
Truthful Mechanisms for Combinatorial
AC Electric Power Allocation

Chi-Kin Chau, Khaled Elbassioni, Majid Khonji
Masdar Institute of Science and Technology, Abu Dhabi, UAE

{ckchau,kelbassioni,mkhonji}@masdar.ac.ae

ABSTRACT
Traditional studies of combinatorial auctions often only con-
sider linear constraints (by which the demands for certain
goods are limited by the corresponding supplies). The rise
of smart grid presents a new class of auctions, character-
ized by quadratic constraints. Yu and Chau [AAMAS 13’]
introduced the complex-demand knapsack problem, in which
the demands are complex-valued and the capacity of sup-
plies is described by the magnitude of total complex-valued
demand. This naturally captures the power constraints in
AC electric systems. In this paper, we provide a more com-
plete study and generalize the problem to the multi-minded
version, beyond the previously known 1

2
-approximation algo-

rithm for only a subclass of the problem. More precisely, we
give a truthful PTAS for the case φ ∈ [0, π

2
], and a truthful

bi-criteria FPTAS for the general case φ ∈ (π
2
, π− ε], where

φ is the maximum angle between any two complex-valued
demands.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

Keywords
Combinatorial Power Allocation; Multi-unit Combinatorial
Auctions; Complex-Demand Knapsack Problem; Mechanism
Design; Smart Grid

1. INTRODUCTION
Auctions are vital venues for the interactions of multi-

agent systems, and their computational efficiency is criti-
cal for agent-based automation. Nonetheless, many practi-
cal auction problems are combinatorial in nature, requiring
carefully designed time-efficient approximation algorithms.
Although there have been decades of research in approx-
imating combinatorial auction problems, traditional stud-
ies of combinatorial auctions often only consider linear con-
straints. Namely, the demands for certain goods are limited
by the respective supplies, described by linear constraints.

Recently, the rise of smart grid presents a new class of
auction problems. One of the salient characteristics is the

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

presence of periodic time-varying entities (e.g., power, volt-
age, current) in AC (alternating current) electric systems,
which are often expressed in terms of complex numbers1. In
AC electric systems, it is natural to use a quadratic con-
straint, namely the magnitude of complex numbers, to de-
scribe the system capacity. Yu and Chau [12] introduced the
complex-demand knapsack problem (CKP) to model a one-
shot auction for combinatorial AC electric power allocation,
which is a quadratic programming variant of the classical
knapsack problem.

Furthermore, future smart grids will be automated by
agents representing individual users. Hence, one might ex-
pect these agents to be self-interested and may untruth-
fully report their utilities or demands. This motivates us
to consider truthful (aka. incentive-compatible) approxi-
mation mechanisms, in which it is in the best interest of
the agents to report their true parameters. In [12] a mono-
tone 1

2
-approximation algorithm that induces a determinis-

tic truthful mechanism was devised for the complex-demand
knapsack problem, which however assumes that all complex-
valued demands lie in the positive quadrant.

In this paper, we provide a complete study and generalize
the complex-demand knapsack problem to the multi-minded
version, beyond the previously known 1

2
-approximation al-

gorithm. More precisely, we give a (deterministic) truthful
PTAS for the case φ ∈ [0, π

2
], and a truthful bi-criteria FP-

TAS for the general case φ ∈ (π
2
, π− ε], where φ is the max-

imum angle between any two complex-valued demands. In
an extended version of this paper, we also show that, unless
P=NP, neither a PTAS can exist for the latter case nor any
bi-criteria approximation algorithm with polynomial guar-
antees for the case when φ is arbitrarily close to π. Our
results completely settle the open questions in [12].

Because of the paucity of space, some proofs are deferred
to the extended paper.

2. RELATED WORK
Linear combinatorial auctions can be formulated as vari-

ants of the classical knapsack problem [3,6,8]. Notably, these
include the one-dimensional knapsack problem (1DKP) where
each indivisible item has only one single copy, and its multi-
dimensional generalization, them-dimensional knapsack prob-
lem (mDKP). There is an FPTAS for 1DKP [8].

1
In the common terminology of power systems [7], the real part of

complex-valued power is known as active power, the imaginary part
is reactive power, whereas the magnitude is apparent power. Elec-
tric equipment has various active and reactive power requirements,
whereas power transmission systems and generators are restricted by
the supported apparent power.

1005

In mechanism design setting, where each customer may
untruthfully report her utility and demand, it is desirable to
design truthful or incentive-compatible approximation mech-
anisms, in which it is in the best interest of each customer
to reveal her true utility and demand [4]. In the so-called
single-minded case, a monotone procedure can guarantee in-
centive compatibility [10]. While the straightforward FP-
TAS for 1DKP is not monotone, since the scaling factor
involves the maximum item value, [2] gave a monotone FP-
TAS, by performing the same procedure with a series of
different scaling factors irrelevant to the item values and
taking the best solution out of them. Hence, 1DKP ad-
mits an truthful FPTAS. More recently, a truthful PTAS,
based on dynamic programming and the notion of the so-
called maximal-in-range mechanism, was given in [5] for the
multi-minded case.

As to mDKP with m ≥ 2, a PTAS is given in [6] based on
the integer programming formulation, but it is not evident
to see whether it is monotone. On the other hand, 2DKP is
already inapproximable by an FPTAS unless P = NP, by a
reduction from equipartition [8]. Very recently, [9] gave a
truthful FPTAS with (1 + ε)-violation for multi-unit combi-
natorial auctions with a constant number of distinct goods
(including mDKP), and its generalization to the multiple-
choice version, when m is fixed. Their technique is based on
applying the VCG-mechanism to a rounded problem. Based
on the PTAS for the multi-minded 1DKP developed in [5],
they also obtained a truthful PTAS for the multiple-choice
multidimensional knapsack problem.

In contrast, non-linear combinatorial auctions were ex-
plored to a little extent. Yu and Chau [12] introduced
complex-demand knapsack problem, which models auctions
with a quadratic constraint.

3. PROBLEM DEFINITIONS AND NOTATIONS

3.1 Complex-demand Knapsack Problem
We adopt the notations from [12]. Our study concerns

power allocation under a capacity constraint on the magni-
tude of the total satisfiable demand (i.e., apparent power).

Throughout this paper, we sometimes denote νR , Re(ν)

as the real part and νI , Im(ν) as the imaginary part of a
given complex number ν. We also interchangeably denote
a complex number by a 2D-vector as well as a point in the
complex plane. |ν| denotes the magnitude of ν.

