝑉 (𝑊 ),
may also be called positions. Each robot 𝑟 ∈ 𝑅 has a start vertex

𝑠 (𝑟 ) ∈ 𝑉 (𝑊 ) (also referred to as a source) and a target vertex 𝑡 (𝑟 ) ∈
𝑉 (𝑊 ), and a path 𝜋 (𝑟 ) = 𝑣1, . . . , 𝑣ℓ , where 𝑣1 = 𝑠 (𝑟 ), 𝑣ℓ = 𝑡 (𝑟 ) and
𝑣𝑖𝑣𝑖+1 is an edge of𝑊 for all 1 ≤ 𝑖 < ℓ . Note that since 𝜋 (𝑟 ) is a
path, each vertex only appears once in 𝜋 (𝑟 ).

Each robot is initially located at its start vertex. MRMP-GP asks

to find a motion plan or solution, which is a sequence of moves

that bring each robot from its source to its target using its given

path without inducing collisions with other robots. A legal move

consists of a single robot moving to the next vertex 𝑣 on its path,

provided that no other robot is located at 𝑣 . No backward moves

are allowed, i.e., a robot may not move to the previous vertex on

its path. In particular, once a robot reaches its target it stays there.

Figure 1 shows an example of an instance. Note that MRMP-GP

is a feasibility problem and not an optimization problem; hence, we

only move one robot at a time in a solution.

Variants. Now we define the two variants of the problem we

consider. Let 𝑟 and 𝑟 ′ be two different robots. We say that 𝑡 (𝑟 ′) is
a blocking target of 𝑟 if 𝑡 (𝑟 ′) lies on 𝜋 (𝑟 ). An instance is said to

have the non-blocking targets property if it does not have blocking

targets. This case corresponds to the L-SU-RAS resource allocation

problem [26] because in this problem when a process completes

it is essentially gone from the world. This is equivalent to a robot

whose target is not a blocking target of any other robot since we

can consider the robot as disappearing once it reaches its target.

For our second variant, an edge (𝑢, 𝑣) in𝑊 is called bi-directional
if it has to be traversed in both directions by different robots, i.e.,

there are two robots 𝑟 and 𝑟 ′ where (𝑢, 𝑣) appears on 𝜋 (𝑟 ) and
(𝑣,𝑢) appears on 𝜋 (𝑟 ′). An instance is said to have one-way or

unidirectional motion if it has no bi-directional edges.

Parameters. For a vertex 𝑣 ∈ 𝑉 (𝑊 ), we denote by 𝑁 (𝑣) the
number of paths in which it appears, i.e., 𝑁 (𝑣) B |{𝑟 | 𝑣 ∈ 𝜋 (𝑟 ), 𝑟 ∈
𝑅}|. We define the vertex multiplicity of an MRMP-GP instance𝑀 ,

denoted by VM(𝑀), to bemax𝑣∈𝑉 (𝑊 ) 𝑁 (𝑣). For the case where𝑊
is a 2D grid, we examine path shape complexity. We define the turn
number to be the maximum number of turns, i.e., the minimum

number of line segments needed to draw a path on the grid minus

one, made by any input path.

Shorthand notation. We use the following shorthand notation

throughout the paper. For the problem variant with non-blocking

t(r0)

t(r1)
t(r2)r2

r0

r1

s(r0)

s(r2)

s(r1)

e

Target vertex

Vertex with robot

Vertex with no robot

Figure 1: An MRMP-GP instance in which𝑊 has 8 vertices. There
are 3 robots, each with its own source, target and path which are
shown in the robot’s color. The instance has the non-blocking targets
property but does not have one-way motion (due to the edge 𝑒). Its
vertexmultiplicity is 2. A possible solution to this instance is tomove
each robot all the way to its target in the order 𝑟0, 𝑟2, 𝑟1. (While it is
not needed in this example, in general we allow a robot to stay put
in an intermediate vertex along its path, while other robots move.)

targets, we use MRMP-GP-NBT(𝑥), where 𝑥 indicates the vertex

multiplicity. We similarly use MRMP-GP-UNI(𝑥 ) for the variant that

has uni-directional motion. When𝑊 is a 2D grid, we also indicate

the turn number as the second parameter, e.g., MRMP-GP-UNI(2,0)

indicates a VM of 2 and straight paths (i.e., 0 turns).

3 ALGORITHM
We now consider MRMP-GP-NBT(2), i.e., the variant of MRMP-GP

having the non-blocking targets property with a vertex multiplicity

of at most 2. We present a polynomial-time algorithm that finds a

solution or reports that none exists. The algorithm has two phases,

which we now describe.

Phase 1. A robot 𝑟 located at vertex 𝑣 ∈ 𝜋 (𝑟 ) is said to have a

clear path if there are no other robots along the remainder of its

path, i.e., the subpath of 𝜋 (𝑟 ) from 𝑣 to 𝑡 (𝑟 ). Given the restriction

that a robot’s target is not included in any other robot’s path, a

robot with a clear path that is moved to its target will not block

any other robot in the future. Hence, we move each robot with a

clear path to its target until no such robot exists. Note that moving

one robot may clear the path of another robot, therefore the robots

are checked repeatedly.

Phase 2. Next, the algorithm iteratively identifies and solves

cycles. In each iteration, a single cycle is solved, which amounts to

moving only the cycle’s robots. At the beginning of each iteration,

we have the following invariant:

Each robot either (i) reached its target vertex, or (ii) is still

at its source vertex and it does not have a clear path.

