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ABSTRACT

Kidney exchange provides a life-saving alternative to long waiting
lists for patients in need of a new kidney. Fielded exchanges typi-
cally match under utilitarian or near-utilitarian rules; this approach
marginalizes certain classes of patients. In this paper, we focus
on improving access to kidneys for highly-sensitized, or hard-to-
match, patients. Toward this end, we formally adapt a recently in-
troduced measure of the tradeoff between fairness and efficiency—
the price of fairness—to the standard kidney exchange model. We
show that the price of fairness in the standard theoretical model is
small. We then introduce two natural definitions of fairness and
empirically explore the tradeoff between matching more hard-to-
match patients and the overall utility of a utilitarian matching, on
real data from the UNOS nationwide kidney exchange and simu-
lated data from each of the standard kidney exchange distributions.
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J.4 [Social and Behavioral Sciences]: Economics
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1. INTRODUCTION

The preferred treatment for kidney failure is transplantation. How-

ever, the demand for donor kidneys is far greater than supply. For
example, 34,837 people were added to the US national waiting list
in 2012, while only 10,851 left it due to receiving a kidney [26].
Demand is increasing worldwide.

Successful transplantation of a kidney relies on tissue-type com-
patibility between the donor organ and patient, among other factors.
Compatibility is determined through a tissue-type crossmatch be-
tween a potential donor and patient’s blood; if the two types differ
substantially, the patient’s body will reject the donor organ.

Some patients are highly-sensitized; there is a very low proba-
bility that their blood will pass a crossmatch test with a random
organ. For these patients, finding a kidney is quite difficult (and
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median time on the waiting list jumps by a factor of three over less
sensitized patients [26]).

Roughly 17% of the adult patients on the waiting list for de-
ceased donor kidneys are highly-sensitized [18]. Recently, an al-
location policy was designed for deceased donor kidneys that ef-
fectively balances fairness and efficiency while working within the
currently fielded priority-based framework [10].

Complementing deceased donation is kidney exchange, which
allows patients with a willing but medically incompatible living
donor to swap their donor with other patients. The percentage of
highly-sensitized patients in fielded kidney exchanges is quite high;
roughly 60% of the UNOS nationwide kidney exchange is highly-
sensitized, as shown in Figure 1.
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Figure 1: Composition of the UNOS national kidney exchange
from inception. For each of 73 match runs (x-axis), the raw
number of highly-sensitized patients, non-highly-sensitized pa-
tients, and altruists are plotted (left y-axis), as well as the per-
centage of patients who are highly-sensitized as a percentage of
the pool size (right y-axis).

In this paper, we focus on improving access to kidneys for highly-
sensitized (and thus hard to match) patients. We explore the price
of fairness in kidney exchange—the relative loss in total welfare
from using a “fair” matching rule, instead of an overall utility-
maximizing one [9]. Theoretically, we show that the price of fair-
ness is small in the standard theoretical kidney exchange model.
We then define two natural definitions of fairness in kidney ex-
change and empirically quantify the tradeoff between efficiency
and fairness on real data from the UNOS nationwide kidney ex-



change (which runs our code), as well as on simulated data from
the two most widely used kidney exchange distributions. We find
that, on real data, prioritizing hard-to-match patients results in a
price of fairness that is (often quite far from) zero. While our paper
focuses on highly-sensitized patients, its techniques and results are
easily adaptable to other notions of fairness in kidney exchange.

Kidney exchanges represent a truly fielded example of technol-
ogy at the intersection of artificial intelligence and economics—an
example that is both recent and as yet unsolved. Exchanges are
saving lives on an ongoing basis and growing annually, both in
the United States and worldwide. They provide a wealth of op-
portunities for theoretical and experimental research in both fields.
For instance, key questions in practically tractable clearing algo-
rithms [7, 13, 14, 15] and mechanism design [3, 5, 6, 11] remain
unsolved. Advances in these areas will benefit the greater artificial
intelligence community immensely, and provide valuable experi-
ence in fielding real-world artificial intelligence technology.

2. FAIRNESS IN KIDNEY EXCHANGE

In this section, we briefly overview the standard graph-based
model of kidney exchange, expand the model to include a notion of
sensitization, and formally define the price of fairness in the context
of kidney exchange.