We define the single-minded complex-demand knapsack
problem (CKP) as follows:

(CKP) max
xk∈{0,1}

∑
k∈N

ukxk (1)

subject to
∣∣∣ ∑
k∈N

dkxk

∣∣∣ ≤ C. (2)

where dk = dR
k + idI

k ∈ C is the complex-valued demand of
power for k-th user, C ∈ R+ is a real-valued capacity of to-
tal satisfiable demand in apparent power. Evidently, CKP is
also NP-complete, because the classical 1-dimensional knap-
sack problem (1DKP) is a special case.

We note that the problem is invariant, when the argu-
ments of all demands are rotated by the same angle. With-
out loss of generality, we assume that one of the demands,
say d1, is aligned along the positive real axis, and define

a class of sub-problems for CKP, by restricting the maxi-
mum phase angle (i.e., the argument) that any other demand
makes with d1. In particular, we will write CKP[φ1, φ2] for
the restriction of problem CKP subject to φ1 ≤ maxk∈N arg(dk)
≤ φ2, where arg(dk) ≥ 0 for all k ∈ N . We remark that in
realistic setting of power systems, the active power demand

is positive (i.e., dR
k ≥ 0), but the power factor (i.e.,

dR
k
|dk|

) is

bounded by a certain threshold [1], which is equivalent to
restricting the argument of complex-valued demands.

For complexity issues, we will need to specify how the
inputs are described. Throughout the paper we will assume
that each of the demands is given by its real and imaginary
components, represented as rational numbers.

3.2 Non-single-minded Complex Knapsack Prob.
In this paper, we extend the single-minded CKP to gen-

eral non-single-minded version, and then we apply the well-
known VCG-mechanism, or equivalently the framework of
maximal-in-range mechanisms [11]. The non-single-minded
version is defined as follows. As above we assume a set N
of n users: user k has a valuation function vk : D → R+

over a (possibly infinite) set of demands D ⊆ C. We assume
that 0 ∈ D and vk(0) = 0 for all k ∈ N . We further assume
that each vk is monotone with respect to a partial order ”�”
defined on the elements of C as follows: for d, f ∈ C, d � f
if and only if

|dR| ≥ |fR|, |dI| ≥ |f I|, sgn(dR) = sgn(fR), sgn(dI) = sgn(f I).

(We assume 0 � d for all d ∈ D.) Then for all k ∈ N , the
monotonicity of vk(·) means that vk(d) ≥ vk(f) whenever
d � f .

The non-single-minded problem can be described by the
following program:

(NsmCKP) max
∑
k∈N

vk(dk) (3)

s.t. (
∑
k∈N

dR
k)2 + (

∑
k∈N

dI
k)2 ≤ C2 (4)

dk ∈ D for all k ∈ N . (5)

Of particular interest is the multi-minded version of the
problem (MultiCKP), defined as follows. Each user k ∈ N
is interested only in a polynomial-size subset of demands
Dk ⊆ D and declares her valuation only over this set. Note
that the multi-minded problem can be modeled in the form
(NsmCKP) by assuming w.l.o.g. that 0 ∈ Dk, for each user
k ∈ N , and defining the valuation function vk : D → R+ as
follows:

vk(d) = max
dk∈Dk

{vk(dk) : dk � d}. (6)

We shall assume that the demand set of each user lies com-
pletely in one of the quadrants, namely, either dR ≥ 0 for
all d ∈ Dk, or dR < 0 for all d ∈ Dk. Note that the
single-minded version (which is CKP) is special case, where
|Dk| = 1 for all k.

We will write MultiCKP[φ1, φ2] for the restriction of the

problem subject to φ1 ≤ φ ≤ φ2 for all d ∈ D where φ ,
maxd∈D arg(d) (and as before we assume arg(d) ≥ 0).

3.3 Multiple-choice Multidimensional Knap-
sack Problem

To design truthful mechanisms for NsmCKS, it will be
useful to consider the multiple-choice multidimensional knap-
sack problem (Multi-mDKS) defined as follows, where we

1006

assume more generally that D ⊆ Rm+ and a capacity vector
c ∈ Rm+ is given. As before, a valuation function for each
user k is given by (6). An allocation is given an assignment
of a demand dk = (d1

k, ..., d
m
k) ∈ D for each user k, so as to

satisfy the m-dimensional capacity constraint
∑
k∈N dk ≤ c.

The objective is to find an allocation d = (d1, . . . , dn) ∈ Dn
so as to maximize the sum of the valuations

∑
k∈N vk(dk).

The problem can be described by the following program:

max
∑
k∈N

vk(dk) (7)

s.t.
∑
k∈N

dk ≤ c (8)

dk ∈ Dk, ∀k ∈ N . (9)

3.4 Approximation Algorithms
We present an explicit definition of approximation algo-

rithms for our problem. Given a feasible allocation d =
(d1, . . . , dn) ∈ Dn satisfying (4), we write v(d) ,

∑
k∈N vk(dk).

Let d∗ be an optimal allocation of NsmCKP (or (MultiCKP))

and Opt , v(d∗) be the corresponding total valuation. We
are interested in an algorithm that outputs an allocation
that is within a factor α of the optimum total valuation,
but may violate the capacity constraint by at most a factor
of β:

Definition 3.1. For α ∈ (0, 1] and β ≥ 1, a bi-criteria
(α, β)-approximation to NsmCKP is an allocation (dk)k ∈
Dn satisfying ∣∣∣ ∑

k∈N

dk

∣∣∣ ≤ β · C (10)

such that
∑
k∈N

vk(dk) ≥ α ·Opt. (11)

Similarly we can define an (α, β)-approximation to (MultiCKP).

In particular, polynomial-time approximation scheme (PTAS)
is a (1 − ε, 1)-approximation algorithm for any ε > 0. The
running time of a PTAS is polynomial in the input size for
every fixed ε, but the exponent of the polynomial may de-
pend on 1/ε. An even stronger notion is a fully polynomial-
time approximation scheme (FPTAS), which requires the
running time to be polynomial in both input size and 1/ε.

3.5 Truthful Mechanisms
This section follows the terminology of [10]. We define

truthful (aka. incentive-compatible) approximation mech-
anisms for our problem. We denote by X ⊆ Dn the set
of feasible allocations in our problem (NsmCKP or Multi-
mDKP).