At the end of Phase 1, the invariant is clearly maintained. A

robot 𝑟 is said to be blocked by another robot 𝑟 ′ if the path from the

current position of 𝑟 to 𝑡 (𝑟 ) contains the current position of 𝑟 ′. At
the beginning of each iteration, any robot that has not reached its

target yet is blocked by some other robot. Let 𝑟0 be one such robot

and let 𝑟1 be the robot blocking it, which must therefore not be at its

target 𝑡 (𝑟1). Then robot 𝑟1 has not yet reached its target, therefore

the path 𝜋 (𝑟1) contains some other robot 𝑟2, which blocks 𝑟1, and so

r0 r1

r2

r4

r3

r5

Figure 2: A simple cycle of 6 robots, 𝑟0, . . . , 𝑟5, where each robot is
blocking the previous one from reaching its target.
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on. The blocking relationship yields a sequence 𝑟0, 𝑟1, 𝑟2, . . . , 𝑟ℎ−1,
where 𝑟ℎ−1 is the first robot that is blocked by a robot 𝑟𝑖 already

appearing in the sequence, i.e., 𝑖 < ℎ − 1. See Figure 2 for an

illustration. To simplify notation, from this point on we use indices

of robots modulo ℎ, i.e., we write 𝑟𝑖 instead of 𝑟 (𝑖 mod ℎ) .

Lemma 3.1. A blocking sequence 𝑟0, 𝑟1, ..., 𝑟ℎ−1 that ends when
𝑟ℎ−1 is blocked by some robot 𝑟𝑖 , for 0 ≤ 𝑖 < ℎ − 1, forms a cycle, i.e.,
each robot 𝑟𝑖 is blocked by 𝑟𝑖+1.

Proof. Any robot 𝑟 𝑗 , 𝑗 < ℎ − 1 is blocked by 𝑟 𝑗+1 by definition.

Hence, it remains to prove that 𝑟ℎ−1 is blocked by 𝑟0. Assume

for a contradiction that 𝑟ℎ−1 is blocked by a robot 𝑟𝑖 with 𝑖 > 0.

This means that the paths of the robots 𝑟𝑖−1, 𝑟𝑖 , 𝑟ℎ−1 all contain the

start vertex 𝑠 (𝑟𝑖 ), contradicting the assumption that each vertex is

contained in at most two robots’ paths. □

Therefore, all the robots that are not at their target can be divided

into disjoint cycles. The algorithm solves each cycle (in a sense that

we define next) independently, and then moves the cycle robots to

their targets. This is possible since, as stated in Lemma 3.2 below,

their paths must be clear.

Let us fix a cycle𝐶 = 𝑟0, 𝑟1, ..., 𝑟ℎ−1. Each robot 𝑟𝑖 ∈ 𝐶 is currently

at its source vertex. Solving the cycle 𝐶 is defined as moving each

robot 𝑟𝑖 to the start position of the next robot, i.e., 𝑠 (𝑟𝑖+1), and
𝑠 (𝑟𝑖+1) is called the cycle target of 𝑟𝑖 .

Lemma 3.2. After𝐶 is solved, all the robots in𝐶 have a clear path.

Proof. Assume by contradiction that some robot 𝑟𝑖 of 𝐶 is

blocked by another robot 𝑟 after solving 𝐶 . If 𝑟 is not in 𝐶 , then

𝑟 belongs to another cycle, where it blocks another robot 𝑟 ′. This
means that 𝑟 blocks two robots at its current vertex, which contra-

dicts the assumption that vertex multiplicity is 2. If 𝑟 is also part of

𝐶 , then 𝑟 was blocked by a robot 𝑟 ′ in𝐶 . After solving𝐶 , 𝑟 is at the
source vertex 𝑠 (𝑟 ′), which implies that 𝑠 (𝑟 ′) appears on 3 robot’s

paths, namely, 𝑟 , 𝑟 ′, and 𝑟𝑖 , which again contradicts the assumption

of a vertex multiplicity of 2. □

Solving a cycle. The subpath of robot 𝑟𝑖 from 𝑠 (𝑟𝑖 ) to 𝑠 (𝑟𝑖+1) is
called the cycle path of robot 𝑟𝑖 . If there is a robot 𝑟 𝑗 with a vertex 𝑝

on its cycle path that does not appear in the cycle path of another

robot in 𝐶 , then we call 𝑟 𝑗 a scout. For example, 𝑟0 in Figure 2 is a

scout robot. If 𝐶 contains a scout robot, then 𝐶 can be solved by

moving the scout robot to 𝑝 and then moving each robot in the

reverse order from the scout robot along its cycle path. We omit

the full details of this simple case.

r0

r1

r3

r2

r1

r3
r3

r0

r1

r2

r0

r1

r2

r3

r4

r5

(a) (b) (c)

Figure 3: Unsolvable instances, each containing a single cycle: (a) A
deadlock where no robot can move. (b) Either 𝑟1 or 𝑟3 can move, but
either move will result in a deadlock of three robots similar to (a).
(c) The graph𝐺 constructed by the algorithm for the cycle in (b).

r3

r4

r5

r6

r1 r6

r1

r2

r5r2
r8

r7

r0

r0

r0 r1

r1

r2

r0
r1

r1

r2
r3

r4

r4

r4

r4 r5

r5

r5

r5

r0

Figure 4: Left: A graph composed of paths, which is solvable accord-
ing to Lemma 3.4. Right: A graph that is not composed of paths, since
the edges do not form an Eulerian cycle of the required type.