2.1 Kidney exchange model

The standard model for kidney exchange encodes an n-patient
kidney exchange as a directed compatibility graph G = (V, E) by
constructing one vertex for each patient-donor pair. An edge e from
v; to v; is added if the patient in v; wants and is compatible with
the donor kidney of v;. A donor is willing to give her kidney if and
only if the patient in her vertex v; receives a kidney. The weight
we of an edge e represents the utility to v; of obtaining v;’s donor
kidney.!

A cycle c in the graph G represents a possible kidney swap,
where each vertex in c obtains the kidney of the previous vertex.
We denote by k-cycle a cycle with k patient-donor pairs. In fielded
kidney exchange, cycles of length at most only some small constant
L are allowed. All transplants in a cycle must be performed simul-
taneously so that no donor backs out after his patient has received
a kidney but before he has donated his kidney. In most fielded kid-
ney exchanges, including the UNOS kidney exchange, L = 3 (i.e.,
only 2- and 3-cycles are allowed).

Fielded kidney exchanges also gain great utility through the use
of chains (see, e.g., [4, 14,16, 17, 21, 22, 23, 28]). Chains start with
an altruistic donor donating his kidney to a patient, whose paired
donor donates her kidney to another patient, and so on.

A matching M is a collection of vertex-disjoint cycles and chains
in the graph G. Note that the elements of the matching must be
disjoint because no donor can give more than one of his kidneys.
Then, given the set of all legal matchings M, the clearing problem
in kidney exchange is to find a matching M ™ that maximizes some
utility function © : M — R. Formally:

M* = argmax u(M)
MeM

In fielded kidney exchanges, one typically finds the maximum
weighted cycle cover (i.e., u(M) = > o/ D .. we). This util-
itarian objective can favor certain classes of patient-donor pairs

"This model works for general m-participant barter exchanges,
where vertices trade and receive utility from items instead of kid-
neys.

1014

while marginalizing others. We formalize this notion in the next
section.

2.2 The price of fairness

In practice, the sensitization level of a patient is presented as a
Calculated Panel Reactive Antibody (CPRA) score that varies from
0 to 100. The CPRA score is an estimate of the percentage of
donors that are tissue-type incompatible with the patient (i.e., the
percentage of donors with whom a patient would have a positive,
or failing, crossmatch).

Assume each non-altruistic vertex v has a sensitization level vs €
[0,100], representing the CPRA level of v’s patient. Altruistic
vertices need no CPRA specification because they have no asso-
ciated patient. Let 7 € [0,100] represent a threshold delimiting
low from high sensitization; in practice, 7 > 80. Partition V' into
{VL U Vg U A}, such that:

e V7 is not highly-sensitized: {v|v eV \ AAvs < T}
e Vp is highly-sensitized: {v|v € V\ AAvs > 7}
e A are altruistic donors (with no patients)

Since the highly-sensitized patients will, by definition of CPRA,
have fewer incoming edges on average than lowly-sensitized pa-
tients, one worries that a mechanism maximizing overall efficiency
might favor easier-to-match vertices in V7, to the detriment of those
in V. Similarly, if a mechanism prioritizes harder-to-match ver-
tices in Vg, one worries that the overall efficiency of the matching
might drop.

Bertsimas, Farias, and Trichakis recently defined the price of
fairness to be the “relative system efficiency loss under a fair alloca-
tion assuming that a fully efficient allocation is one that maximizes
the sum of [participant] utilities [9].” Caragiannis et al. defined an
essentially identical concept in parallel [12]. We adopt that notion
here.

Let uy : M — R be a fair utility function. Formally, a util-
ity function is fair when its corresponding optimal match M7} is
viewed as fair, where M }‘ is defined as:

My = argmaxuy(M)
Mem

Given a fair utility function vy and the utilitarian utility function
u, the price of fairness is defined to be:

u(M*)—u (M}‘)

POF(M,Uf) = U(M*)

That is, POF(M, uy) is the relative loss in match efficiency
(from the utilitarian point of view u) due to the maximization of
a fair utility function u ¢ over some family of matchings M.

