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ABSTRACT
We propose a novel model for refugee housing respecting the pref-

erences of the accepting community and refugees themselves. In

particular, we are given a topology representing the local commu-

nity, a set of inhabitants occupying some vertices of the topology,

and a set of refugees that should be housed on the empty vertices of

the graph. Both the inhabitants and the refugees have preferences

over the structure of their neighbourhood.

We are specifically interested in the problem of finding housing

such that the preferences of every individual are met; using game-

theoretical words, we are looking for housing that is stable with

respect to some well-defined notion of stability. We investigate

conditions under which the existence of equilibria is guaranteed

and study the computational complexity of finding such a stable

outcome. As the problem is NP-hard even in very simple settings,

we employ the parameterised complexity framework to give a finer-

grained view of the problem’s complexity with respect to natural

parameters and structural restrictions of the given topology.
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1 INTRODUCTION
According to the last report of the United Nations High Commis-

sioner for Refugees (UNHCR), there were 89.3 million forcibly dis-

placed persons at the end of 2021 [68]. It is the highest number

since the aftermath of World War II and it is for sure that these

numbers will even grow. In May 2022, UNHCR announced that a

tragic milestone of 100 million displaced persons was reached. They

identified the war in Ukraine as the leading cause of the dramatic

growth in the last year [59]. Russian aggression not only forced

many Ukrainians to leave their homes, but even caused food in-

security and related population movement in many parts of the

world, since Ukraine is among the fifth largest wheat exporters in

the world [13].

It should be mentioned that political and armed conflicts are

not the only causes of forced displacement [68]. One of the most

common reasons for fleeing is due to natural disasters. To name

just a few, in August 2022, massive floods across Pakistan affected

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

at least two-thirds of the districts and displaced at least 33 million

people [56, 57]; the numbers are not yet final. At the same time, a

devastating drought in Somalia caused the internal displacement

of at least 755,000 people [68]. Furthermore, it is expected that, due

to climate change, extremes of the climate will become even more

common in the near future [39].

Arguably, the best prevention against the phenomenon of forced

displacement is not allowing it to appear at all; however, the afore-

mentioned numbers clearly show that these efforts are not very suc-

cessful. Therefore, in practise, threemain solutions are assumed [45].

Voluntary repatriation is the most desirable but not very successful

option. In many situations, repatriation is not even possible due to

ongoing conflicts or a completely devastated environment. Resettle-
ment and integration in the country of origin or abroad are more

common. These two solutions require considerable effort from both

the newcomers and the host community sides.

The very problematic part of forced displacement is the fact that

38% of all refugees
1
are hosted in only five countries [68]. And these

are only the absolute numbers. For example, in Lebanon, every one

in four people is a refugee [61]. The redistribution of refugees seems

to be a natural solution to this imbalance; however, not all countries

are willing to accept all people. One such example can be the Czech

Republic, which refuses to accept any Syrian refugees during the

2015 European migrant crisis, currently hosting the largest number

of Ukrainian refugees per capita [69].

Even with working and widely accepted redistributing policies,

there is still a need to provide housing in specific cities and commu-

nities. From the good examples of such integration strategies [62]

it follows that one of the most important characteristics is that

members of the accepting community do not feel threatened by

newcomers.

Inspired by this, we propose a novel computational model for

refugee housing. Our ultimate goal is to find an assignment of dis-

placed persons into empty houses of a community such that this

assignment corresponds to the preferences of the inhabitants about

the structure of their neighbourhoods and, at the same time, our

model also takes into consideration the preferences of the refugees

themselves, as refugees dissatisfied with their neighbourhood have

a strong intention to leave the community. More precisely, in our

model, we are given a topology of the community, which is an undi-

rected graph, a set of inhabitants together with their assignment to

the vertices of the topology and preferences over the shape of their

neighbourhood, and a set of refugees with the same requirements

on the neighbourhood shape. We want to find a housing of refugees

in the empty vertices of the topology such that the housing satisfies

a certain criterion, such as stability.

1
From the strict sociological point-of-view, not all forcibly displaced persons are

classified as refugees. Slightly abusing the notation, we will use the term refugee and

displaced person interchangeably.
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Refugee redistribution has gained the attention of mathemati-

cians and computer scientists very recently. The formal model for

capturing refugee resettlement is double-sided matching [3, 7, 28,

29]. That is, on the input we are given a set of locations with multidi-

mensional constraints and a set of refugees with multidimensional

features. An example of a constraint can be the number of refugees

the locality can accept on one side and the size of family on the

refugee side. The question then is whether there exists a matching

between localities and refugees respecting all constraints. Accord-

ing to us, this formulation of the refugees resettlement problem

more concerns the global perspective of refugee redistributing, not

the local housing problem, as we do in our paper. Aziz et al. [7]

studymostly the complexity of finding stable matching with respect

to different notions of stability, and it turns out that for most of

the stability notions finding a stable matching is computationally

intractable (NP-hard, in fact). Kuckuck et al. [51] later refined the

model of Aziz et al. [7] in terms of hedonic games.

Our Contribution. Partly continuing the line of research in refugee
resettlement, we introduce a novel model focused on the local hous-

ing of new refugees. Previous models [3, 7, 29] can be seen and used

as a very effective model on the (inter-) national level to distribute

refugees to certain locations, such as states or cities
2
. However, our

model can be assumed as the second level of refugee redistribution;

once refugees are allocated to some community, we want to house

them in a way that respects preferences of both inhabitants and

refugees.

In particular, we introduce three variants of refugee housing,

each targeting a certain perspective of this problem. Our simplest

model, introduced in Section 3, completely eliminates the prefer-

ences of refugees and studies only the stability of the housing with

respect to the preferences of the inhabitants. We call this variant

anonymous housing. Since refugees are assumed to be indistinguish-

able, inhabitants have preferences over the number of refugees in

their neighbourhood.

As stated above, the most successful refugee integration projects

have the following property in common; they try to make both

inhabitants and refugees as satisfied as possible by various activities

to ensure that both groups get to know each other. We believe that

our hedonic model, where the preferences of both inhabitants and

refugees are based on the identity of particular members of the

second group, supports and leads to more stable and acceptable

housing. This model is formally defined and studied in Section 4.

The two introduced models have some disadvantages. The first

is disrespectful to the refugees’ preferences, while the second is not

very realistic, as it is hard to make all inhabitants familiar with all

refugees and the other way around. Therefore, our last model can be

seen as a compromise between these two extremes. In the diversity
setting, introduced in Section 5, all agents (union of inhabitants and

refugees) are partitioned into 𝑘 types, and preferences are over the

fractions of agents of each type in the neighbourhood of each agent.

Another advantage of this approach is that it nicely captures also the

settings where we already have number of integrated refugees and

the newcomers want to have some of them in the neighbourhood,

or the case of an internally displaced person.

2
In fact, the American resettlement agency HIAS use the matching software AnnieTM

Moore which was later improved by Ahani et al. [3].

In all the aforementioned variants of the refugee housing prob-

lem, agents have dichotomous preferences; that is, they approve

some set of alternatives and do not distinguish between them. It

can be seen as if the neighbourhood of some agent does not comply

with his approval set, he would rather leave the local community,

which is very undesired behaviour on both sides.