If there is no scout robot in 𝐶 , a solution might not exist; see

Figure 3. To determine whether a cycle is solvable, we construct a

directed graph𝐺 with vertices𝑉 (𝐺) ⊂ 𝑉 (𝑊 ) and edges 𝐸 (𝐺). The
vertices 𝑉 (𝐺) are a subset of the vertices on the cycle paths of the

robots in 𝐶 . For each robot 𝑟 in 𝐶 and each directed edge 𝑒 on the

cycle path of 𝑟 , we add the edge 𝑒 to 𝐸 (𝐺). We label this edge by 𝑟

to remember which robot induced it. It is therefore possible that

we have two edges from one vertex to another in 𝐺 , but they will

be labeled by different robots. We say that a directed graph with

labeled edges of this form is composed of paths; see Figure 4. Note

that the graph 𝐺 has the following properties:

• For each distinct label, the edges with that label form a path.

• Each vertex appears on the paths of exactly two labels.

• The end vertex of a path with one label is the start vertex of

a path with another label.

• The start vertex of a path with one label is the end vertex of

a path with another label.

• There is an Eulerian cycle in 𝐺 such that for each label, the

edges with that label are traversed consecutively in the cycle.

Any directed graph with labeled edges that has these properties is

said to be composed of paths. A start vertex of such a graph 𝐺 is

the start vertex of the path with any label, and we denote the set of

start vertices as 𝑉𝑠 (𝐺).
A graph 𝐺 which is composed of paths represents an equivalent

robot cycle obtained in the following simple way. For the path 𝜋

in 𝐺 consisting of all edges with label 𝑟 , we place the robot 𝑟 on

the start vertex of 𝜋 , and the robot 𝑟 must traverse the path 𝜋 .

See Figure 3(c) for illustration. If this instance of MRMP-GP has a

motion plan, we say that 𝐺 is solvable.
Let us first prove an elementary lemma about the degrees of a

graph 𝐺 composed of paths. Let 𝛿in (𝑣) and 𝛿out (𝑣) denote the in-
and out-degree of a vertex 𝑣 of 𝐺 .

Lemma 3.3. Let𝐺 be a graph composed of paths and 𝑣 be a vertex of
𝐺 . If 𝑣 ∈ 𝑉𝑠 (𝐺) then we have (𝛿in (𝑣), 𝛿out (𝑣)) = (1, 1) and otherwise
(𝛿in (𝑣), 𝛿out (𝑣)) = (2, 2).

Proof. Consider 𝑣 ∈ 𝑉𝑠 (𝐺). By the properties of 𝐺 , the path of

one label starts at 𝑣 , and the path of another label ends at 𝑣 . Since 𝑣

only appears on the paths of two labels, the statement follows.

Now consider a vertex 𝑣 ∈ 𝑉 (𝐺) \𝑉𝑠 (𝐺). By the properties of𝐺 ,

the vertex 𝑣 is included in the paths of two labels and is not a target

vertex of either of them. This means that on both paths, there are

edges to 𝑣 and edges out of 𝑣 , so (𝛿in (𝑣), 𝛿out (𝑣)) = (2, 2). □
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We now turn our attention to classifying the solvable graphs

that are composed of paths. Lemmas 3.4 and 3.5 present the base
cases of solvable vs. unsolvable graphs:

Lemma 3.4. Consider a graph 𝐺 that is composed of paths. If all
simple cycles in𝐺 have at least two vertices that are not start vertices,
then 𝐺 is solvable.

Lemma 3.5. If a graph𝐺 composed of paths contains a simple cycle
where all vertices are start vertices, then 𝐺 is not solvable.

We omit the proof of Lemma 3.5. As for Lemma 3.4, we postpone

the proof to first describe the algorithm that solves the correspond-

ing instance of MRMP-GP; see Figure 5 for a non-trivial example.

The algorithm begins by partitioning the robots into blocks as

follows. Consider a maximal directed path 𝜋 in 𝐺 with at least 3

vertices such that each vertex of 𝜋 except the first and last is a start

vertex. Let 𝑟1, . . . , 𝑟𝑘 , 𝑘 ≥ 1 be the corresponding robots starting on

these start vertices in order, and let 𝐵1 = (𝑟1, . . . , 𝑟𝑘 ). Running over
all such paths 𝜋 , we obtain blocks of robots 𝐵1, 𝐵2, . . ..

For a block 𝐵𝑖 = (𝑟1, . . . , 𝑟𝑘 ), we then define head(𝐵𝑖 ) = 𝑟𝑘 and

tail(𝐵𝑖 ) = 𝑟1. The robot 𝑟𝑘 has its cycle target at the start vertex of
a robot 𝑟 ′

1
in another block 𝐵 𝑗 . We then define next(𝐵𝑖 ) = 𝐵 𝑗 and

prev(𝐵 𝑗 ) = 𝐵𝑖 . Due to the properties of a graph composed of paths,

these relations are defined for all blocks 𝐵𝑖 .

We now describe our algorithm; See Algorithm 1 for pseudo-

code. We first choose an arbitrary block 𝐵𝑖 . Then, we move all

robots of 𝐵𝑖 a single edge forward from head(𝐵𝑖 ) to tail(𝐵𝑖 ). Move

head(𝐵𝑖 ) along its cycle path until it cannot be moved any further.