In the next section, we show that the price of fairness in the stan-
dard theoretical model for kidney exchange is quite small, for any
reasonable fair utility function uy. Then, in Sections 4 and 5, we
present two families of fair utility functions motivated by our expe-
riences with the UNOS national kidney exchange; on real data, the
price of fairness is frequently far from zero.

3. THE (THEORETICAL) PRICE OF FAIR-
NESS IS LOW

In this section, we give bounds for the price of fairness under
the standard model of kidney exchange. The price of fairness is
upper-bounded by a small number of vertices (under reasonable
assumptions, with high probability).



3.1 Upper bound over all fair utility functions

Different notions of fairness may result in more (or less) of an
effect on overall system efficiency. As an extreme example, forc-
ing a matching to include at least one highly-sensitized patient (if
possible) intuitively restricts the solution space less than forcing a
matching to include as many highly-sensitized patients as possible.
‘We must consider this when stating theoretical bounds on the price
of fairness.

We derive our bound under the fair utility function w1 that
lexicographically ranks any highly-sensitized vertex over any lowly-
sensitized vertex. For any matching M € M, let Mg = M N Vy
be the subset of highly-sensitized vertices matched by M. For-
mally:

upsr1 (M) = { u((])W)

This utility function gives nonzero weight only to those matches
that include the maximum possible number of highly-sensitized
patients. We informally argue that price of fairness guarantees on
uH 1, are upper bounds to the price of fairness of any “reasonable”
fair utility function. Indeed, any utility function that does not first
maximize the number of highly-sensitized pairs matched will leave
a thicker remaining market in which non-highly-sensitized pairs
have more options for matching—and thus the resulting match will
see less of an efficiency loss.

3.2 Model with ABO-blood types and two lev-
els of sensitization

We work in a theoretical model that considers both blood types
and sensitization. Like a positive crossmatch, the blood type of a
donor can prevent the acceptance of a kidney by a patient. At a
high level, the absence or presence of certain proteins splits hu-
man blood types into four groups: O, A, B, and AB. Barring other
considerations, patients of type AB are compatible with any blood
type, patients of type A (B) are compatible with blood types A (B)
and O, and patients of type O can only accept from their own blood
type. Thus, O-patients are the hardest blood type to match, while
O-donors are the easiest.

Much of the theoretical market design work in kidney exchange
uses the ABO-model, which labels vertices in a compatibility graph
with their patient and donor blood types (see, e.g., [3, 6, 11, 14, 25,
27]). Work in this model has not directly addressed sensitization.

We draw random graphs in accordance with the canonical method
(see, e.g., [6]). Partition the n incompatible patient-donor pairs of
some large, directed compatibility graph G(n) into VXY of type
X-Y, for each combination of blood types X and Y of the patient
and donor respectively. When required, we will further partition
each set VX into VXY and VXY, the lowly- (highly-)sensitized
pairs of type X-Y. The frequency of each blood type X is denoted
by pux. Note that vertices with blood type-compatible patient-
donor pairs may still enter the pool due to tissue-type incompat-
ibility. We assume that a donor and a lowly-sensitized (highly-
sensitized) patient who are blood type compatible are tissue-type
incompatible with constant probability pr, (pr). Let p represent the
average level of sensitization in the pool; that is, p = Apr + (1 —
A)pa, where ) is the fraction of the pool that is lowly-sensitized.

Proposition 1 gives a bound on the price of fairness in random
graphs in the ABO-model parameterized in a realistic way (i.e., p
mirrors that of a dense kidney exchange pool, and the blood type
distribution mimics that of the US population). The proposition
and proof sketch build on the efficiency result presented in §5 of
Ashlagi and Roth [6]. Like their work, Proposition 1 considers a
model without chains.

if [Mp| = maxar e [Mp|
otherwise
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PROPOSITION 1. Assume that p < 2/5, po < 3ua/2, and
1o > pa > pp > papg, and X > (1 — p). Denote by M the set of
matchings in G(n). Then, almost surely as n — oo,

2
POF(M, uH>L) < @

(And this is achieved using only cycles of length at most 3.)