For all assumed variants, we show that an equilibrium is not guar-

anteed to exist even in very simple instances. Thus, we study the

computational complexity of finding an equilibrium or deciding that

no equilibrium exists. To this end, we provide polynomial-time al-

gorithms and complementaryNP-hardness results. In order to paint
a more comprehensive picture of the computational tractability of

the aforementioned problems, we employ a finer-grained frame-

work of parameterised complexity to give tractable algorithms for,

e. g., instances where the number of refugees or the number of

inhabitants is small, or for certain structural restrictions of the

topology. Additionally, we complement many of our algorithmic

results with conditional lower-bounds matching the running-time

of these algorithms.

Statements where proofs or details are omitted due to space constraints
are marked with ★. A version containing all proofs and details is
available in [48].

Related Work. Our model is influenced by a game-theoretic re-

formulation of the famous Schelling’s model [63, 64] of residential

segregation introduced by Agarwal et al. [2]. Here, we are given a

simple undirected graph 𝐺 and a set of selfish agents partitioned

into 𝑘 types. Every agent wants to maximise the fraction of agents

of her own type in her neighbourhood. The goal is then to assign

agents to the vertices of 𝐺 so that no agent can improve her utility

by either jumping to an unoccupied vertex or swapping positions

with another agent. Follow-up works include those that study the

problem from the perspective of computational complexity [33, 50]

and equilibrium existence guarantees [16, 17, 46].

The second main inspiration for our model is the Hedonic Seat

Arrangement problem and its variants recently introduced by

Bodlaender et al. [18]. Here, the goal is to find an assignment of

agents with preferences to the vertices of the underlying topology.

The desired assignment should then meet specific criteria such

as different forms of stability, maximising social welfare, or being

envy-free. In our model, compared toHedonic Seat Arrangement

of Bodlaender et al. [18], inhabitants already occupy some vertices

of the topology and we have to assign refugees to the remaining

(empty) vertices in a desirable way.

Next, the problem of house allocation [1] or housing market [66]

has been extensively studied in the area of mechanism design. Here,

each agent owns a house and the objective is to find a socially effi-

cient outcome using reallocations of objects. Later, You et al. [71]

introduced house allocation over social networks that follows cur-

rent trend inmechanism design initiated by Li et al. [53], where each

individual can only communicate with his neighbours. As stated

before, the house allocation is studied mainly from the viewpoint

of mechanism design and as such is far from our model.

Finally, hedonic games [21, 22, 32] are a well-studied class of

coalition formation games where the goal is to partition agents into

coalitions and where the utility of every agent depends on the iden-

tity of other agents in his coalition. In anonymous games [12, 21],
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the agents have preferences over the sizes of their coalition. The

most recent variants of hedonic games are the so-called hedonic

diversity games [19, 23] where agents are partitioned into 𝑘 types

and preferences are over the ratios of each type in the coalition. The

main difference between our model and (all variants of) hedonic

games is that in the latter model all coalitions are pairwise dis-

joint; however, in our case, each agent has his own neighbourhood

overlapping with neighbourhoods of other agents.

2 PRELIMINARIES
LetN denote the set of positive integers. Given two positive integers

𝑗, 𝑗 ′ ∈ N, with 𝑗 ≤ 𝑗 ′, we call the set [ 𝑗, 𝑗 ′] = { 𝑗, . . . , 𝑗 ′} an interval,
and let [ 𝑗] = [1, 𝑗] and [ 𝑗]0 = [ 𝑗] ∪ {0}. Let 𝑆 be a set. By 2

𝑆
we

denote the set of all subsets of 𝑆 and, given 𝑘 ≤ |𝑆 |, we denote by(𝑆
𝑘

)
the set of all subsets of 𝑆 of size 𝑘 .

Let 𝑅 = {𝑟1, . . . , 𝑟𝑚} be a non-empty set of refugees and 𝐼 =

{𝑖1, . . . , 𝑖ℓ } be a set of inhabitants. The set of all agents is defined
as 𝑁 = 𝑅 ∪ 𝐼 . A topology is a simple undirected graph 𝐺 = (𝑉 , 𝐸),
where |𝑉 | ≥ |𝑁 |. For a vertex 𝑣 , we denote by 𝑁 (𝑣) the set of

its neighbours, formally 𝑁 (𝑣) = {𝑢 | {𝑢, 𝑣} ∈ 𝐸}. The size of the
neighbourhood of a vertex 𝑣 is called its degree and is defined as

deg(𝑣) = |𝑁 (𝑣) |. The closed neighbourhood of vertex 𝑣 is defined

as 𝑁 [𝑣] = 𝑁 (𝑣) ∪ {𝑣}. In this work, we follow the basic graph-

theoretical terminology [30].

An inhabitants assignment is an injective function ] : 𝐼 → 𝑉 .

A set of vertices occupied by the inhabitants is denoted 𝑉𝐼 and,

given an inhabitant 𝑖 ∈ 𝐼 , we denote the set of unoccupied vertices

in his neighbourhood 𝑈𝑖 = 𝑁 (] (𝑖)) \𝑉𝐼 . The set of all vertices that
are not occupied by inhabitants is denoted 𝑉𝑈 = 𝑉 \𝑉𝐼 .

The goal of every variant of our problem is to find a mapping

of refugees to vertices that are not occupied by inhabitants. For-

mally, housing is an injective mapping 𝜋 : 𝑅 → 𝑉𝑈 . A set of ver-

tices occupied by refugees with respect to housing 𝜋 is denoted

𝑉𝜋 = {𝜋 (𝑟 ) | 𝑟 ∈ 𝑅}. We denote by Π𝐺,] the set of all possible hous-

ings, and we drop the subscript whenever 𝐺 and ] are clear from

the context.

Parameterised Complexity. We study the problem in the frame-

work of parameterised complexity [26, 31, 60]. Here, we investigate

the complexity of the problem not only with respect to an input

size 𝑛, but even assuming some additional parameter 𝑘 . The goal
is to find a parameter which is small and the “hardness” can be

confined to this parameter. The most favourable outcome is an algo-

rithm with running time 𝑓 (𝑘) · 𝑛O(1)
, where 𝑓 is any computable

function. We call this algorithm fixed-parameter tractable and the

complexity class containing all problems that admit algorithms

with such running time is called FPT.
Not all combinations of parameters yield to fixed-parameter

tractable algorithms. A less favourable outcome is an algorithm

running in 𝑛𝑓 (𝑘 ) time, where 𝑓 is any computable function. Param-

eterised problems admitting such algorithms belong to complexity

class XP. To exclude the existence of a fixed-parameter tractable

algorithm, one can show that the parameterised problem isW[t]-
hard for some 𝑡 ≥ 1. This can be done via a parameterised reduction
from any problem known to be W[t]-hard.

It could also be the case that a parameterised problem is NP-hard
even for a fixed value of 𝑘 ; we call such problems para-NP-hard
and, assuming P ≠ NP, such problems do not admit XP algorithms.