Definition 3.2 (Mechanisms). Let V , V1×· · ·×Vn,
where Vk is the set of all possible valuations of agent k.
A mechanism (A,P) is defined by an allocation rule A :
V → X and a payment rule P : V → Rn+. We assume that
the utility of player k, under the mechanism, when it re-
ceives the vector of bids v , (v1, . . . , vn) ∈ V, is defined as

Uk(v) , v̄k(dk(v))−pk(v), where A(v) = (d1(v), . . . , dn(v)),
and P(v) = (p1(v), . . . , pn(v)) and v̄k denotes the true valu-
ation of player k.

Namely, a mechanism defines an allocation rule and payment
scheme, and the utility of a player is defined as the difference

between her valuation over her allocated demand and her
payment.

Definition 3.3 (Truthful Mechanisms). A mecha-
nism is said to be truthful if for all k and all vk ∈ Vk, and
v−k ∈ V−k, it guarantees that Uk(v̄k, v−k) ≥ Uk(vk, v−k).

Namely, the utility of any player is maximized, when she
reports the true valuation.

Definition 3.4 (Social Efficiency). A mechanism is
said to be α-socially efficient if for any v ∈ V, it returns an
allocation d ∈ X such that the total valuation (also called
social welfare) obtained is at least an α-fraction of the opti-
mum: v(d) ≥ α ·Opt.

As in [5, 9, 11], our truthful mechanisms are based on us-
ing VCG payments with Maximal-in-Range (MIR) alloca-
tion rules:

Definition 3.5 (MIR). An allocation rule A : V → X
is an MIR, if there is a range R ⊆ X , such that for any
v ∈ V, A(v) ∈ argmaxd∈R v(d).

Namely, A is an MIR if it maximizes the social welfare over
a fixed range R of feasible allocations. It is well-known (and
also easy to prove by a VCG-based argument) that an MIR,
combined with VCG payments (computed with respect to
range R), yields a truthful mechanism. If, additionally, the
range R satisfies: maxd∈R v(d) ≥ α · maxd∈X v(d), then
such a mechanism is also α–socially efficient.

Finally a mechanism is computationally efficient if it can
be implemented in polynomial time (in the size of the input).

4. A TRUTHFUL PTAS FOR MULTICKP[0, π
2

]

The multi-minded mDKP problem was shown in [9] to
have a (1− ε)-socially efficient truthful PTAS in the setting
of multi-unit auctions with a few distinct goods, based on
generalizing the result for the case m = 1 in [5]. We explain
this result first in our setting, and then use it the Section 4.3
to derive a truthful PTAS for MultiCKP[0, π

2
].

4.1 A Truthful PTAS for Multi-mDKP

Let c = (c1, . . . , cm) be the capacity vector, and for any
d ∈ D, write d = (d1, . . . , dm). For any subset of users
N ⊆ N and a partial selection of demands d̄ = (dk ∈
D : k ∈ N), such that

∑
k∈N dk ≤ c, define the vector

bN,d̄ = (b1N,d̄, . . . , b
m
N,d̄) ∈ Rm+ as follows

biN,d̄ =
ci −

∑
k∈N d

i
k

(n− |N |)2
. (12)

Following [9,11], we consider a restricted range of allocations
defined as follows:

S ,
⋃

N⊆N , d̄=(dk: k∈N): |N|≤m
ε
,

dk∈D ∀k∈N

SN,d̄, (13)

where, for a set N ⊆ N and a partial selection of demands
d̄ = (d̄k ∈ D : k ∈ N),

SN,d̄ ,
{

(d1, . . . , dn) ∈ Dn |
∑
k∈N

dk ≤ c, dk = d̄k ∀k ∈ N,

dik = rik · b
i
N,d̄
∀k 6∈ N ∀i ∃rik ∈ Z+ such that

∑
k 6∈N

rik ≤ (n− |N |)2
}
.

1007

Note that the range S does not depend on the declarations
D1, . . . , Dn. The following two lemmas establish that the
range S is a good approximation of the set of all feasible
allocations and that it can be optimized over in polynomial
time. The first lemma is essentially a generalization of sim-
ilar one for multi-unit auctions in [5], with the simplifying
difference that we do not insist here on demands to be in-
tegral. The second lemma is also a generalization of similar
result in [5], which was stated for the multi-unit auctions
with a few distinct goods in [9]. For completeness, we give
the details of a slightly simplified version here.

Lemma 4.1. maxd∈S v(d) ≥ (1− ε)Opt.

Lemma 4.2 ([5, 9]). We can find d∗ ∈ argmaxd∈S v(d)

using dynamic programming in time
∣∣⋃

kDk
∣∣O(m/ε)

.

Proof. We first observe that, due to the way the valu-
ations are defined in (6), we may assume for the purpose
of computing an optimal allocation d∗ that D =

⋃
kDk.

Indeed, suppose that d∗ = (d∗1, . . . , d
∗
n) ∈ SN,d̄∗ , where

d̄∗ = (d∗k : k ∈ N), dk 6∈ Dk for some k ∈ N , and
d∗k = (rik · biN,d∗ : i ∈ [m]). Then let us define a new alloca-

tion d̃ as follows: for each k ∈ N , we choose d̃k ∈ Dk such

that d̃k � d∗k and vk(d̃k) = vk(d∗k); we set d̄ = (d̃k : k ∈ N),

and for k 6∈ N , define d̃k = (rik · biN,d̄ : i ∈ [m]). Note by

(12) that bN,d̄ ≥ bN,d̄∗ , and hence v(d̃) ≥ v(d∗). We note

furthermore that d̃ ∈ SN,d̄, since for all i, we have

∑
k

(d̃ik − d
∗,i
k) =

∑
k∈N

(d̃ik − d
∗,i
k) +

∑
k′ 6∈N

ri
k′

(n− |N |)2

∑
k∈N

(d∗,ik − d̃
i
k)

=
∑
k∈N

(d̃ik − d
∗,i
k)

(
1−

∑
k′ 6∈N ri

k′

(n− |N |)2

)
≤ 0,

since d̃ik ≤ d∗,ik and
∑
k′ 6∈N r

i
k′ ≤ (n − |N |)2, for all i. It

follows that
∑
k d̃k ≤

∑
k dk

∗ ≤ c, and hence d̃ ∈ SN,d̄ as
claimed.