PROOF SKETCH. Let pairs of type A-B and B-A be called recip-
rocal pairs. Call any non-reciprocal pair X-Y whose donor is not
ABO-compatible with its patient an under-demanded pair, and any
pair X-Y such that X # Y (X = Y') and whose donor is ABO-
compatible with its patient an over-demanded (self-demanded) pair.

From the results of Ashlagi and Roth [6], with high probabil-
ity there exists an efficient matching M ™ in G(n) that matches all
over- and self-demanded pairs, as well as all reciprocal pairs. Triv-
ially, all highly-sensitized pairs are also matched in these specific
subgroups. Thus, we need only consider highly-sensitized pairs in
under-demanded pools. We do this exhaustively.

e In M*, all pairs in V*®® are matched to as many pairs in
VEBAB as possible. If [VABB| > |VEAB|, then all highly-
sensitized under-demanded B-AB pairs will be matched. Note
|[VABB| o pupuap and |[VE*B| oc (1 — X)uppap. Then by
the assumption on A, puspas > (1 — A)uspas, and the
above cardinality inequality holds almost surely.

We now match all highly-sensitized pairs in V2 and Vg8
to pairs in V*°© and V2, respectively, using 2-cycles. This
can be done by the same argument as above.

WLOG, assume |VE#| < |VAB|. Then, in M*, all recipro-
cal pairs in VB are matched to as many pairs as possible in
VA8 leaving V4B leftover reciprocal pairs. In M*, these
leftover pairs in V;*"® are fully matched through V2 and
V94 in 3-cycles. By executing the 2-cycles above, we may
prematurely exhaust V© and prevent up to |[V;A®| 3-cycles
from executing. (Note that if VO is exhausted, the VA
through V®© cycle can be closed at length 2 for no efficiency
loss.)

By Lemma 5.1 of Ashlagi and Roth [6], the absolute differ-
ence in reciprocal pairs is o(n); that is, |[V*®| is less than
any other subgroup in the pool (since the size of any other
subgroup is linear in n). Therefore, the number of 3-cycles
lost is sub-linear in n; thus, this term (relative to price of
fairness) is insignificant as n grows.

Next, we match all pairs in V4™ to over-demanded pairs
in VABA; this leaves |V/8| o Apajuas remaining A-AB
pairs.

In the efficient matching M™, all over-demanded pairs in
VABO are matched through 3-cycles with pairs in VA8 and
VOAIf the remaining |V/5| vertices in VA5 are ex-
hausted before V2B, then the remaining vertices in V/AB-O
can still be exhausted through 2-cycles to, e.g., VO at no
efficiency loss. (Note |VP™| o Apopa > Mtoptas >
(1 — ppopas > Propas o [VA¥C|, since p < 2

2<3)
5 2
This occurs unless the fair matching accrues efficiency loss
through highly-sensitized, under-demanded O-AB pairs, as
explained next.

Finally, we are left with highly-sensitized pairs in VOB the
hardest to match group. In the efficient allocation, VOB
is unmatched entirely. In a matching under ug. 1, at most

2As n — oo, the size of a set will be very close to its expectation.



[VE*B| o« (1 — A)popap could find a matching elsewhere,
possibly cannibalizing a 3-cycle through VAB© to form a 2-
cycle, or through VB and V5 or VA4 and VA to form
a 3-cycle at a cost of two 2-cycles. In any of these three
(exhaustive) cases, every match of a highly-sensitized O-AB
pair results in an efficiency loss of one pair, or an overall
absolute efficiency loss proportional to (1 — X\)uappo pairs.

This exhausts all highly-sensitized pairs in the under-demanded
subgroups not fully matched by the efficient allocation M*. All
highly-sensitized pairs in self- and over-demanded subgroups are
still matched, as in the efficient allocation. Any newly unmatched
reciprocal pairs are lowly-sensitized. Thus, we have matched all
highly-sensitized pairs in the pool. This came at an absolute loss
proportional to at most (1 — A)uappo < Ppuaspo pairs. Figure 2
visualizes this new matching (and shows where losses occur with
respect to the efficient matching M™).