Our running-time lower-bounds are based on the well-known Ex-

ponential Time Hypothesis (ETH) of Impagliazzo and Paturi [43];

see also Impagliazzo et al. [44] and survey of Lokshtanov et al. [54].

This conjecture states that, roughly speaking, there is no algorithm

solving 3-SAT in time sub-exponential in the number of variables.

3 ANONYMOUS REFUGEES
In our simplest model of refugee housing, we assume refugees to

be non-strategic and concern only the preferences of inhabitants.

In this sense, the refugees are, from the viewpoint of inhabitants,

anonymous, and the preferences only takes into account the num-

ber of refugees in the neighbourhood of each inhabitant. Similar

preferences have already been studied in different problems such

as anonymous hedonic games [11, 12, 21].

We formally capture this setting in the computational problem

called theAnonymous Refugees Housing problem (ARH for short).

A preference of every inhabitant 𝑖 ∈ 𝐼 is a set 𝐴𝑖 ⊆ [deg(] (𝑖))]0 of
the approved numbers of refugees in the neighbourhood. Our goal

is to decide whether there is a housing 𝜋 : 𝑅 → 𝑉𝑈 that respects

the preferences of all inhabitants.

Definition 3.1. Ahousing𝜋 : 𝑅 → 𝑉𝑈 is called inhabitant-respecting
if for every 𝑖 ∈ 𝐼 we have |𝑁 (] (𝑖)) ∩𝑉𝜋 | ∈ 𝐴𝑖 .

If the approval set 𝐴𝑖 for an inhabitant 𝑖 ∈ 𝐼 consists of consecu-
tive numbers, we say that the inhabitant 𝑖 approves an interval.

Example 3.2. Let the topology be a cycle with four vertices. There
are two inhabitants assigned to neighbouring vertices. One of these

inhabitants, call her ℎ1, has approval set 𝐴ℎ1
= {0, 1}, and the

second one, say ℎ2, is not approving any refugees in his neighbour-

hood, that is, 𝐴ℎ2
= {0}. We have 𝑅 = {𝑟 }. The only valid housing

is next to the inhabitant ℎ1 as housing 𝑟 in the neighbourhood of

ℎ2 clearly does not respect his preference. Also note that in this

particular example, all the inhabitants approve intervals.

As our first result, we observe that even in a very simple settings,

it is not guaranteed that any inhabitant-respecting refugees housing

exists.

Proposition 3.3. There is an instance of the ARH problem with no
inhabitant-respecting refugees housing even if all inhabitants approve
intervals.

To prove Proposition 3.3, assume an instance with one inhab-

itant 𝑖 and two refugees 𝑟1 and 𝑟2. Let the topology be 𝐾3
, the

inhabitant 𝑖 be assigned to an arbitrary vertex, and let 𝐴𝑖 = {0}.
There are exactly two possible refugees housings and in any of

them the inhabitant 𝑖 has two neighbouring refugees; therefore,

there is no inhabitant-respecting housing.

In the previous example, we used the fact that the inhabitant 𝑖

does not approve any refugees in his neighbourhood. We call such

inhabitants intolerant. Despite the fact that the instance does not
have an inhabitant-respecting housing even if𝐴𝑖 = {1}, we observe
that intolerant inhabitants can be safely removed.

Proposition 3.4 (★). Let I = (𝐺, 𝐼, 𝑅, ], (𝐴𝑖 )𝑖∈𝐼 ) be an instance
of the ARH problem, 𝑗 ∈ 𝐼 be an inhabitant with 𝐴 𝑗 = {0}, and
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𝐹 𝑗 = {] ( 𝑗)} ∪𝑈 𝑗 . I admits an inhabitant-respecting housing iff the
instance I′ = (𝐺 \ 𝐹 𝑗 , 𝐼 \ { 𝑗}, 𝑅, ], (𝐴𝑖 )𝑖∈𝐼\{ 𝑗 } ) admits an inhabitant-
respecting housing.

Proof. Let I be a yes-instance, let 𝑗 ∈ 𝐼 be an inhabitant with

𝐴 𝑗 = {0}, and let 𝜋 be an inhabitant-respecting refugees housing.

Since 𝜋 is an inhabitant-respecting housing, there is no refugee in

the neighbourhood of 𝑗 , so 𝜋 is a solution even for I′
.

In the opposite direction, let I′
be a yes-instance and 𝜋 ′ be an

inhabitant-respecting housing in I′
. As 𝜋 ′ houses all refugees to

𝑉 ′ = 𝑉 \ {𝑁 (] ( 𝑗))} the 𝜋 ′ is also a solution for I. □

Due to the definition of approval sets, inhabitants without un-

occupied neighbourhood are necessarily assumed intolerant and

therefore can be safely removed by Proposition 3.4. Hence, we as-

sume only instances without intolerant inhabitants where every

inhabitant has at least one unoccupied vertex in her neighbourhood.

Proposition 3.5 (★). Let I = (𝐺, 𝐼, 𝑅, ], (𝐴𝑖 )𝑖∈𝐼 ) be an instance
of the ARH problem and {𝑢, 𝑣} ∈ 𝐸 (𝐺) be an edge such that either
𝑢, 𝑣 ∈ 𝑉𝐼 or 𝑢, 𝑣 ∈ 𝑉𝑈 . Then I admits an inhabitant-respecting
housing iff the instanceI′ = ((𝑉 (𝐺), 𝐸 (𝐺)\{{𝑢, 𝑣}}), 𝐼 , 𝑅, ], (𝐴𝑖 )𝑖∈𝐼 )
admits an inhabitant-respecting housing.

Proposition 3.5 directly implies that all graphs assumed in this

section are naturally bipartite.

Theorem 3.6 (★). Every instance of the ARH problem where the
topology is a graph of maximum degree 2 can be solved in polynomial-
time.

Proof Sketch. Our algorithm is based on the dynamic program-

ming approach combined with the gradual elimination of inhabi-

tants’ approval sets and exhaustive application of Proposition 3.4.

Observe that graph of maximum degree 2 is a collection of paths and

cycles [30]. Due to lack of space, we sketch here only the algorithm

for paths.

Let the topology be a path 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑘 , 𝑘 ≥ 3, and suppose

that the vertex 𝑣1 is occupied by an inhabitant 𝑖 ∈ 𝐼 . We distin-

guish two cases based on 𝐴𝑖 and show how the algorithm proceed.

If 𝐴𝑖 = {1}, then we have to house a refugee on 𝑣2. However, this

adds one refugee in the neighbourhood of the inhabitant 𝑗 occu-

pying the vertex 𝑣3. To capture this, we decrease the value of all

elements in 𝐴 𝑗 . If there are any negative numbers in 𝐴 𝑗 after this

operation, we remove all of them from the list. Then we delete 𝑣1
and 𝑣2 from 𝑃 , decrease |𝑅 | by one, and solve the problem for

𝑃 ′ = 𝑣3 . . . 𝑣𝑘 . If 𝐴𝑖 = {0, 1}, we have to try both possibilities. That

is, we run the algorithm once with𝐴𝑖 = {0} and once with𝐴𝑖 = {1}.
If any run of the algorithm finds a solution, we also have a solution

for the original instance.