To maximize over S, with the restriction that D =
⋃
kDk,

we iterate over all subsets N ⊆ N of size at most m
ε

and

all partial selections d̄ = (dk ∈ Dk : k ∈ N). For each
such choice (N, d̄), we use dynamic programming to find
argmaxd∈SN,d̄

v(d). Let bN,d̄ be as defined in (12). With-

out loss of generality, assume N \ N = {1, . . . , n − t}. For
k ∈ N \ N and r = (r1, . . . , rm) ∈ {0, 1, . . . , (n − |N |)2}m,
define U(k, r) to be the maximum value obtained from a
subset of users {1, 2, . . . , k} ⊆ N \ N , with user j ∈ [k]

having demand d̂ij = rij · biN,d̄ for i ∈ [m], where rij ∈
{0, 1, . . . , (n − |N |)2}, and such that

∑
j∈[k] r

i
k ≤ ri. For

two vectors x, y ∈ Rm, let us denote by x ∗ y the vector
with components (x1y1, . . . , xmym). Define U(1, r) = −∞,
if r 6≥ 0. Then we can use the following recurrence to com-
pute U(k, r):

U(1, r) = max
r
v1(bN,d̄ ∗ r)

U(k + 1, r) = max
rk+1≤r

{
vk(bN,d̄ ∗ rk+1) + U(k, r − rk+1)

}
.

Note that the number of possible choices for r is at most n2m,
and hence the total time required by the dynamic program
is nO(m). Finally, given the vector r that maximizes U(n−
|N |, r), we can obtain (by tracing back the optimal choices
in the table) an optimal vector rk = (r1

k, . . . , r
m
k), for each

k ∈ N\N . From this, we get an allocation d̃ ∈ S, by defining

d̃k = dk for k ∈ N and, for k 6∈ N , we choose d̃k ∈ Dk such

that d̃k � rk ∗ bN,d̄ and vk(d̃k) = vk(rk ∗ bN,d̄).

It follows that an allocation rule defined as an MIR over
range S yields a (1− ε)-socially efficient truthful mechanism
for Multi-mDKP.

4.2 PTAS for MultiCKP[0, π
2

]

We now apply the result in the previous section to the
multi-minded complex-demand knapsack problem, when all
agents are restricted to report their demands in the positive
quadrant. We begin first by presenting a PTAS without
strategic considerations in Section 4.2; then we show next in
Section 4.3 how to use this PTAS within the aforementioned
framework of MIR’s to obtain a truthful mechanism.

In this section we assume that arg(d) ≤ π
2

, that is, dR ≥ 0

and dI ≥ 0 for all d ∈ D. As we shall see in Section 5,
it is possible to get a (1 − ε, 1 + ε)-approximation by a
reduction to the (Multi-2DKP) problem. We note fur-
ther that although there is a PTAS for mDKP with con-
stant m [6], such a PTAS cannot be directly applied to
MultiCKP[0, π

2
] by polygonizing the circular feasible re-

gion for MultiCKP[0, π
2

], because one can show that such
an approximation ratio is at least a constant factor. This
is the case, for instance, if the optimal solution consists of
a few large (in magnitude) demands together with many
small demands, and it is not clear at what level of accuracy
we should polygonize the region to be able to capture these
small demands. To overcome this difficulty, we first guess
the large demands, then we construct a grid (or a lattice) on
the remaining part of the circular region, defining a polygo-
nal region in which we try to pack the maximum-utility set
of demands. The latter problem is easily seen to be a special
case of the Multi-mDKP problem. The main challenge is
to choose the granularity of the grid small enough to well-
approximate the optimal, but also large enough so that the
number of sides of the polygon, and hence m is a constant
only depending on 1/ε.

Without loss of generality, we assume ε < 1
4

where 1
ε
∈

Z+. Given a feasible set of vectors T ⊆ D to MultiCKP[0, π
2

]

(that is,
∣∣∑

d∈T d
∣∣ ≤ C), we define RT as the conic region

bounded as the following (see Fig. 1a for an illustration).

RT ,
{
ν ∈ C :

∣∣ν∣∣ ≤ C, Re(ν) ≥ Re
(
dT
)

and Im(ν) ≥ Im
(
dT
)}
,

where dT ,
∑
d∈T d. Given RT , we define four points in the

complex plane (π′
1
T , π

1
T , π

2
T , π

′2
T) such that

π′1T =
(

0,
√
C2 − Re(dT)2

)
, π1

T =
(

Re(dT),
√
C2 − Re(dT)2

)
,

π′2T =
(√

C2 − Im(dT)2, 0
)
, π2

T =
(√

C2 − Im(dT)2, Im(dT)
)
.

Moreover, we define a grid in the region RT by interlac-
ing equidistant horizontal and vertical lines with separation
ε
4
wI
T and ε

4
wR
T , where

wI
T ,

√
C2 − Re(dT)2−Im(dT), wR

T ,
√
C2 − Im(dT)2−Re(dT).

Thus, the lines of the grid intersect the circular boundary
of region RT at a set of points PT (ε), and we let mT (ε) ,
|PT (ε)| ≤ 8

ε
+2. The convex hull of the set of points PT (ε)∪

{π′1T , π1
T , π

2
T , π

′2
T , 0} defines a polygonized region, which we

denote by PT (ε) (see Fig. 1a for an illustration).

1008

Remark 1: For simplicity of presentation, in this section,
we will ignore the issue of finite precision needed to represent
intermediate calculations (such as the square roots above,
or the intersection points of the lines of the gird with the
boundary of the circle); we will deal such issues in the next
section.

(a) We illustrate the region RT by
the shaded area and PT (ε) by the
black dots.

(b) Each in {σTi } is a vector
(starting at the origin) per-
pendicular to each bound-
ary edge of PT (ε).

Definition 4.3. Consider a feasible set T to MultiCKP[0, π
2

].
We define an approximate problem (PGZT) by polygonizing
MultiCKP[0, π

2
]:

(PGZT) max
∑
k∈N

vk(dk)

s.t.
∑
k∈N

dk ∈ PT (ε)

dk ∈ D, ∀k ∈ N .

Given two complex numbers µ and ν, we denote the pro-
jection of µ on ν by Pjν(µ) , ν

|ν| (µ
RνR + µIνI). Given the

convex hull PT (ε), we define a set of mT (ε) vectors {σTi },
each of which is perpendicular to each boundary edge of
PT (ε) and starting at the origin (see Fig. 1b for an illustra-
tion).

Definition 4.4. Consider a feasible set T to MultiCKP[0, π
2

].

We define a Multi-mDKP problem based on {σTi }:

(Multi-mDKP{σTi }) max
∑
k∈N

vk(dk) (14)

s.t.
∑
k∈N

PjσTi
(dk) ≤ |σTi |, ∀i = 1, . . . ,mT (ε), (15)

dk ∈ D, ∀k ∈ N . (16)

Lemma 4.5. Given a feasible set T to MultiCKP[0, π
2

],

PGZT and Multi-mDKP{σTi } are equivalent.