O-AB

Figure 2: An example matching used in Proposition 1. Patient-
donor pairs are ovals: under- and self-demanded pairs are
white, over-demanded pairs are gray, and reciprocal pairs are
black. Regular edges appear in the efficient matching, while
dashed edges represent 3-cycles from the efficient matching
that may be disturbed via fair matching. Efficiency loss is de-
noted with rectangular nodes.

To determine a bound on the price of fairness, we must first de-
termine the actual expected loss in number of vertices (through nor-
malization), and then determine the relative loss with respect to the
expected size of the efficient matching M ™.

The expected size of M™* is at least E, such that:

E o p[2uaBps + 2paspia + 3pasiio + 2pa o
+ 2upio + 116 + piA + 1 + pas] + 20aps

This value is computed by counting only 2- and 3-cycles that are
almost surely guaranteed to execute in the efficient matching. Then,
the expected size of a fair matching under ug. 1, is at least F'
E — puaspeo, as calculated above.

An upper bound on the expected price of fairness is then

POF(M, ums-1) < (Praspo) /
(P [2paBps + 2uapa + 3pas o + 2patio
+ 2B pio + pd + pA + b + pAs] + 2paps)

E—-F.
T -
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Note that the notion of proportionality can be dropped, since both
the numerator (the size of the fair matching, written in terms of the
size of the efficient matching) and the denominator (the size of the
efficient matching) are normalized by the same constant.

We prove the statement by giving an upper bound on the right-
hand side of the inequality above. Considering the distribution con-
straint ) €{0,AB,AB} HX = 1, and the ordering constraints on

each blood type, this is upper-bounded when p = % to = %
and pap = 2 (which forces pa = ps = 2). Using these val-
ues yields an upper-bound of POF(M, ups 1) < = (with high
probability). [

Different countries and regions within countries have different
blood type distributions. From Proposition 1, a more realistic bound
for this model can be drawn from the United States distribution of
blood types (no ~ 0.44, pa ~ 0.42, ug ~ 0.10, puap ~ 0.04);
this yields a bound of POF(M,up-1) < 1.5%.

A symmetric result follows if g > pa, instead of 4 > pp as
assumed. We note that, from the reasoning in [6], similar results
can be derived for p > 2/5—so long as pr, pw, and p remain
constant.

4. HOW SHOULD WE DEFINE FAIRNESS?

In this section, we present two definitions of fairness in kid-
ney exchange—one using strict lexicographic preferences and the
other using a sliding scale weighting function. Critically, we feel
both definitions fit within the scope and practice of current policy
in fielded exchange, a necessary consideration when fielding new
technology in medicine (as noted by those who designed the recent
deceased donor allocation scheme [10] and supported by our ex-
perience with the UNOS exchange). We briefly discuss challenges
in implementing either fairness rule, then experimentally validate
both rules in Section 5 on simulated and real exchange data.

4.1 Lexicographic fairness

First, we consider a fairness criterion that assumes lexicographic
preferences over classes of vertices. This is a generalization of the
u s, utility function used in Section 3. Informally, this fairness
rule allows policymakers to state a hard preference for matchings
containing a baseline percentage of highly-sensitized patients and,
if and only if this constraint is fulfilled, express a secondary utili-
tarian preference. We present this rule below in the context of both
deterministic and probabilistic kidney exchange.

4.1.1 Deterministic model

Let o™ be the maximum fraction of vertices in Vi that could be
matched over M, the set of possible matchings on some compati-
bility graph G. That is,

*
[e%

= M; Vi
(o, 131 /1

For a given graph G, o™ can be computed using a simple mod-
ification of the standard kidney exchange integer program (known
as the cycle formulation [1]).

o = 1/|Vu| max . h(c)z.
s.t. clvee Te <1l W
z. € {0,1} Ve

Unless otherwise specified, vertices v range over the set V', while
cycles and chains c range over the set of all legal cycles and chains
C (possibly capped at some length L). Here, x. is a binary variable
that is set to 1 if cycle c is included in the final matching; otherwise,



itis 0. The constant h(c) is the number of highly-sensitized patients
in a cycle or chain c. Formally,

hic)={v|vechv e Vu}

Note that h(c) = 0 if a cycle or chain does not contain any
highly-sensitized patients, so only those binary variables z. cor-
responding to cycles or chains with at least one highly-sensitized
patient need be included in the objective. However, all vertices
belonging to at least one cycle or chain that contains at least one
highly-sensitized vertex must be included in the vertex-disjointness
constraints (to maintain the feasibility of the final disjoint cycle
cover).