The described algorithm is exponential in the worst case. To

improve the running time, we tabularise the computed partial solu-

tions. Our dynamic programming table 𝐷𝑃 has three dimensions:

the first for an inhabitant, the second for an actual value of |𝑅 |,
and the third for a shape of approval set. The stored value is either

yes or no depending on whether the combination of indices yields

to a inhabitant-respecting housing. There are O(𝑛) inhabitants,
the value of |𝑅 | is also in O(𝑛), and there are at most 2 different

approval sets possible for each inhabitant on the path. Therefore,

the size of the table is at most O(𝑛2), which is also the running

time of our algorithm.

For cycles, we identify, based on approval sets, the best vertex to

break this cycle and turning it into a path. In particular, if there is an

inhabitant with the approval set {2}, we delete this vertex together
with his two neighbours and obtain a path. In all other cases, we

try all (at most three) ways of resolving his neighbourhood. To do

so, we run an algorithm similar to the one from the beginning of

this proof. □

Unfortunately, as the following theorem states, the bounded-

degree condition from Theorem 3.6 cannot be relaxed any more.

Theorem 3.7. The ARH problem is NP-complete even if the topol-
ogy is a graph of maximum degree 3 and all inhabitants approve
intervals.

Proof. Given a housing 𝜋 , it is easy to verify in polynomial time

whether 𝜋 is inhabitant-respecting by enumerating all inhabitants

and comparing their neighbourhood with approval lists. Thus, ARH
is indeed in NP.

For NP-hardness, we present a polynomial-time reduction from

a variant of the 2-Balanced 3-SAT problem which is known to be

NP-complete [15, 38, 67]. In this variant of 3-SAT, we are given a

propositional formula 𝜑 with 𝑛 variables 𝑥1, . . . , 𝑥𝑛 and𝑚 clauses

𝐶1, . . . ,𝐶𝑚 such that each clause contains at most 3 literals and

every variable appears in at most 4 clauses – at most twice as a

positive literal and at most twice as a negative literal.

We construct an equivalent instance I of ARH as follows. We

represent every variable 𝑥𝑖 by a single variable gadget 𝑋𝑖 that is a
path 𝑡𝑖𝑣𝑖 𝑓𝑖 . The vertex 𝑣𝑖 is occupied by an inhabitant with approval

set {1}. All other vertices are empty and we call the vertex 𝑡𝑖 the

𝑡-port and the vertex 𝑓𝑖 the 𝑓 -port. Every clause 𝐶 𝑗 is represented

by a single vertex 𝑐 𝑗 occupied by an inhabitant ℎ 𝑗 who approves

the interval [1, |𝐶 𝑗 |] and is connected to the 𝑡-port of the variable

gadget 𝑋𝑖 if the variable 𝑥𝑖 occurs as a positive literal in 𝐶 𝑗 and to

the 𝑓 -port of 𝑋𝑖 if 𝑥𝑖 occurs as a negative literal in 𝐶 𝑗 , respectively.

To complete the reduction, we set |𝑅 | = 𝑛.
For the correctness of the construction, let 𝜑 be a satisfiable

2-Balanced 3-SAT formula and 𝛼 be a truth assignment. For ev-

ery variable 𝑥𝑖 , we house a refugee at 𝑣1
𝑖
if 𝛼 (𝑥𝑖 ) = 1 and at 𝑣3

𝑖
if 𝛼 (𝑥𝑖 ) = 0, respectively. This housing is clearly a solution of I
as every inhabitant assigned to the variable gadget is clearly sat-

isfied, every inhabitant ℎ 𝑗 is also satisfied since 𝛼 is a satisfying

assignment, and we housed 1 refugee for every variable gadget.

In the opposite direction, observe that there is exactly one refugee

assigned to every variable gadget and, thus, in every assignment 𝜋

there is no variable gadget 𝑋𝑖 such that the 𝑡-port and the 𝑓 -port

are occupied at the same time. Hence, we can set 𝛼 (𝑥𝑖 ) equal to 1 if
and only if the 𝑡-port is occupied by a refugee. Clearly, 𝛼 is a truth

assignment as 𝜋 has to satisfy each inhabitant occupying clause

vertex.

By definition, every clause contains at most 3 literals, and thus

the degree of every vertex 𝑐 𝑗 , 𝑗 ∈ [𝑚], is at most 3. For every

variable gadget 𝑋𝑖 , 𝑖 ∈ [𝑛], the vertex 𝑣2
𝑖
has degree 2 and both

𝑡-port and 𝑓 -port have degree at most 3 – they are adjacent to 𝑣2
𝑖
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and at most two vertices representing clauses. Hence, the bounded-

degree condition holds and the construction can be clearly done in

polynomial time, finishing the proof. □

Since the above results clearly show that the problem is very

hard even in simple settings, we turn our attention to the param-

eterised complexity of the ARH problem. In particular, we study

the problem’s complexity from the viewpoint of natural parame-

ters, such as the number of refugees, the number of inhabitants,

the number of empty vertices, and various structural parameters

restricting the shape of the topology.

Theorem 3.8. The ARH problem isW[2]-hard parameterised by
the number of refugees |𝑅 | even if all inhabitants approve intervals.
Moreover, unless ETH fails, there is no algorithm that solves ARH in
𝑓 ( |𝑅 |) · 𝑛𝑜 ( |𝑅 | ) time for any computable function 𝑓 .

Proof. We reduce from the Dominating Set problem, which

is known to beW[2]-complete [31] and, unless ETH fails, cannot

be solved in 𝑓 (𝑘) · 𝑛𝑜 (𝑘 ) time for any computable function 𝑓 [25].

The instance I of Dominating Set consists of a simple undirected

graph 𝐺 = (𝑉 , 𝐸) and an integer 𝑘 ∈ N. The goal is to decide

whether there is a set 𝐷 ⊆ 𝑉 of size at most 𝑘 such that each vertex

𝑣 ∈ 𝑉 is either in 𝐷 or at least one of its neighbours is in 𝐷 .

We construct an equivalent instance I′
of the ARH problem as

follows. We start by defining the topology. For each vertex 𝑣 ∈ 𝑉
we add two vertices ℓ𝑣 and 𝑝𝑣 . The vertex ℓ𝑣 represents the orig-

inal vertex and is intended to be free for refugees. The vertex 𝑝𝑣
is occupied by an inhabitant ℎ𝑣 with 𝐴ℎ𝑣

= [1, |𝑁 [𝑣] |]. This in-
habitant ensures that there is at least one refugee housed in the

closed neighbourhood of 𝑝𝑣 . The edge set of the topology 𝐺 ′
is⋃

𝑣∈𝑉 {{𝑝𝑣, ℓ𝑤} | 𝑤 ∈ 𝑁𝐺 [𝑣]}. To complete the construction, we

set |𝑅 | = 𝑘 .
Let I be a yes-instance and 𝐷 be a dominating set of size 𝑘 . For

every vertex 𝑣 ∈ 𝐷 , we house a refugee in the vertex ℓ𝑣 . Since𝐷 was

a dominating set of size 𝑘 , in the closed neighbourhood of every

𝑣 ∈ 𝑉 in 𝐺 there is at least one vertex 𝑢 ∈ 𝐷 . Therefore, for every
inhabitant ℎ𝑣 , there is at least one refugee in his neighbourhood

and I′
is indeed a yes-instance.