Let 𝐵 𝑗 = next(𝐵𝑖 ) be the block containing the robot, tail(𝐵 𝑗 ), that
blocks head(𝐵𝑖 ). Move the robots 𝐵 𝑗 forward by one edge and then

move head(𝐵𝑖 ) to its cycle target, which is the original position

of tail(𝐵 𝑗 ). Move head(𝐵 𝑗 ) as much as possible. From here on, the

pattern repeats until all the blocks have been traversed.

Proof of Lemma 3.4. We show that Algorithm 1 solves 𝐼 (𝐶),
the instance of MRMP-GP corresponding to 𝐺 of cycle 𝐶 . When

solving the cycle, we move each block of robots 𝐵𝑖 from head to

tail. Clearly, only moving head(𝐵𝑖 ) can be an invalid motion, as the

rest of the robots in 𝐵𝑖 are always moved to a vertex that was just

evacuated by the previously moved robot.

Denote by 𝑢, 𝑣 the vertices that are occupied by the tail and head

of 𝐵1 respectively (𝑢, 𝑣 might be the same vertex if 𝐵𝑖 consists of

Algorithm 1: Solve an instance of MRMP-GP correspond-

ing to a graph 𝐺 composed of paths satisfying the require-

ments of Lemma 3.4.

1 𝐵start ← 𝐵1;

2 𝐵 ← 𝐵start;

3 Loop
4 for 𝑟 ∈ 𝐵 in order from head(𝐵) to tail(𝐵) do
5 Advance 𝑟 one edge;

6 if 𝐵 is not 𝐵start then
7 Advance head(prev(𝐵)) one edge;
8 Advance head(𝐵) as much as possible;

9 𝐵 ← next(𝐵);
10 if 𝐵 is 𝐵start then
11 return;
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Figure 5: (a) An instance with a single blocking cycle. (b) The graph
𝐺 created for the single cycle, in which all simple cycles contain
two free (non-start) vertices. The blocks of maximal consecutive
robots are 𝐵1 = (𝑟0, 𝑟1 ), 𝐵2 = (𝑟2 ), 𝐵3 = (𝑟3, 𝑟4, 𝑟5 ), 𝐵4 = (𝑟6 ), 𝐵5 =

(𝑟7 ), 𝐵6 = (𝑟8 ) . We illustrate a few steps of the solution obtained
by Algorithm 1: (c) 𝐵1 = (𝑟0, 𝑟1 ) is the first chosen block, for which
robots are moved head to tail. (d) The robots of next(𝐵1 ) , 𝐵2 = (𝑟2 ) ,
are moved head to tail, and then head(𝐵1 ) is moved again. (e) The
robots next(𝐵2 ) , 𝐵3 = (𝑟3, 𝑟4, 𝑟5 ) , are moved head to tail, and then
head(𝐵2 ) is moved. (f) 𝐵4 = (𝑟6 ) and head(𝐵3 ) are moved.

a single robot). Both 𝑢, 𝑣 are in 𝑉𝑠 (𝐺), so by Lemma 3.3, 𝑢 has a

single in-going edge, from another vertex 𝑤 , and 𝑣 has a single

out-going edge, to another vertex 𝑧. Both𝑤, 𝑧 are not occupied by

robots and are not in 𝑉𝑠 (𝐺), otherwise these robots would have

been included in 𝐵𝑖 . If𝑤 = 𝑧, then𝑤 and all the vertices occupied by

the robots of 𝐵𝑖 form a simple cycle with a single non-start vertex,

in contradiction to the lemma’s assumption, therefore𝑤 ≠ 𝑧.

At the beginning of an iteration of the main loop (line 3), in

which 𝐵𝑖 is handled, we have the following invariant: At most one

vertex of 𝑉 (𝐺) \ 𝑉𝑠 (𝐺) is occupied by a robot, and the occupied

vertex is the source of the edge directed to the vertex 𝑠 (tail(𝐵𝑖 )).
In other words, the occupied vertex is𝑤 , as defined above. We now

verify that the invariant is maintained.

Initially, all the robots are on 𝑉𝑠 (𝐺) and the invariant is main-

tained. Suppose now that the invariant holds at the beginning of

an iteration. Before moving any robot of 𝐵 = 𝐵𝑖 , 𝑤 is the only

non-start vertex that can be occupied, therefore 𝑧 is never occu-

pied, and moving head(𝐵𝑖 ) a single step to 𝑧 is valid since 𝑤 ≠ 𝑧.
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Figure 6: (a) A cycle 𝑣0, . . . , 𝑣𝑘−1 that requires untangling. (b) A graph composed of paths that requires two untangling operations, shown in (c)
and (d), after which we conclude that the graph is unsolvable.

After moving the head of 𝐵𝑖 , the rest of the robots of 𝐵𝑖 are moved

head to tail, and the robot that occupied𝑤 is moved to the original

position of the tail of 𝐵𝑖 . Lastly, the head of 𝐵𝑖 is moved as much

as possible, until it reaches𝑤 ′, the source vertex of the in-edge of
𝑠 (tail(next(𝐵𝑖 ))), and the invariant is maintained. When the last

block is handled, the head is moved as much as possible and reaches

𝑠 (tail(next(𝐵𝑖 ))). Therefore the motion is valid.