Given this setup, a match could be considered equitable if it sat-
isfies some nonnegative, user-defined parameter v < «*, such that
the matching algorithm includes « - |V | highly-sensitized patients
in the “optimal” match. E.g., if @ = 0.5, any returned match would
include at least 50% of the number of highly-sensitized patients
available. Formally, define the deterministic lexicographic fairness
rule ufy, , over any M € M as follows:

{

We implement this utility function by adding a single constraint
to the standard integer program, yielding:

0

if [Mu| > a- |V

« —
up-L(M) = otherwise

max Y _|c| z.

s.t. Zc|v€c z. <1 Yo
2o he)ze > - |Vl
z. € {0,1} Ve

In the next section, we generalize this rule for probabilistic kid-
ney exchange.

4.1.2 Probabilistic (failure-aware) model

Most algorithmic matches in fielded kidney exchanges do not
result in an actual transplant, even if a patient and donor are seen
as ABO- and tissue-type compatible by the optimization software.
A variety of issues arise, including sudden illness or death, im-
proper medical testing, a patient finding a deceased or alternate liv-
ing donor outside of the kidney exchange, or match failure due to
more intensive (and expensive) post-match medical testing.

Recent work introduced the idea of failure-aware kidney ex-
change, where the optimizer endogenously balances the likelihood
of match success with the raw size and composition of cycles and
chains in the match [15]. Intuitively, instead of maximizing the
number of pairs matched, the failure-aware clearing problem is to
maximize the expected number of transplants, subject to each edge
e in the graph having some probability of success g.. In the lexi-
cographic fairness model we consider in this paper, this is further
constrained by ensuring some fraction of these expected transplants
are to highly-sensitized patients.

Toward this end, define v"(c), the expected number of trans-
plants to highly-sensitized patients of a cycle or chain c, as follows:
Cycles. For cycles, the discounted utility is the same as in [15], but
counting only those vertices in the cycle that are highly-sensitized.
Formally,

Uh(c) = h(c) H Qe

Chains. While cycles necessarily execute atomically, chains can
execute partially and then fail—thus making the calculation of ol
a bit trickier. For a chain of length k, let ¢’ represent the initial ¢
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vertices in the chain (including the altruistic donor). Formally,

w1 qz]

We now let N* be the maximum expected number of vertices in
Vi that could receive transplants over all possible matchings M
on (5. That is,

k-1

S (- are ) L

=1

v"(c) -

N* =

max v (M)
MeM

where for any matching M, v" (M) is defined as D eem v (e).

Then for a given graph G, this failure-aware N* can be com-
puted using a similar modification of the failure-aware kidney ex-
change integer program as follows:

max Y., v"(c)ze
s.t. chUEC . <1 Yo
z. € {0,1} Ve

N* =

Now, as above, the user can supply some parameter o € [0, 1]
that guarantees « fraction of the maximum possible expected num-
ber of transplants for highly sensitized-patients. This preference is
enforced by adding a single constraint to the standard failure-aware
kidney exchange IP as follows:

max »_ v(c)zre

s.t. ZC‘UGC T <1 Yo
S.v"(e)xe > a- N*
Tc € {0, 1} Ve

Here, v(c) is defined similarly to v"(c), only including lowly-
sensitized transplants in the expectation calculation as well.

4.1.3 A note on implementing this rule

Abraham, Blum, and Sandholm [1] presented the algorithm that,
to our knowledge, is the most scalable optimal kidney exchange
clearing algorithm created to date. An implementation of this al-
gorithm is currently used by the UNOS exchange. Their solver
uses branch-and-price, a technique that proves optimality by in-
crementally generating only a small part of the model during tree
search [8]. This method is necessary, as the number of variables in
the full integer program is too large to write down in memory (for
all but small compatibility graphs).