In the opposite direction, let I′
be a yes-instance and 𝜋 be a

solution housing. We set 𝐷 to {𝑣 ∈ 𝑉 | 𝜋−1 (ℓ𝑣) ≠ ∅}. Due to the

definition of approved intervals of the inhabitants, it holds for every

𝑣 ∈ 𝑉 either 𝑣 or at least one of his neighbours is in 𝐷 , as otherwise

the inhabitant ℎ𝑣 would not be respected.

To complete the proof, we recall that |𝑅 | = 𝑘 and, hence, the

presented reduction is indeed a parameterised reduction. More-

over, assume that there is an algorithm A, that solves ARH in

𝑓 ( |𝑅 |) · |I′ |𝑜 ( |𝑅 | ) time. Then we can reduce an instance of the Dom-

inating Set problem to the instance of the ARH problem, solve

the reduced instance using algorithm A and reconstruct a solution

of the original instance. This is an algorithm for Dominating Set

running in 𝑓 (𝑘) · 𝑛𝑜 (𝑘 ) time, which contradicts ETH. □

We complement Theorem 3.8 with an algorithm that runs in

time matching the lower-bound given in this theorem.

Proposition 3.9. The ARH problem can be solved in 𝑛O( |𝑅 | ) time,
where 𝑛 = |𝑉 (𝐺) |. That is, ARH is in XP parameterised by the number
of refugees.

Proof. Our algorithm is a simple brute-force. Let𝑉𝑈 = 𝑉 (𝐺)\𝑉𝐼
be the number of empty vertices and let 𝑛 = |𝑉 |. Note that |𝑉𝑈 | ≤ 𝑛.
We try all subsets of 𝑉𝑈 of size |𝑅 | and for each such subset, we

check in linear time whether the housing is inhabitant-respecting.

This gives us the total running time 𝑛O( |𝑅 | )
. □

As the number of refugees is not a parameter promising tractable

algorithms even if all inhabitants approve intervals, we turn our

attention to the case where the number of inhabitants is small. Our

algorithm is based on integer linear programming formulation of

the problem and we use the following result of Eisenbrand and

Weismantel [34].

Theorem 3.10 ([34, Theorem 2.2]). Integer linear programme
A𝑥 ≤ 𝑏, 𝑥 ≥ 0, with 𝑛 variables and𝑚 constraints can be solved in

(𝑚Δ)O(𝑚) · | |𝑏 | |2∞
time, where Δ is an upper-bound on all absolute values in A.

Theorem 3.11. If all inhabitants approve intervals, then the ARH
problem is fixed-parameter tractable parameterised by the number of
inhabitants |𝐼 |.

Proof. We solve the ARH problem using an integer linear pro-

gramming formulation of the problem. We introduce one binary

variable 𝑥𝑣 for every empty vertex 𝑣 ∈ 𝑉𝑈 representing if a refugee

is housed on 𝑣 or not. Next, we add the following constraints.

∀𝑖 ∈ 𝐼 :
∑︁

𝑣∈𝑁𝐺 (] (𝑖 ) )
𝑥𝑣 ≥ low(𝑖) (1)

∀𝑖 ∈ 𝐼 :
∑︁

𝑣∈𝑁𝐺 (] (𝑖 ) )
𝑥𝑣 ≤ high(𝑖) (2)∑︁

𝑣∈𝑉𝑈
𝑥𝑣 = |𝑅 |, (3)

where for an inhabitant 𝑖 ∈ 𝐼 the value low(𝑖) stands for lower-
end and high(𝑖) stands for upper-end of the approved interval by

inhabitant 𝑖 , respectively. Equations (1) and (2) ensure that the

number of refugees in the neighbourhood of each inhabitant is in

its approved interval, while Equation (3) ensures that all refugees

are housed somewhere. Using Theorem 3.10 we see that the given

integer programme can be solved in time |𝐼 |O( |𝐼 | ) · 𝑛O(1)
, as𝑚 =

2|𝐼 | + 1, Δ = 1, and | |𝑏 | |∞ ≤ 𝑛. That is, ARH is in FPT parameterised

by the number of inhabitants |𝐼 |. □

Note that it would be possible to provide a different ILP formula-

tion of the problem and use the famous theorem of Lenstra Jr. [52] to

showmembership in FPT, however, this would yield to an algorithm
with much worse (i. e., doubly-exponential) running-time.

The result from Theorem 3.11 cannot be easily generalised to

the case with inhabitants approving general sets. However, we can

show that if the number of intervals in each approval set is bounded,

the problem is still fixed-parameter tractable.

Theorem 3.12. The ARH problem is fixed-parameter tractable
when parameterised by the combined parameter the number of in-
habitants |𝐼 | and the maximum number of disjoint intervals 𝛿 in the
approval sets.
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Proof. We start our algorithm by guessing an effective interval

for every inhabitant 𝑖 ∈ 𝐼 . There are at most 𝛿 |𝐼 | such guesses

and for each guess we run the integer programme from the proof

of Theorem 3.11. The overall running time of this algorithm is

𝛿 |𝐼 | |𝐼 |O( |𝐼 | ) · 𝑛O(1)
. □

In our next result, we show that the parameter 𝛿 from Theo-

rem 3.12 cannot be dropped while keeping the problem tractable.

Our reduction is from Multicoloured Cliqe and is very similar

to Knop et al. [47, Theorem 3.1].

Theorem 3.13 (★). The ARH problem isW[1]-hard parameterised
by the number of inhabitants |𝐼 |.

By careful guessing, we can prove that for the combined param-

eters the number of refugees and the number of inhabitants, we

may obtain fixed-parameter tractable algorithm.

Lemma 3.14. The ARH problem is fixed-parameter tractable when
parameterised by the number of refugees |𝑅 | and the number of in-
habitants |𝐼 | combined.

Proof. We can guess a particular neighbourhood of every refugee,

and for every such guess, verify whether it is correct. Let 𝐼𝑟𝑖 ⊆ 𝐼 be

a neighbourhood guessed for a refugee 𝑟𝑖 ∈ 𝑅. If there is no empty

vertex 𝑣 with deg(𝑣) = |𝐼𝑟𝑖 | at the intersection of neighbourhoods

of vertices in 𝐼𝑟𝑖 , we discard this guess. Otherwise, we house the

refugee 𝑟𝑖 on 𝑣 and continue with 𝑟𝑖+1. If all refugees are housed,
we simply check whether the housing respects the approval sets of

all inhabitants.

Overall, there are (2 |𝐼 | ) |𝑅 | = 2
|𝐼 | · |𝑅 |

such guesses and every

guess can be verified in polynomial-time. Therefore, the running

time of our algorithm is 2
|𝐼 | · |𝑅 | · 𝑛O(1)

, that is, ARH is in FPT with

respect to |𝑅 | and |𝐼 | combined. □

The last assumed natural parameter is the number of empty

vertices the refugees can be assigned to. Note that |𝑉𝑈 | ≥ |𝑅 |. This
parameterisation yields, in contrast to Theorem 3.8, to a simple

algorithm running in FPT time which is, although its simplicity,

optimal assuming the Exponential Time Hypothesis.