We now verify that all robots get to their cycle targets. After

the algorithm handles a single block 𝐵𝑖 , all robots in 𝐵𝑖 except

head(𝐵𝑖 ) reach their cycle targets. As part of handling the next

block next(𝐵𝑖 ), head(𝐵𝑖 ) is moved again and reaches its cycle target,

so all the robots in 𝐵𝑖 traverse their cycle path. If 𝐵𝑖 is the last block

handled, then all the robots of other blocks reached their cycle

targets, including 𝑡𝑎𝑖𝑙 (𝐵start), therefore when ℎ𝑒𝑎𝑑 (𝐵𝑖 ) is advanced
as much as possible it will reach its cycle target, the start position

of 𝑡𝑎𝑖𝑙 (𝐵start). All the blocks 𝐵1, 𝐵2, . . . are examined, therefore all

the robots reached their cycle targets and the cycle is solved. □

If 𝐺 does not fall under one of the base cases of Lemmas 3.4

and 3.5, we gradually reduce 𝐺 to a graph that does fall under one

of these cases, as we describe next. So suppose that we are in a

situation not included in the base cases, namely that𝐺 has a simple

cycle 𝑣0, . . . , 𝑣𝑘−1 where 𝑣0 is not a start vertex, but all other vertices
are. Note that we must have (𝛿in (𝑣0), 𝛿out (𝑣0)) = (2, 2), according
to Lemma 3.3. It follows that (𝑣0, 𝑣1), (𝑣𝑘−1, 𝑣0), (𝑢, 𝑣0), (𝑣0,𝑤) are
edges in 𝐸 (𝐺) incident to 𝑣0, where 𝑢,𝑤 are vertices not appearing

in the simple cycle 𝑣0, . . . , 𝑣𝑘−1. Moreover, there are two robots 𝑟

and 𝑟 ′ such that (𝑢, 𝑣0) and (𝑣0, 𝑣1) are labeled with 𝑟 , and (𝑣𝑘−1, 𝑣0)
and (𝑣0,𝑤) are labeled with 𝑟 ′, as illustrated in Figure 6(a). If all

four edges had the same label 𝑟 then 𝑟 would be a scout robot. The

edges (𝑣𝑘−1, 𝑣0) and (𝑣0, 𝑣1) cannot have the same label, as then the

robots on 𝑣0, . . . , 𝑣𝑘−1 would form a blocking cycle independent of

the rest of the blocking cycle 𝐶 currently being solved.

We now define an untangling operation which leads to a new

graph𝐺 ′ with vertices𝑉 (𝐺 ′) = 𝑉 (𝐺) \ {𝑣0}; see Figure 6. In𝐺 ′ we
replace the two edges labeled by 𝑟 with a single edge (𝑢, 𝑣1) and
keep the label 𝑟 . We likewise replace the two edges labeled 𝑟 ′ with
a single edge (𝑣𝑘−1,𝑤) labeled 𝑟 ′. Let us prove that the untangling
operation maintains solvability.

Lemma 3.6. Let 𝐺 be a graph composed of paths and let 𝐺 ′ be the
graph obtained by performing the untangling process in 𝐺 . Then (i)
𝐺 ′ is also a graph composed of paths and (ii) 𝐺 ′ is solvable if and
only if 𝐺 is solvable.

Proof. Consider the untangling operation described above and

the involved vertices 𝑣𝑘−1, 𝑣0, 𝑣1, 𝑢,𝑤 . First, it is easy to verify that

the operation maintains the properties of a graph composed of

paths. Now suppose that 𝐺 is solvable. Two robots should pass

through 𝑣0: denote by 𝑟𝑢 the robot that includes 𝑢, 𝑣0, 𝑣1 in its cycle

path and 𝑟𝑤 the robot that includes 𝑣𝑘−1, 𝑣0,𝑤 in its cycle path.

There is no robot at 𝑣0, and the algorithm should decide which of

𝑟𝑢 , 𝑟𝑤 will go through 𝑣0 first. If 𝑟𝑢 is moved to 𝑣0 before 𝑟𝑤 , the

robots enter a deadlock, as the vertices 𝑣0, . . . , 𝑣𝑘−1 will all contain
robots (i.e., the same situation as in Lemma 3.5). Therefore 𝑟𝑤 must

move to 𝑣0 before 𝑟𝑢 . So 𝑟𝑤 moves first to 𝑣0 and then eventually

to𝑤 , and then 𝑟𝑢 moves to 𝑣0 and then to 𝑣1. It follows that in 𝐺
′
,

there is a motion plan where 𝑟𝑤 first moves on the merged edge

(𝑣𝑘−1,𝑤), then all robots on the path 𝑣1, . . . , 𝑣𝑘−2 move, and then

𝑟𝑢 moves on the merged edge (𝑢, 𝑣1).
Suppose now that𝐺 ′ is solvable. We can then simulate the same

solution in 𝐺 : When 𝑟𝑤 traverses the edge (𝑟𝑘−1,𝑤) in 𝐺 ′, we let
it traverse both edges (𝑟𝑘−1, 𝑣0) and (𝑣0, 𝑣𝑤) in 𝐺 . Likewise, when

𝑟𝑢 traverses (𝑢, 𝑣1) in 𝐺 ′, we let it traverse both edges (𝑢, 𝑣0) and
(𝑣0, 𝑣1) in𝐺 . All other edges in𝐺 and𝐺 ′ are the same, and for these

we copy the moves directly. We then have a solution for 𝐺 . □

Our algorithm proceeds by untangling cycles until it is no longer

possible. This results in a sequence of graphs𝐺0,𝐺1, . . . ,𝐺𝑚 , where

𝐺0 = 𝐺 is the original graph and each 𝐺𝑖 results from performing

the untangling operation in 𝐺𝑖−1. By Lemma 3.6, all these graphs

are composed of paths, and the resulting graph 𝐺𝑚 is solvable if

and only if the original graph 𝐺 is solvable. Furthermore, there is

nothing more to untangle in 𝐺𝑚 , so we either have a simple cycle

with robots on all vertices or there are at least two vertices with no

robots on all simple cycles. It then follows from Lemmas 3.4 and 3.5

that there is a solution if and only if we are in the latter case.