Our PTAS for MutliCKP[0, π
2

] is described in Algorithm
MultiCKP-PTAS, which enumerates every subset partial
selection T of at most 1

ε
demands, then finds a near opti-

mal allocation for each polygonized region PT (ε) using the
PTAS of Multi-mDKP from Section 4.1, which we denote
by Multi-mDKP-PTAS[·].

Theorem 4.6. For any ε > 0, Algorithm MultiCKP-
PTAS finds a (1−3ε, 1)-approximation to MultiCKP[0, π

2
].

The running time of the algorithm is
∣∣⋃

kDk
∣∣O(1

ε2
)
.

Algorithm 1 MultiCKP-PTAS({vk, Dk}k∈N , C, ε)
Require: Users’ multi-minded valuations {vk, Dk}k∈N ; ca-

pacity C; accuracy parameter ε

Ensure: (1−3ε)-allocation (d̂1, . . . , d̂n) to MultiCKP[0, π
2

]

1: (d̂1, . . . , d̂n)← (0, . . . ,0)
2: for each subset T ⊆

⋃
kDk of size at most 1

ε
s.t.∣∣∑

d∈T d
∣∣ ≤ C do

3: Set dT ←
∑
d∈T d, and define the corresponding vec-

tors {σTi }
4: Obtain (d1, . . . , dn) ← Multi-mDKP-PTAS

[Multi-mDKP{σTi }] within accuracy ε

5: if
∑
k vk(d̂k) <

∑
k vk(dk) then

6: (d̂1, . . . , d̂n)← (d1, . . . , dn)
7: end if
8: end for
9: return (d̂1, . . . , d̂n)

Proof. First, the upper bound on the running time of
Algorithm MultiCKP-PTAS is due to the fact that each of

the O
(∣∣⋃

kDk
∣∣ 1ε) iterations in line 2 requires invoking the

PTAS of Multi-mDKP, which in turn takes
∣∣⋃

kDK
∣∣O(m/ε)

time, by Lemma 4.2, where m = O(1
ε
).

Clearly the algorithm outputs a feasible allocation by Lemma
4.5. To prove the approximation ratio, we show in Lemma 4.7
below that, for any optimal (or feasible) allocation (d∗1, . . . , d

∗
n),

we can construct another feasible allocation (d̃1, . . . , d̃n) such

that
∑
k vk(d̃k) ≥ (1−2ε)

∑
k vk(d∗k) and (d̃1, . . . , d̃n) is fea-

sible to PGZT for some T of size at most 1
ε
. By Lemma 4.5,

invoking the PTAS of Multi-mDKP{σTi } gives a (1 − ε)-
approximation (d̂1, . . . , d̂k) to PGZT . Then∑
k

vk(d̂k) ≥ (1− ε)
∑
k

vk(d̃k) ≥ (1− ε)(1− 2ε)Opt ≥ (1− 3ε)Opt.

We provide an explicit construction of the allocation (d̃1, . . . , d̃n)
in Algorithm 2, thus completing the proof by Lemma 4.7.

Lemma 4.7. Consider a feasible allocation d = (d1, . . . , dn)
to MultiCKP[0, π

2
]. Then we can find a set T ⊆ {d1, . . . , dn}

and construct an allocation d̃ = (d̃1, . . . , d̃n), such that |T | ≤
1
ε

and d̃ is a feasible solution to PGZT and v(d̃) ≥ (1 −
2ε)v(d).

Proof. In Algorithm 2, let ¯̀ and T¯̀ be the values of `
and T` at the end of the repeat-until loop (line 9).

The basic idea of Algorithm 2 is that we first construct
a nested sequence of sets of demands T0 ⊂ T1 ⊂ . . . ⊂ T¯̀,
such that a demand is included in each iteration if it has ei-
ther a large real component or a large imaginary component.
The iteration proceeds until a sufficiently large number of
demands have been summed up (namely, |T¯̀| ≥ 1

ε
), or no

demands with large components remain. At the end of the
iteration, if the condition in line 11 holds, then S = T`, i.e.,
the whole set S can be packed within the polygonized region
PT¯̀(ε). Otherwise, we find a subset of S that is feasible to
PGZT¯̀.

To do so, we partition S\T¯̀ into at least 1
ε
−1 groups, each

having a large component along either the real or the imagi-
nary axes, with respect to the boundaries of the region RT¯̀.
Then removing the group with smallest utility among these,

1009

or removing one of the large demands with smallest utility
will ensure that remaining demands have a large utility and
can be packed within PT¯̀(ε).

We then have to consider two cases (line 14): (i) |T¯̀| be-
comes at least 1

ε
, or (ii) SR

¯̀ ∪SI
¯̀ = ∅. For case (i), we proceed

to line 16 – we combine the demands in S\T¯̀ into a group
V1. Note that removing any one demand k ∈ T¯̀ will make
T¯̀\{k} as a feasible solution to PGZT¯̀ (since the lengths

wR
Ti

and wI
Ti

are monotone decreasing for i = 1, 2, . . .). For
case (ii), we can apply Lemma 4.8 below to partition S\T¯̀

into at least 1
ε
− 1 groups {V1, . . . , Vh}, where each group

Vj has a large total component along either the real or the
imaginary axes (precisely, greater than ε

4
wR

¯̀ or ε
4
wI

¯̀ respec-
tively). This implies that removing any group Vj will make
T¯̀∪

⋃
j′ 6=j Vj′ a feasible solution to PGZT¯̀.

To conclude, there are either (i) at least 1
ε

demands in |T¯̀|,
or (ii) SR

¯̀ ∪ SI
¯̀ = ∅. We define S′ by deleting a minimum

utility demand or group of demands from S (lines 24 and

27). Then, we set d̃k = dk if k ∈ S′ and d̃k = 0 if k 6∈ S′.
Hence, in case (i), v(d̃) ≥ (1 − ε)Opt, and in case (ii),

v(d̃) ≥ (1− 1
h

)Opt ≥ 1−2ε
1−ε ·Opt ≥ (1− 2ε)Opt.

Remark 2: It is important to note in algorithm Con-
struct that, when we drop a single vector from T` (when
the condition vk̂(dk̂) <

∑
k:dk∈Vĵ

vk(dk) in line 22 holds),

then we can redefine T = T` and use this to define the
polygon PT (ε). In particular, we may assume when solving
problem Multi-mDKP{σTi } that all the vectors in T are
included in the solution.