Theorem 3.15 (★). The ARH problem can be solved in 2
O( |𝑉𝑈 | ) ·

𝑛O(1) time and, unless ETH fails, there is no algorithm solving ARH
in 2

𝑜 ( |𝑉𝑈 | ) · 𝑛O(1) time even if all inhabitants approve intervals.

In the remainder of this section, we present complexity results

concerning various structural restrictions of the topology. Arguably,

the most prominent structural parameter is the tree-width of a

graph that, informally speaking, expresses its tree-likeness, and

which is usually small in real-life networks [58]. Unfortunately, we

can easily show the following stronger intractability result.

Theorem 3.16. The ARH problem is W[1]-hard parameterised by
the vertex cover number vc(𝐺) of the topology.

Proof. Although it was not stated formally, it can be seen that

the construction used to prove Theorem 3.13 has not only parameter-

many inhabitants, but these agents also forms a vertex cover of

the topology. Therefore, we directly obtain W[1]-hardness for the
setting with bounded vertex cover number. □

It is well-known, an easy to see, that the tree-width of a graph is

at most its vertex-cover number. Hence, due to Theorem 3.16, we

directly obtain the following result for tree-width.

Corollary 3.17. The ARH problem is W[1]-hard parameterised
by the tree-width tw(𝐺) of the topology 𝐺 .

Many problems that are computationally hard with respect to

tree-width are studied from the viewpoint of less restricted param-

eters. Vertex cover number is a frequent representative of such

parameters [24, 49, 55]; however, in the ARH problem, not even

this restriction of the topology leads to a tractable algorithm.

Nevertheless, if we additionally restrict the approval sets, we

obtain the following algorithmic result.

Theorem 3.18. The ARH problem is fixed-parameter tractable
parameterised by the vertex cover number vc(𝐺) if all inhabitants
approve intervals.

Proof. Let 𝑀 ⊆ 𝑉 be a minimum size vertex cover of 𝐺 and

let 𝑘 = |𝑀 |. It is not hard to see that, due to Proposition 3.5, for

each connected component 𝐶𝑖 of 𝐺 all vertices in 𝑀 ∪ 𝐶𝑖 are ei-
ther empty vertices or occupied by inhabitants. By 𝐶𝐼 we denote

components with vertex cover occupied by inhabitants and by 𝐶𝑅
the components where the vertex cover consists of empty vertices,

respectively.

First, we guess the number 𝑘′ ≤ 𝑘 of refugees assigned to com-

ponents of 𝐶𝑅 . Now, we try all 2
𝑘 ′

subsets and check for each

subset whether all refugees are housed and whether the housing

is inhabitant-respecting in 𝐶𝑅 . At the same time, we try to find a

housing of |𝑅 | − 𝑘′ refugees to components in 𝐶𝐼 . To do so, we can

use the algorithm from Theorem 3.11 as the number of inhabitants

is at most 𝑘 . Altogether, we obtain that the ARH problem is in FPT
when parameterized by the vertex cover number of the topology if

all inhabitants approve intervals. □

By the same argumentation used in the proof of Theorem 3.18,

we obtain the following last result of this section.

Corollary 3.19. The ARH problem is fixed-parameter tractable
when parameterised by the vertex cover number vc(𝐺) and the maxi-
mum number of disjoint intervals 𝛿 combined.

4 FULLY HEDONIC PREFERENCES
Our second model of refugee housing improves upon the previous

model by introducing individual preferences of refugees. Naturally,

refugees are no longer anonymous and the identity of every partic-

ular refugee matters. The preferences of the inhabitants are again

dichotomous, and for every inhabitant 𝑖 ∈ 𝐼 the approval set is a
subset of 2

𝑅
. Similarly, for a refugee 𝑟 ∈ 𝑅, the approval set 𝐴𝑟

is a subset of 2
𝐼
. Our goal is to find housing that conforms to the

preferences of both groups.

Definition 4.1. A housing 𝜋 : 𝑅 → 𝑉𝑈 is called respecting if for

every 𝑖 ∈ 𝐼 we have 𝑁 (] (𝑖)) ∈ 𝐴𝑖 and for every 𝑟 ∈ 𝑅 we have

𝑁 (𝜋 (𝑟 )) ∈ 𝐴𝑟 .

In other words, a housing 𝜋 is respecting if every inhabitant and

every refugee approves its neighbourhood. We study the problem of

deciding whether there is a respecting housing in the instance with
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hedonic preferences under the name Hedonic Refugees Housing

(HRH for short).

Example 4.2. Let the topology be a cycle with four vertices. There
are two inhabitants ℎ1 and ℎ2 assigned to neighbouring vertices

and two refugees 𝑟1 and 𝑟2 to house. The approval set of inhabi-

tant ℎ1 is 𝐴ℎ1
= {{𝑟1}, {𝑟2}}, that is, ℎ1 approves only one refugee

in her neighbourhood regardless of the identity. The second in-

habitant approves the set 𝐴ℎ2
= {{𝑟2, }, {𝑟1, 𝑟2}}. In other words,

the inhabitant ℎ2 is dissatisfied with having only the refugee 𝑟1 in

the neighbourhood; however, he is fine with neighbouring with

both the refugees. For the refugees, we have 𝐴𝑟1 = {{ℎ1}} and

𝐴𝑟2 = {{ℎ2}}. Housing 𝑟1 in the neighbourhood of ℎ1 and 𝑟2 in the

neighbourhood of ℎ2 is clearly respecting.

Observe that, since both inhabitants and refugees have prefer-

ences only over the other set of individuals, we can remove all

edges between empty and occupied vertices, respectively. Hence,

all graphs assumed in this section are again bipartite.

Now, we show how the results from Section 3 carry over to the

hedonic setting studied in this section. Our first theorem shows

that the hedonic setting is also computationally hard on graphs of

constant degree. The construction is very similar to the one used

to prove Theorem 3.7.

Theorem 4.3 (★). The HRH problem is NP-complete even if the
topology is a graph of maximum degree 3.

At the first glance, it could look as that we can easily distil the

following general reduction from the ARH problem to the HRH
problem. Let I be an ARH instance. For every empty vertex 𝑣 ∈ 𝑉𝑈
we add into 𝑅′ one refugee 𝑟𝑣 with approval set 𝐴𝑟𝑣 = 𝑁 (𝑣). Next,
for every inhabitant 𝑖 ∈ 𝐼 we add a new inhabitant ℎ𝑖 approving the

set 𝐴ℎ𝑖 = {
(𝑅ℎ𝑖
𝑎

)
| 𝑎 ∈ 𝐴𝑖 }, where 𝑅ℎ𝑖 = {𝑟𝑣 | 𝑣 ∈ 𝑁 (𝑣) ∩𝑉𝑈 }. To

ensure that only |𝑅 | refugees are housed, we extend the construction
by a single star with |𝑉𝐸 | − |𝑅 | leaves and occupy the centre of the

star with an inhabitant 𝐺 approving the set

( 𝑅′

|𝑉𝐸 |− |𝑅 |
)
. Moreover,

we have to add {𝐺} to the approval set of every refugee 𝑟𝑣 ∈ 𝑅′. It is
not difficult to see that the instances are indeed equivalent; however,

the reduction is not polynomial-time, the approval sets can be at

worst exponential in the number of empty vertices. Hence, the

reduction works only in cases where the number of empty vertices

is at most logarithmic in the size of the topology. Unfortunately, this

is not the case for most of our polynomial-time reductions, however,

we are able to show similar results using different techniques.

