Rym Zalila-Wenkstern is an Associate Professor at the department of Computer Science, University of Texas at Dallas (UTD). She holds a Ph.D. in computer science from the University of Ottawa, Canada, and a Doctorat de Spécialité in Computer Science and an Engineering degree in Computer Engineering both from the University of Tunis, Tunisia. Her research projects are sponsored by several organizations including the National Science Foundation, Sandia National Laboratories, Rockwell Collins, Texas Research Alliance, and the US Department of Education. Her work was awarded the Best Demo Award (AAMAS’13) and twice the Best Paper Award (ADS’12, Simulation Multi-Conference’12). She has served on numerous program committees and several conference organizing committees including general chair of the International Conference on Software Engineering and Data Engineering (2012), program co-chair of the IEEE African Conference on Software Engineering (2011, 2012), and recently EMAS (AAMAS workshop) co-chair.

Rym is a Software Engineer “by design” and a Multi-Agent System Engineer by “desire and intention”. For many years, before joining the Agent community, she was a researcher in main stream software engineering and has published in the areas of formal specification and validation, software reuse, software metrics, software model transformation, software visualization, and software engineering education. She and her research team developed software tools that were used in real-world applications. From an educational perspective, she played an important role in the conception of the Master and PhD degrees in software engineering at UTD as well as founded and directed the Executive Master’s in software engineering program at UTD. Rym’s current interests are in the application and the definition of software engineering processes, and methodologies and techniques for the development of agent-based solutions for real-world problems. Given the skepticism towards the agent paradigm in the US, her initial efforts focused on the development of large-scale agent-based simulation frameworks to simulate and validate of a variety of realistic societal systems. Recently, the validation of an agent-based traffic management model through her simulator allowed her to begin the development of the first agent-based traffic prototype in Dallas, Texas.

Coming from a software engineering background, it is Rym’s belief that “whatever is Object-Oriented nowadays will become Agent-Oriented in the future”. In order for the agent paradigm to gain widespread acceptance, it is necessary to apply engineering best practices for the development of high impact real-world agent systems. Unfortunately, sixteen years after the inception of the Agent-Oriented Software Engineering (AOSE) workshop, AOSE has still not emerged as a strong research area in MAS and is continuously losing participants. AOSE researchers are still rejected by the AAMAS community which considers their contribution not scientific enough and turned down by the ICSE community which considers the concept of agent as nothing but what they have called for a long time as a “self-*” system.

Having been exposed to both fields, Rym Wenkstern aims at proposing new perspectives on how to bridge the gap between the two communities and determining ways to entice a new generation of SE researchers to join the MAS field. Her perspective includes the following: 1) support the understanding that the various MAS research areas are complementary and not competitive; Organize joint session (panels or other) between various workshops to create a sense of unity among various areas; 2) find ways to make engineering researchers feel welcome and a part of the MAS community; 3) promote attendance at the EMAS workshop; 3) ensure that engineering papers submitted at AAMAS are reviewed by people who can appreciate the work with the definition of review criteria; 4) Organize summer schools; 4) Define a curriculum for AOSE and encourage people to teach AOSE courses at their institutions.