Lemma 4.8. Consider a set of demands S ⊆ D and T ⊆
S, such that

• S is feasible solution to MultiCKP[0, π
2

], but S is not
a feasible solution to PGZT

• dR ≤ ε
4
wR
T and dI ≤ ε

4
wI
T , for all d ∈ S\T .

Then there exists a partition {V1, . . . , Vh} of S\T such that

• either (i)
∑
d∈Vj d

R ≥ ε
4
wR
T for all j = 1, . . . , h,

• or (ii)
∑
d∈Vj d

I ≥ ε
4
wI
T for all j = 1, . . . , h.

where h ∈ [1
ε
− 1, 4

ε
).

4.3 A Truthful PTAS for multiCKP[0, π
2

]

We now state our main result for this section.

Theorem 4.9. For any ε > 0 there is a (1− 3ε)-socially
efficient truthful mechanism for multiCKP[0, π

2
]. The run-

ning time is
∣∣⋃

kDk
∣∣O(1

ε2
)
.

Proof. It is enough to define a declaration-independent
range S of feasible allocations, such that maxd∈S v(d) ≥
(1 − 3ε) · Opt, and we can optimize over S in the stated
time. For every set T ⊆ D of size at most 1

ε
, we solve a

slightly modified version of problem Multi-mDKP{σTi }:

• We choose the grid lines from a fixed set, where all hor-
izontal and vertical lines are at distances, form the real
and imaginary axes, which are integer multiples of C

2i
,

for some integer i ∈ Z+. In particular, instead of defin-

ing the grid separation distances to be (
εwR
T

4
,
εwI
T

4
), we

Algorithm 2 Construct({vk}k∈N ,d, C, ε)
Require: Users’ valuations {vk}k∈N ; a feasible allocation

d; capacity C; accuracy parameter ε
Ensure: A set of demands T ⊆ {d1, . . . , dn} and a feasible

allocation d̃
1: S ← {d1, . . . , dn}; d̃ = d; `← 0; T` ← ∅; η` ← 0

. Find a subset of large demands T
2: repeat
3: `← `+ 1
4: dT` ←

∑
d∈T`−1

d

5: wI
T`

←
√
C2 − Re(dT`)

2 − Im(dT`); wR
T`

←√
C2 − Im(dT`)

2 − Re(dT`)

6: SR
` ← {d ∈ S\T` | dR > ε

4
wR
T`
}; SI

` ← {d ∈ S\T` |
dI > ε

4
wI
T`
}

7: T` ← T` ∪ SR
` ∪ SI

`

8: η` ← η`−1 +
∑
d∈SR

`
∪SI

`
d

9: until |T`| ≥ 1
ε

or SR
` ∪ SI

` = ∅ or S\T` = ∅
10: κ←

∑
d∈S\T`

d

11: if S\T` = ∅ or η` + κ ∈ PT`(ε) then
12: return (T`,d)
13: else

. Find a subset S′ ⊂ S that is feasible to PGZT`
14: if |T`| ≥ 1

ε
then

15: T` ← the set of the first 1
ε

elements added to T`
16: h← 1; V1 ← S\T`
17: else
18: Find a partition V1, . . . , Vh over S\T` such that

either (i)
∑
d∈Vj d

R ≥ ε
4
wR
T`

for all j = 1, . . . , h, or

(ii)
∑
d∈Vj d

I ≥ ε
4
wI
T`

for all j = 1, . . . , h

19: end if
20: Pick k̂ ∈ argmin{vk(dk) | dk ∈ T`}
21: Pick ĵ ∈ argmin{

∑
k:dk∈Vj

vk(dk) | j = 1, . . . , h}
22: if vk̂(dk̂) <

∑
k:dk∈Vĵ

vk(dk) then

23: d̃k̂ = 0

24: return (T`, d̃)
25: else
26: d̃k ← 0 for all k : dk ∈ Vĵ
27: return (T`, d̃)
28: end if
29: end if

use instead (C

2i(T) ,
C

2j(T)), where i(T) and j(T) are the
smallest integers such that

C

2i(T)
≤ εwR

T

4
and

C

2j(T)
≤ εwI

T

4
.

In this case, we say that the vertical and horizontal
lines are at levels i(T) and j(T), respectively. Let us
denote by L1(i(T)) the vertical grid lines at level i(T),
and by L2(j(T)) the horizontal grid lines at level j(T).

• We also slightly change the definition of the polygon
PT (ε) by expanding the region RT slightly so that
its vertical and horizontal boundary lines are from
L1(i(T)) an L2(j(T)), respectively.

• We solve problem Multi-mDKP{σTi }, imposing all
vectors d ∈ T are in the solution; see Remark 2.

1010

It is straightforward to verify that these changes will only
possibly increase the size of PT (ε) by a factor of 2, but oth-
erwise, all other claims (in particular, Lemma 4.7) remain
valid. As we shall see below, these modifications are only
needed to ensure computational efficiency.

For T ⊆ D, let G(T) be the set of vectors in C de-
fined by the union of (a) the (component-wise) minimal grid
points z inside RT , only considering lines L1(i(T) + 1) and
L2(j(T) + 1), that have exclusively either i({z}) = i(T) + 1
or j({z}) = j(T)+1, and (b) the (component-wise) minimal
grid points z insideRT , only considering lines in L1(i(T)+1)
and L2(j(T) + 1), that have i({z}) = i(T) + 1 and j({z}) =
j(T) + 1. For d ∈ D, let us denote by Sz the range of feasi-
ble allocations defined as in (13) with respect to the Multi-
mDKP problem with constraints (15)-(16), when T = {z}
(and hence, dT = z). Note that |G(T)| = O(1

ε
). Then we

define the range S(D) as the union:

S(D) ,
⋃

T⊆D: |T |≤ 1
ε

 ⋃
z∈G(T)

Sz

 .

By Lemmas 4.1 and 4.7, we have maxd∈S(D) v(d) ≥ (1 −
3ε)Opt. It remains to argue that we can efficiently optimize
over S. This essentially follows from the following claim.

Claim 4.10. Let T, T ′ ⊆ D be such that d � d′ for all
d ∈ T and d′ ∈ T ′. Consider a vector κ ∈ C such that
dT ′ + κ ∈ PT ′(ε). Then either (i) dT + κ ∈ PT (ε), or (ii)
i(T ′) ≤ i(T) + 1 and j(T ′) ≤ j(T) + 1.