Theorem 4.4. TheHRH problem isW[1]-hard when parameterised
by the combined parameter the vertex cover number vc(𝐺) of the
topology and the number of inhabitants |𝐼 |.

Proof. We reduce from theW[1]-hardMulticoloured Cliqe

problem [37]. We recall that here we are given a 𝑘-partite graph

𝐺 = (𝑉1 ∪ · · · ∪𝑉𝑘 , 𝐸) and the goal is to find a complete sub-graph

with 𝑘 vertices such that it contains a vertex from every 𝑉𝑖 , 𝑖 ∈ [𝑘].
Let𝐺 = (𝑉1 ∪ · · · ∪𝑉𝑘 , 𝐸) be an instance of theMulticoloured

Cliqe problem such that all colour classes 𝑉𝑖 are of the same

size𝑛𝐺 . We construct an equivalent instanceI′
of theHRH problem

as follows. For every vertex set 𝑉𝑖 , where 𝑖 ∈ [𝑘], we introduce a
vertex-selection gadget 𝑆𝑖 which is a star with 𝑛𝐺 leaves. We call an

arbitrary leaf a selection leaf. This selection leaf serves for a vertex of

colour 𝑖 that should be part of the clique and is the only connection

of the vertex-selection gadget with the rest of the topology. Let

{𝑣1
𝑖
, . . . , 𝑣

𝑛𝐺
𝑖

} be a set of vertices in the colour class𝑉𝑖 . We introduce

one refugee 𝑟
𝑝

𝑖
for every 𝑣

𝑝

𝑖
, 𝑝 ∈ [𝑛𝐺 ] and one inhabitant 𝑠𝑖 which is

assigned to the centre 𝑐𝑖 of 𝑆𝑖 and approves the set {{𝑟1
𝑖
, . . . , 𝑟

𝑛𝐺
𝑖

}}.
Every refugee 𝑟

𝑝

𝑖
approves the set {{𝑠𝑖 }}.

Then, for every pair of distinct colours 𝑖, 𝑗 ∈ [𝑘], we introduce
one additional guard vertex 𝑔𝑖, 𝑗 securing that there is an edge be-

tween vertices selected in incident vertex-selection gadgets.We con-

nect this guard vertex𝑔𝑖, 𝑗 to selection leaves of vertex-selection gad-

gets 𝑉𝑖 and 𝑉𝑗 . Moreover, we introduce an inhabitant ℎ𝑖, 𝑗 assigned

to 𝑔𝑖, 𝑗 with approval set {{𝑟𝑝
𝑖
, 𝑟
𝑞

𝑗
} | {𝑣𝑝

𝑖
, 𝑣
𝑞

𝑗
} ∈ 𝐸 ∧ 𝑝, 𝑞 ∈ [𝑛𝐺 ]}.

That is, ℎ𝑖, 𝑗 approves exactly those pairs of vertices from 𝑉𝑖 and 𝑉𝑗
that are connected by an edge.

To be able to house any refugee to selection leaves, we have to

extend their approval sets. Thus, for every refugee 𝑟
𝑝

𝑖
, where 𝑖 ∈ [𝑘]

and 𝑝 ∈ [𝑛𝐺 ], we add to the approval set the set {𝑠𝑖 } ∪ {ℎ𝑖, 𝑗 | 𝑗 ∈
[𝑘] \ {𝑖}}. This finishes the construction.

For the correctness, let 𝐾 = {𝑣 𝑗1
1
, . . . , 𝑣

𝑗𝑘
𝑘
} be a multicoloured

clique in𝐺 . For every vertex-selection gadget 𝑆𝑖 , we house to the se-

lection leaf the refugee 𝑟
𝑗𝑖
𝑖
and the refugees 𝑟

𝑝

𝑖
, where 𝑝 ∈ [𝑛𝐺 ] \ { 𝑗𝑖 }

arbitrarily to the remaining leaves of 𝑆𝑖 . As vertices of 𝐾 form a

clique in 𝐺 , there is an edge between each pair of vertices assigned

to selection leaves; hence, the housing is correct.

In the opposite direction, suppose that I′
is a yes-instance, 𝜋

is a respecting housing and there is a pair of refugees 𝑟
𝑝

𝑖
and 𝑟

𝑞

𝑗
,

where 𝑖, 𝑗 ∈ [𝑘] are distinct and 𝑝, 𝑞 ∈ [𝑛𝐺 ], assigned to selection

leaves such that there is no corresponding {𝑣𝑝
𝑖
, 𝑣
𝑞

𝑗
} ∈ 𝐸 (𝐺). Then

{𝑟𝑝
𝑖
, 𝑟
𝑞

𝑗
} is not in the approval set of the inhabitant ℎ𝑖, 𝑗 , which is a

contradiction with 𝜋 being a respecting housing.

Clearly, the removal of the vertex set {𝑐𝑖 | 𝑖 ∈ [𝑘]} together with
the set {𝑔𝑖, 𝑗 | 𝑖, 𝑗 ∈ [𝑘]} leads to an edgeless graph. As the size

of both sets is polynomial in 𝑘 and all inhabitants are assigned to

these vertices, we obtain that the presented reduction is indeed a

parameterised reduction and the theorem follows. □

As a final result of this section, we note that the HRH is NP-hard
even for graphs of tree-width at most 3.

Theorem 4.5 (★). The HRH problem is para-NP-hard parame-
terised by the tree-width tw(𝐺) of the topology.

5 DIVERSITY PREFERENCES
In the anonymous refugee housing, we are not assuming the prefer-

ences of individual refugees. Thanks to this property, the model is

as simple as possible. The fully hedonic setting from Section 4 pre-

cisely captures preferences of both the refugees and the inhabitants.

On the other hand, the fully hedonic model is not very realistic, as

it is hard to acquaint all inhabitants with all refugees.

Hence, we introduce the third model of refugees housing, where

both the inhabitants and the refugees are partitioned into types and

agents from both groups have preferences over fractions of agents

of each type in their neighbourhood.

Such a diversity goals, where agents are partitioned into types

and the preferences of agents are based on the fraction of each type

in their neighbourhood or coalition, was successfully used in many
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scenarios such as school choice [8–10], public housing [14, 42],

hedonic games [19, 20, 23, 27, 40], multi-attribute matching [4], or

employee hiring [65].