After solving a cycle, all the cycle robots have a clear path to

their target (see Lemma 3.2), and the algorithm moves all of them

to their targets one by one. A single iteration of Phase 2 has ended,

and the invariant that each robot is either at its start position or at

its target position is maintained, as the only robots the algorithm

moved were the cycle robots, and all of them reached their targets.

Any move we perform in the algorithm is such that there is a

solution after the move if and only if there is a solution before it.

Therefore, if the algorithm does not find a valid solution, namely

one of the cycles was untangled to a graph with a simple cycle with

robots on all vertices, there is no solution. Otherwise, the algorithm

finds a valid motion plan for all robots.

Both phases of our algorithm run in time linear in the total

lengths of the given paths. To keep Phase 1 efficient, the robots are

checked for a clear path, and when a robot is moved, the blocked

robots are checked only for clearness of their path suffix. To im-

plement Phase 2 efficiently, each cycle is identified and solved

independently. The size of the graph 𝐺 is linear in the total length
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of the paths of the robots that are induced in the cycle and no more

than |𝑉 (𝐺) | untangle operations need to be performed. See the full

version [1] for a more detailed analysis.

Putting everything together, we obtain the following:

Theorem 3.7. MRMP-GP-NBT(2) has an algorithm that finds a
solution or reports that no solution exists, in time linear in the total
lengths of the given paths.

4 HARDNESS RESULTS
In this section, we present our hardness results, which are as fol-

lows:

Theorem 4.1. The following MRMP-GP variants are NP-complete:
(i) MRMP-GP-UNI(2, 0), i.e., the workspace is a 2D grid graph

with VM = 2. Furthermore, each agent’s path is contained in
a single grid row or column.

(ii) MRMP-GP-NBT(4, 1), i.e., the workspace is a 2D grid graph
with VM = 4. Furthermore, each agent’s path contains at most
one turn.

(iii) MRMP-GP-NBT(3), i.e., general graphs with VM = 3.

Note that inMRMP-GP-UNIwe have unidirectional motionwhile

blocking targets are allowed (see Section 2 for exact definitions). In

contrast, in MRMP-GP-NBT we do not allow blocking targets, but

do allow bi-directional motion, i.e., robots that traverse the same

path but in opposite directions. Therefore, we can conclude that

the presence of each of the elements of bi-directional motion or

blocking targets by itself suffices to make MRMP-GP intractable.

Since our algorithm from Section 3 solves MRMP-GP-NBT(2),

hardness result (iii) is tight. That is, we establish a tractability fron-

tier based on vertex multiplicity for MRMP-GP-NBT. We identify

additional tractability frontiers through the minimality of parame-

ters as indicated in Table 1, which is easy to verify. To see that the

turn number of MRMP-GP-NBT(4, 1) is minimal, we can reduce

MRMP-GP-NBT(4, 0) to MRMP-GP-NBT(2).

We prove Theorem 4.1 in stages, establishing result (i), then (ii),

and finally (iii). Here we sketch the proof, focusing on (i); see the

full version [1] for the rest of the details. As it is straightforward to

verify that MRMP-GP is in NP, we only discuss NP-hardness.

First, we show the NP-hardness of a variant of MRMP-GP, called

MRMP-GP with Precedence Constraints (MRMP-GP-PC). MRMP-GP-

PC has additional constraints on the order in which robots visit

vertices, which we use to abstract away the details of our complete

constructions while showing the functionality of their gadgets.

As part of the sketch, we illustrate how to realize the instance

constructed by the reduction to MRMP-GP-PC, denoted by 𝑀𝑠 , on

the 2D grid. In our full proof, we incrementally convert 𝑀𝑠 , to

instances that are equally hard to solve. That is, each subsequent

instance𝑀′ we describe is solvable if and only𝑀𝑠 is solvable.

The conversion steps of 𝑀𝑠 are as follows. We first convert 𝑀𝑠

to an instance𝑀 of MRMP-GP-UNI(2,0). To realize the gadgets in

𝑀 , we use blocking targets. In the next stage, we convert𝑀 to𝑀′,
in which we eliminate all the blocking targets. Such targets are

replaced by paths going in opposite directions using the following

mostly local changes: Let 𝑟, 𝑟 ′ be two robots, where 𝑡 (𝑟 ) is a blocking
target located at vertex 𝑣 , where 𝑣 ∈ 𝜋 (𝑟 ′). We extend 𝜋 (𝑟 ) so that

it runs along 𝜋 (𝑟 ′) in the opposite direction. The change preserves

the constraint that 𝑟 must visit 𝑣 before 𝑟 ′ in a valid solution, which

we use in our gadgets. The changes increase the VM of 𝑀′ to 4

and make it an instance of MRMP-GP-NBT(4,1). Lastly, by carefully

removing vertices with VM=4 from𝑀′ (which makes it no longer

a 2D grid) we get an instance𝑀′′ of MRMP-GP-NBT(3).