Proof. Suppose that dT +κ 6∈ PT (ε). Then it also holds
that dT ′ + κ 6∈ PT (ε) (since dT ′ � dT). This implies that
both dT +κ and dT ′+κ lie within the same grid cell in PT (ε),
and hence dR

T ′ − dR
T ≤ C

2i(T) and dI
T ′ − dI

T ≤ C

2j(T) . Now,

form wR
T = wR

T ′ + dR
T ′ − dR

T ,
εwR
T ′
8

< C

2i(T
′) , and C

2i(T) ≤
εwR
T

4
,

follows that i(T ′) ≤ i(T) + 1. Similarly, we have j(T ′) ≤
j(T) + 1.

By this claim, we can solve the optimization problem over
S assuming that D =

⋃
kDk, that is, maxd∈S(D) v(d) =

maxd∈S(
⋃
k Dk) v(d). One direction “≥” is obvious; so let us

show that maxd∈S(D) v(d) ≤ maxd∈S(
⋃
k Dk) v(d). Suppose

that d∗ = (d∗1, . . . , d
∗
n) is an optimal allocation over S, but

such that d∗ ∈ Sz′ for some z′ ∈ G(T ′), T ′ ⊆ D, and

T ′ 6⊆
⋃
kDk. Define an allocation d̃ as follows: Let N =

{k : d∗k ∈ T ′}; for each k ∈ N , we choose d̃k ∈ Dk such that

d̃k � d∗k and vk(d̃k) = vk(d∗k), and we (temporarily) keep

d̃k = d∗k if k 6∈ N . Let us apply the statement of the claim

with T = {d̃k : k ∈ N} and κ =
∑
k:k 6∈N d

∗
k. If (i) holds

then dT + κ ∈ PT (ε) and therefore we have

max
d∈S(D)

v(d) ≤ max
d∈S({d: dk∈Dk ∀k∈N,

dk∈D ∀k 6∈N})

v(d) = max
d∈S(

⋃
k DK)

, (17)

where the equality follows from (the proof of) Lemma 4.2.
On the other hand, if (ii) holds, then i(T ′) ∈ {i(T), i(T) +
1} and j(T ′) ∈ {j(T), j(T) + 1}. In this case, if i(T ′) =
i(T) and j(T ′) = j(T) then PT ′(ε) ⊆ PT (ε) (since dT �
dT ′); otherwise, there is a point z ∈ G(T) such that z � z′,
i({z}) = i({z′}) and j({z}) = j({z′}). Then dT ′ + κ �
dT ′ + κ ∈ P{z}(ε), and we get again (17).

5. A TRUTHFUL FPTAS FOR MULTICKP[0, π-ε]
As in [9], the basic idea is to round off the set of possible

demands to obtain a range, by which we can optimize over
in polynomial time using dynamic programming (to obtain
an MIR).

Let θ = max{φ− π
2
, 0}, where φ , maxd∈D arg(d). We as-

sume that tan θ is bounded by an a-priori known polynomial
P (n) ≥ 1 in n, that is independent of the customers valu-
ations. We can upper bound the total projections for any
feasible allocation d = (d1, . . . , dn) of demands as follows:∑
k∈N

dI
k ≤ C,

∑
k∈N−

−dR
k ≤ C tan θ,

∑
k∈N+

dR
k ≤ C(1 + tan θ),

where N+ , {k ∈ N | dR
k ≥ 0} and N− , {k ∈ N | dR

k < 0}.
Define L , εC

n(P (n)+1)
, and for d ∈ D, define the new rounded

demand d̂ as follows:

d̂ = d̂R + id̂I ,


⌈
dR

L

⌉
· L+ i

⌈
dI

L

⌉
· L, if dR ≥ 0,⌊

dR

L

⌋
· L+ i

⌈
dI

L

⌉
· L, otherwise.

(18)

Consider an optimal allocation d∗ = (d∗1, . . . , d
∗
n) to MultiCKP[0, π-ε].

Let ξ+ (and ξ−), ζ+ (and ζ−) be the respective guessed real
and imaginary absolute total projections of the rounded de-
mands in S∗+ , {k : dR

k ≥ 0} (and S∗− , {k : dR
k < 0}). Then

the possible values of ξ+, ξ−, ζ+, ζ− are integral mutiples of
L in the following ranges:

ξ+ ∈ A+ ,

{
0, L, 2L, . . . ,

⌈
C(1 + P (n))

L

⌉
· L
}
,

ξ− ∈ A− ,

{
0, L, 2L, . . . ,

⌈
C · P (n)

L

⌉
· L
}
,

ζ+, ζ− ∈ B ,

{
0, L, 2L, . . . ,

⌈
C

L

⌉
· L
}
.

Let further D̂ , { d
L
∈ D : dR ∈ A+ and dI ∈ B}, and note

that |D̂| = O(n
2P3(n)

ε2
).

We first present a (1, 1 + 3ε)-approximation algorithm

(MultiCKP-biFPTAS) for MultiCKP[0, π-ε]. Let N+ ,
{k ∈ N | dR ≥ 0 ∀d ∈ Dk} and N− , {k ∈ N | dR < 0 ∀d ∈
Dk} be the subsets of users with demand sets in the first and
second quadrants respectively (recall that we restrict users’
demand sets to allow such a partition).

The basic idea of Algorithm MultiCKP-biFPTAS is to
enumerate the guessed total projections on real and imag-
inary axes for S∗+ and S∗− respectively. We then solve two
separate Multi-2DKP problems (one for each quadrant) to
find subsets of demands that satisfy the individual guessed
total projections. But since Multi-2DKP is generally NP-
hard, we need to round the demands to get a problem that
can be solved efficiently by dynamic programming. We note
that the violation of the optimal solution to the rounded
problem w.r.t. to the original problem is small in ε.

Lemma 5.1. For any optimal allocation d∗ = (d∗1, . . . , d
∗
n)

to MultiCKP [0, π-ε], we have
∣∣∑

k d̂
∗
k

∣∣ ≤ (1 + 2ε)C.

The next step is to solve the each rounded instance ex-
actly. Assume an arbitrary order on N = {1, ..., n}. We
define a 3D table, with each entry U(k, c1, c2) being the max-
imum utility obtained from a subset of users {1, 2, . . . , k} ⊆
N , each with choosing from D̂, that can fit exactly (i.e., sat-
isfies the capacity constraint as an equation) within capacity

1011

c1 on the real axis and c2 on the imaginary axis. This table
can be filled-up by standard dynamic programming; we de-
note such a program by Multi-2DKP-Exact[·]. For a user
k ∈ N−, we redefine the valuation as v̄k(d) = vk(d̄), where,
for d ∈ D, d̄R = −dR and d̄I = dI. For a set F ⊆ D, we
write F̄ for the set {d̄ : d ∈ F}.