Before we formally define the computational problem of our

interest, let us introduce further notation. Let 𝑁 = 𝐼 ∪ 𝑅 be a set

of agents partitioned into 𝑘 types 𝑇1, . . . ,𝑇𝑘 . For a set 𝑆 ⊆ 𝑁 , we

define a palette as a 𝑘-tuple
(
|𝑇𝑖∩𝑆 |
|𝑆 |

)
𝑖∈[𝑘 ]

if |𝑆 | ≥ 1 and 𝑘-tuple

(0, . . . , 0) if 𝑆 = ∅. Given an agent 𝑎 ∈ 𝑁 , her approval set is a

subset of the set

{(
|𝑇𝑖∩𝑆 |
|𝑆 |

)
𝑖∈[𝑘 ]

| 𝑆 ⊆ 2
𝑁

}
.

Definition 5.1. Ahousing 𝜋 : 𝑅 → 𝑉𝑈 is called diversity respecting
if for every inhabitant 𝑖 ∈ 𝐼 the palette for the set {ℎ ∈ 𝐼 | ] (ℎ) ∈
𝑁 (] (𝑖))} ∪ {𝑟 ∈ 𝑅 | 𝜋 (𝑟 ) ∈ 𝑁 (] (𝑖))} is in 𝐴𝑖 , and for every refugee

𝑟 ∈ 𝑅 the palette for the set {ℎ ∈ 𝐼 | ] (ℎ) ∈ 𝑁 (𝜋 (𝑟 ))} ∪ {𝑟 ′ ∈ 𝑅 |
𝜋 (𝑟 ′) ∈ 𝑁 (𝜋 (𝑟 ))} is in 𝐴𝑟 .

TheDiversity Refugees Housing problem (DRH for short) then

asks whether there is a diversity respecting housing 𝜋 . Note that

this time, we are not allowed to drop edges between two inhabitants

or two refugees and, thus, the graphs assumed in this section are

no longer bipartite.

Example 5.2. Let the topology be a cycle with four vertices. There
are two agents of type 𝑇1. One of these agents is an inhabitant

ℎ1 approving {(1, 0), (1/2, 1/2)} and the second one is a refugee

𝑟 approving only agents of his own type, that is, 𝐴𝑟 = {(1, 0)}.
The type 𝑇2 contains one inhabitant ℎ2 approving the set {(1, 0)}.
Inhabitants are assigned such that they are neighbours. There are

two possible housings for the refugee 𝑟 . She can be either neighbour

of ℎ1 or ℎ2. Since she accepts only agents of her own type in the

neighbourhood, the only diversity respecting housing is next to

inhabitant ℎ1.

Despite that the topology can be much complicated, we can show,

using similar construction as in Theorem 3.7, that the tractability

condition based on the bounded degree cannot be surpassed even

in this model.

Theorem 5.3 (★). The DRH problem is NP-complete even if the
topology is a graph of maximum degree 3.

In Theorem 5.3 we exploit the number of types to ensure that

every refugee is housed in the right house. Therefore, the number of

types was as large as the number of empty vertices. In the following

result, we show that theDRH problem is computationally hard even

if the number of types is small.

Theorem 5.4. The DRH problem is NP-complete even if there are
only two types of agents.

Proof. We show the NP-hardness by a reduction from the Set

Cover problem which is known to be NP-complete [41]. Here, we

are given a universe 𝑈 = {𝑢1, . . . , 𝑢𝑛}, a family F of subsets of 𝑈 ,

and an integer 𝑘 ∈ N. The goal is to decide whether there is a

sub-family C ⊆ F of size at most 𝑘 such that

⋃
𝐶∈C 𝐶 = 𝑈 .

Given an instance I = (𝑈 , F , 𝑘), we construct an equivalent

instance I′
of DRH as follows. For every element 𝑢𝑖 ∈ 𝑈 we add

one vertex 𝑣𝑖 and assign to it an inhabitant ℎ𝑖 . The inhabitant ℎ𝑖
is of type 𝑇1 and his approval set is {(0, 1)}. Next, for every subset

𝐹 ∈ F , we create one vertex 𝑣𝐹 that is adjacent to every 𝑣𝑖 such that

𝑢𝑖 ∈ 𝐹 . To finalise the construction, we add 𝑘 refugees 𝑟1, . . . , 𝑟𝑘 of

type 𝑇2 approving the set {(1, 0)}.
For the correctness, let I be a yes-instance and C = {𝐶1, . . . ,𝐶𝑘 }

be a solution forI. For every 𝑖 ∈ [𝑘], we house the refugee 𝑟𝑖 on the
vertex corresponding to the set 𝐶𝑖 . In this housing, every refugee

is satisfied and, since C is a set cover, every ℎ𝑖 ∈ 𝐼 neighbours with
at least one refugee. In the opposite direction, let 𝜋 be a diversity

respecting housing. We add to C a set 𝐶𝑖 ∈ C if and only if there

is a refugee housed on the corresponding vertex 𝑣𝐶𝑖
. Suppose that

there is an element 𝑢 ∈ 𝑈 which is not covered by C. Then there

is an inhabitant which is not neighbour of any refugee. However,

this could not be the case as 𝜋 is diversity respecting. Hence, the

reduction is correct and clearly can be done in polynomial-time. □

Note that theNP-hardness proved in Theorem 5.4 can be strength-

ened to a single type of agents; however, we find this situation not

very natural in the context of DRH.
Additionally, it is known that the Set Cover problem isW[2]-

complete and cannot be solved in 𝑓 (𝑘) · 𝑛𝑜 (𝑘 ) time, unless the

ETH fails [26]. Therefore, from the construction used to prove

Theorem 5.4, we directly obtain the following corollary.

Corollary 5.5. The DRH problem is W[2]-hard when parame-
terised by the number of refugees |𝑅 | even if there are only two types
of agents and, unless ETH fails, there is no algorithm solving DRH in
𝑓 (𝑅) · 𝑛𝑜 (𝑅) time for any computable function 𝑓 .

6 CONCLUSIONS
We initiated the study of a novel model of refugee housing. The

model mainly targets the situations where refugees need to be

accommodated and integrated in the local community. This distin-

guishes us from the previous settings of refugee resettlement.

Our results identify some tractable and intractable cases of find-

ing stable outcomes from the viewpoint of both the classical com-

putational complexity and the finer-grained framework of param-

eterised complexity. To this end, we believe that other notions of

stability inspired, for example, by the model of Schelling games of

Agarwal et al. [2] or by exchange-stability of Alcalde [5], should

be investigated.

Natural way to tackle the intractability of problems in computa-

tional social choice is to restrict the preferences of agents [36]. One

such restriction that should be investigated, especially in the case

of anonymous setting, are the single-peaked preferences [6] that

were successfully used in similar scenarios; see, e.g., [16, 23, 70] or

the survey of Elkind et al. [36]. Beside that, we are interested in the

anonymous setting in which every inhabitant 𝑖 ∈ 𝐼 approves an
interval [0, 𝑢𝑖 ], where 𝑢𝑖 ≥ 0 is an inhabitant-specific upper-bound

on the number of refugees in her neighbourhood.

Finally, there are many notions measuring quality of an outcome

studied in the literature in both the context of Schelling and hedo-

nic games [2, 7, 35], and we believe that these notions should be

investigated even in the context of refugee housing. In this line, the

most prominent notion is the social-welfare of an outcome.
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