We now begin the sketch, focusing on the hardness of MRMP-GP-

UNI(2, 0). To establish the hardness of MRMP-GP-PC, we introduce

a problem called Pivot Scheduling and prove that it is NP-hard.

Next, we reduce Pivot Scheduling to MRMP-GP-PC.

Pivot Scheduling. An instance has the form (𝑉 , C), where 𝑉 is a

set of jobs that come in pairs and C is a set of ordering constraints:

Let 𝑉 = {𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛} be a set of 2𝑛 distinct jobs. Let C =

{𝐶1, . . . ,𝐶𝑚}, where each 𝐶 𝑗 ∈ 𝑉 3
is a triplet. The problem is to

determine whether 𝑉 can be partitioned into a before-set 𝐵 and an

after-set 𝐴 (i.e., 𝐴 ∩ 𝐵 = ∅ and 𝐴 ∪ 𝐵 = 𝑉 ) such that the following

constraints are satisfied: (i) for each pair 𝑥𝑖 , 𝑦𝑖 , we have either 𝑥𝑖 ∈ 𝐵
or 𝑦𝑖 ∈ 𝐵 and (ii) for each 𝐶 𝑗 ∈ C, one of the jobs in 𝐶 𝑗 must be in

𝐴, i.e., 𝐶 𝑗 ∩𝐴 ≠ ∅.
We call the former constraints before-constraints and the latter

constraints after-constraints. Intuitively, the before/after constraints
implicitly imply the existence of a distinguished pivot job with

respect to which the input jobs must be ordered. To be precise, 𝐵

and 𝐴 respectively correspond to the jobs that come before and

after the pivot job.

We prove that Pivot Scheduling is NP-hard using a straightfor-

ward reduction from 3SAT; see the full version for the proof.

Lemma 4.2. Pivot Scheduling is NP-hard.

Hardness of MRMP-GP-PC.. Let us now define MRMP-GP-PC.

The input is the same as MRMP-GP except that we also have special

vertices, which we will use as gadgets. Each gadget vertex must be

traversed (i.e., visited) by the robots passing through it in a certain

traversal order (the exact constraints used will be specified in the

reduction). A solution to MRMP-GP-PC is the same as for MRMP-

GP with the additional requirement that gadget vertices must be

visited according to their respective traversal order.

We proceed to the reduction. Given an instance of Pivot Sched-

uling 𝐼 = (𝑉 , C), we construct a corresponding MRMP-GP-PC

instance 𝑀𝑠 . We represent each job in 𝑉 by a corresponding job
robot in 𝑀𝑠 . We also represent the implicit pivot job by the pivot
robot 𝑟∗. To simplify notation, we use the same name for a job and

its corresponding robot. Another robot is 𝛽 , which can be thought

of as a robot continuing the journey of 𝑟∗. Lastly, for each constraint
𝐶 𝑗 = {𝑧1, 𝑧2, 𝑧3} ∈ 𝑉 3

, we have three corresponding checker robots
𝑐1
𝑗
, 𝑐2

𝑗
, 𝑐3

𝑗
, which we use to emulate after-constraints.

We now discuss the gadgets in 𝑀𝑠 . For each 𝑖 ∈ [𝑛] we have a
before-constraint gadget, denoted by 𝐵𝑖 , which appears on the paths

of 𝑟∗, 𝑥𝑖 and𝑦𝑖 . The traversal order for 𝐵𝑖 is defined as having either
𝑥𝑖 or 𝑦𝑖 traverse 𝐵𝑖 before 𝑟

∗
does. For each 𝑗 ∈ [𝑚] we have an

after-constraint gadget, denoted by 𝐴 𝑗 , which appears on the paths

of 𝛽 and the checker robots 𝑐1
𝑗
, 𝑐2

𝑗
, 𝑐3

𝑗
. The traversal order for 𝐴 𝑗 is

defined as having one of 𝑐1
𝑗
, 𝑐2

𝑗
, 𝑐3

𝑗
traverse 𝐴 𝑗 after 𝛽 does. The last

gadget type we use is the precedence gadget, denoted by P(𝑟, 𝑟 ′),
which must be visited first by 𝑟 and then by 𝑟 ′, where 𝑟 and 𝑟 ′ are
arbitrary robots. The particular instances of this gadget that we use

are specified below.
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Figure 7: An MRMP-GP-PC instance corresponding
to Pivot Scheduling with 𝑉 = {𝑥1, 𝑦1, . . . , 𝑥3, 𝑦3} and
C = {{𝑦1, 𝑦2, 𝑥3}, {𝑥1, 𝑦2, 𝑥3}, {𝑥1, 𝑥2, 𝑦3}}. The robots’ paths
are shown as long arrows. Precedence gadgets are shown as squares
containing a short arrow, which is oriented along the path of the
robot that needs to traverse the gadget first.

We now describe the order of gadgets along the paths. The

path 𝜋 (𝑟∗) first passes through all before-constraint gadgets (in

arbitrary order) and then passes through the precedence gadget

G B P(𝑟∗, 𝛽). The path 𝜋 (𝛽) first passes through G, and then

through all after-constraint gadgets (in arbitrary order). Since G is

the last gadget along 𝜋 (𝑟∗) and the first gadget along 𝜋 (𝛽), 𝛽 can

essentially only start moving after 𝑟∗ reaches its target. Now let

𝑐ℓ
𝑗
be a checker robot, which corresponds to the job 𝑧 in the con-

straint 𝐶 𝑗 . The robot 𝑐
ℓ
𝑗
first passes through 𝐴 𝑗 and then through

the precedence gadget P(𝑐ℓ
𝑗
, 𝑧). This means that before a job robot

enters its respective 𝐵𝑖 gadget, all the checker robots corresponding

to the job must first traverse their respective 𝐴 𝑗 gadget.