Algorithm 3 MultiCKP-biFPTAS ({vk, Dk}k∈N , C, ε)
Require: Users’ multi-minded valuations {vk, Dk}k∈N ; ca-

pacity C; accuracy parameter ε
Ensure: (1, 1+3ε)-allocation (d̃1, . . . , d̃n) to MultiCKP[0, π-ε]

1: (d1, . . . , dn)← (0, . . . ,0)

2: D̂+ ← { dL ∈ D : dR ∈ A+ and dI ∈ B}
3: D̂− ← { dL ∈ D : − dR ∈ A− and dI ∈ B}
4: for all ξ+ ∈ A+, ξ− ∈ A−, ζ+, ζ− ∈ B do
5: if (ξ+ − ξ−)2 + (ζ+ + ζ−)2 ≤ (1 + 2ε)2C2 then

6: F+ ←Multi-2DKP-Exact({vk, Dk}k∈N+
,
ξ+
L
,
ζ+
L
, D̂)

7: F− ←Multi-2DKP-Exact({v̄k, Dk}k∈N− ,
ξ−
L
,
ζ−
L
, D̂)

8: (d′1, . . . , d
′
n)← F+ ∪ F−

9: if
∑
k vk(d′k) >

∑
k vk(dk) then

10: (d1, . . . , dn)← (d′1, . . . , d
′
n)

11: end if
12: end if
13: end for
14: for all k ∈ N+ do

15: Choose d̃k ∈ Dk s.t. d̃k � dk and vk(dk) = vk(d̃k)
16: end for
17: return (d̃1, . . . , d̃n)

The following lemma states that the allocation returned
by MultiCKP-biFPTAS does not violate the capacity con-
straint by more than a factor of 1 + 3ε.

Lemma 5.2. Let d̃ be the allocation returned by MultiCKP-

biFPTAS. Then |
∑
k d̃k| ≤ (1 + 3ε)C.

Theorem 5.3. For any ε > 0, there is a truthful for
MultiCKP[0, π-ε], that returns a (1, 1+3ε)-approximation.
The running time is polynomial in n and 1

ε
.

Proof. We define a declaration-independent range S as
follows. For ξ+ ∈ A+, ξ− ∈ A−, ζ+, ζ− ∈ B, define

Sξ+,ξ+,ζ−+,ζ− , {d = (d1, . . . , dn) ∈ D̂n+ :∑
k∈N+

dR
k = ξ+,

∑
k∈N+

dI
k = ζ+,

−
∑
k∈N−

dR
k = ξ−,

∑
k∈N+

dR
k = ζ−}.

Define further

S ,
⋃

(ξ+−ξ−)2+(ζ++ζ−)2≤(1+2ε)2C2

Sξ+,ξ+,ζ−+,ζ− .

Using Algorithm MultiCKP-biFPTAS, we can optimize
over S in time polynomial in n and 1

ε
. Thus, it remains only

to argue that the algorithm returns a (1, 1+3ε)-approximation
w.r.t. the original range Dn. To see this, let d∗1, . . . , d

∗
n ∈ D

be the demands allocated in the optimum solution to Multi-

CKP, and d̃1, . . . , d̃n ∈ D be the demands allocated by
MultiCKP-biFPTAS. Then by Lemma 5.1, the truncated

optimal allocation (d̂∗1, . . . , d̂
∗
n) is feasible with respect to

a capacity of (1 + 2ε)C, and thus its projections will sat-
isfy the condition in Step 5 of Algorithm 3. It follows that

v(d̃) ≥ v(d̂∗) ≥ v(d∗) = Opt, where the second inequality
follows from the way we round demands (18) and the mono-
tonicity of the valuations. Finally, the fact that the solution
returned byMultiCKP-biFPTAS violates the capacity con-
straint by a factor of at most (1 + 3ε) follows readily from
Lemma 5.2.

6. CONCLUSION
In this paper, we provided truthful mechanisms for an

important variant of the knapsack problem with complex-
valued demands. We gave a truthful PTAS when all demand
sets of users lie in the positive quadrant, and a bi-criteria
truthful FPTAS when some of the demand sets can lie in the
second quadrant. In the full version of the paper, we show
that these are essentially the best possible results in terms of
approximation guarantees, assuming P6=NP.

Acknowledgment
We thank Piotr Krysta for bringing the results from [5, 9]
(presented in Section 4.1) to our attention.

7. REFERENCES
[1] National Electrical Code (NEC) NFPA 70-2005.

[2] P. Briest, P. Krysta, and B. Vocking. Approximation
techniques for utilitarian mechanism design. In
STOC’05, pages 39–48, 2005.

[3] Chandra Chekuri and Sanjeev Khanna. A ptas for the
multiple knapsack problem. In Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’00, pages 213–222, Philadelphia,
PA, USA, 2000. Society for Industrial and Applied
Mathematics.

[4] S. Dobzinski and N. Nisan. Mechanisms for multi-unit
auctions. In ACM EC, 2007.

[5] Shahar Dobzinski and Noam Nisan. Mechanisms for
multi-unit auctions. J. Artif. Intell. Res. (JAIR),
37:85–98, 2010.

[6] A. Frieze and M. Clarke. Approximation algorithm for
the m-dimensional 0-1 knapsack problem. European
Journal of Operational Research, 15:100–109, 1984.

[7] J. Grainger and W. Stevenson. Power System
Analysis. McGraw-Hill, 1994.

[8] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
Problems. Springer, 2010.

[9] Piotr Krysta, Orestis Telelis, and Carmine Ventre.
Mechanisms for multi-unit combinatorial auctions
with a few distinct goods. In AAMAS, 2013.

[10] N. Nisan, T. Roughgarden, E. Tardos, and V. V.
Vazirani. Algorithmic Game Theory. Cambridge
University Press, 2007.

[11] Noam Nisan and Amir Ronen. Computationally
feasible VCG mechanisms. J. Artif. Int. Res.,
29(1):19–47, May 2007.

[12] Lan Yu and Chi-Kin Chau. Complex-demand
knapsack problems and incentives in AC power
systems. In AAMAS, 2013.

1012