Robots and path placements. An example of𝑀𝑠 is shown in Fig-

ure 7, which has a dual purpose of illustrating the conversion of𝑀𝑠

to the grid instance𝑀 . The figure should be interpreted as follows.

Each (long and colored) arrow represents a path lying in a single

grid row/column and the rectangles are gadgets. For𝑀 , each rectan-

gle indicates the placement of a gadget, which contains a constant

number of additional robots (not shown). For𝑀𝑠 , each gadget is a

vertex, so a robot’s path can be thought of as going off the grid for

one vertex to visit the gadget. Note that vertex multiplicity outside

of gadgets is indeed 2.

We realize𝑀 on the 2D grid as follows. The top row of𝑀 initially

contains the job robots 𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛 , ordered left to right, which

have to move down to the bottom row of𝑀 . The rightmost column

of𝑀 initially contains the checker robots 𝑐1
1
, 𝑐2
1
, 𝑐3
1
, . . . , 𝑐1𝑚, 𝑐2𝑚, 𝑐3𝑚 ,

ordered top to bottom, which have to move left to the leftmost

column of𝑀 . The pivot robot 𝑟∗ is initially located near the bottom
row and has to go from the leftmost column to the rightmost column

of 𝑀 . The robot 𝛽 is initially located near the rightmost column

and has to go from the bottom row to the top row of𝑀 .

We now turn to the correctness of the reduction. We have the

following correspondence between a partition (𝐵,𝐴) for 𝐼 and a

solution to 𝑀𝑠 : A job of an 𝑥𝑖 , 𝑦𝑖 pair is in the before-set 𝐵 if and

only if the corresponding job robot traverses 𝐵𝑖 before 𝑟
∗
does.

Now let (𝐵′, 𝐴′) be a partition obtained from a solution to𝑀𝑠 , as

just defined. Clearly, by the definition of the 𝐵𝑖 ’s, 𝐵
′
satisfies the

before-constraints of 𝐼 . We now prove that after constraints are

satisfied by 𝐴′:

Lemma 4.3. Let𝐶 𝑗 be an after-constraint of 𝐼 and let 𝑅(𝐶 𝑗 ) denote
the corresponding job robots in𝑀𝑠 . Then one of the robots of 𝑅(𝐶 𝑗 )
traverses its respective before-constraint gadget after 𝑟∗.

Proof. Assume for a contradiction that each robot in 𝑅(𝐶 𝑗 )
traverses its respective before-constraint gadget before 𝑟∗ does. Let
𝑟 be the last robot of 𝑅(𝐶 𝑗 ) to do so and let 𝐵𝑖 be the gadget it

traverses. We now examine the time step in which 𝑟 is at 𝐵𝑖 . At this

point, 𝑟∗ is located to the left of 𝐵𝑖 while all the checker robots of𝐶 𝑗

have already traversed the gadget𝐴 𝑗 due to the precedence gadgets.

Consequently, 𝛽 must have already traversed 𝐴 𝑗 , as it cannot be

the last robot to traverse the 𝐴 𝑗 , by its definition. In particular,

𝛽 already traversed the precedence gadget G = P(𝑟∗, 𝛽) (bottom
right in Figure 7). This is a contradiction since 𝑟∗ must traverse G
before 𝛽 . □

Given a valid job partition, it is easily verified that the correspon-

dence above directly lends itself to an ordering of the robots in 𝑀𝑠

by which they can move to their targets one by one. We omit the

rest of the proof.

5 CONCLUSION
We gave a refined complexity analysis of MRMP-GP that sheds

new light on the problem’s sources of difficulty. A key element of

previous MRMP-GP hardness constructions is paths that traverse

the same set of vertices in opposite directions (e.g., a given path

would contain the sequence 𝑣1, 𝑣2, 𝑣3 while another path would

contain 𝑣3, 𝑣2, 𝑣1). We show that hardness can arise even without

such paths if instead we have a different element, which is blocking

targets. This observation leads to an intriguing question, which

is whether the MRMP-GP remains hard when neither elements

are present. A positive answer could have implications for fixed-

path robot/transport systems, which could be designed to avoid the

aforementioned elements.

From the perspective of parameterized complexity [8], which is a

research avenue for hard motion planning problems [29], our hard-

ness results rule out candidate parameters. Namely, by showing

that hardness remains even for a constant vertex multiplicity (VM)

we prove that MRMP-GP is unlikely to be fixed-parameter tractable

(FPT) when parameterized by VM. The same statement holds for

path shape complexity. Therefore, we guide the search for parame-

terized algorithms toward other parameters. We believe that our

hardness constructions more vividly expose potential parameters

since our results hold for highly distilled MRMP-GP formulations.

A natural extension of MRMP-GP is optimizing the solution, e.g.,

its makespan. Such an optimization variant is closely related to

Multi-Agent Path Finding [35], where its use as a subroutine may

have potential. For example, in each high-level node of the popular

Conflict-Based Search algorithm [30] a path is found for each agent,

which may be viewed as fixed for that node. Hence, a fast algorithm

for the optimization variant of MRMP-GP might improve lower

bounds for the cost of a high-level node, thus better guiding the

search. We believe that our new insights for deciding feasibility

provide a better foundation for such future directions.
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