Unfortunately, adding lexicographic preferences into the opti-
mization model breaks the specific branch-and-price structure on
which this solver relies (both in the deterministic model [1] and
in the probabilistic model [15]). While a solver could still use col-
umn generation or general branch-and-price to solve this new prob-
lem, the addition of a matching-wide constraint—that a matching
must contain cycles containing some fraction of a set of marked
vertices—makes solving the pricing problem (see [8] for details)
much more difficult than in the utilitarian formulation, where deter-
mining the price of a cycle not included in the current subproblem is
relatively simple. Indeed, with such an allocation-wide constraint,
finding a positive price cycle at a node in the search tree requires
solving an integer program, whereas current solvers can use a (typ-
ically quite fast) depth-first search to find a positive price cycle in
the standard kidney exchange model.

With these computational constraints in mind, in Section 4.2 we
define a different fair utility function that respects the constraints of
current solvers. This utility function circumvents a matching-wide
fairness constraint. We will then compare both fair utility functions
against the utilitarian one on real and simulated data in Section 5.



4.2 Weighted fairness

We now present a different formalization of fairness that relaxes
the strict lexicographic preferences from the previous section. This
definition generalizes the policy UNOS currently applies to highly-
sensitized patients in their fielded kidney exchange.

Building on the standard (deterministic or probabilistic) kidney
exchange integer programming formulation, we rewrite the objec-
tive as follows:

max . va(c)ze

Here, va (c) is the value of a cycle or chain c (either in the deter-
ministic or probabilistic model) such that the weight of each edge
e € cis adjusted by some re-weighting function A : E — R.

A simple example re-weighting function is multiplicative:

{ (1 + B)we

We

Intuitively, for some 3 > 0, this function scales the weight of edges
ending in highly-sensitized vertices by (1 + 3). For example, if
B = 0.5, then the optimization algorithm will value edges that
result in a highly-sensitized patient receiving a transplant at 50%
above their initial weight (possibly scaled by other factors like fail-
ure probability and chain position, as in the probabilistic model).
We will use this multiplicative re-weighting in our experiments in
Section 5.

For any M € M, let M’ be the matching such that every cycle
¢ € M has augmented weight va(c). Then define the weighted
fairness rule ua in terms of the utilitarian rule u applied to the
augmented matching M’, such that ua (M) = u(M").

if e ends in Vg

B _
A%(e) = otherwise

4.2.1 A note on implementing this rule

Note that, unlike implementing the lexicographic fairness rule
uf, 1, this definition of fairness does not break the branch-and-
price structure on which current scalable kidney exchange solvers
rely. Indeed, the ua rule, for simple re-weighting functions like the
multiplicative example above, can be implemented by first prepro-
cessing a compatibility graph using A to determine edge weights,
and then solving the maximization problem using a standard kidney
exchange solver.

S. EXPERIMENTAL VALIDATION

In this section, we compare the behavior of both the lexico-
graphic fair rule u%;, ;, and weighted fair rule ua (relative to the
utilitarian rule u) on (a) real data from 73 UNOS national kidney
exchange match runs, from October 2010 to August 2013, and (b)
simulated data from the standard kidney exchange compatibility
graph models.

5.1 Results from the fielded UNOS exchange

The UNOS national kidney exchange began matching patient-
donor pairs in October 2010. Initially matching monthly with ap-
proximately 70 hospitals, it has since grown to weekly matching
with over 130 hospitals across the United States. We have been
heavily involved with this exchange since its inception, and present
fairness experiments on the first 73 match runs (through August of
2013) in this section.

The UNOS algorithm currently performs a utilitarian maximum
weighted matching, where edge weights are set through a point-
based system determined by a committee of doctors and policy-
makers. Highly-sensitized patients in the UNOS exchange are those
with CPRA of at least 80.

Results are presented for both the deterministic (denoted NO-
FAIL) and probabilistic versions of the kidney exchange clearing
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problem. Motivated by Dickerson, Procaccia, and Sandholm [15],
we test the probabilistic model on two different edge failure proba-
bility distributions: one where each edge has a constant 70% rate of
failure (denoted CONSTANT), and the other with a bimodal fail-
ure rate such that 25% of edge failures are drawn from U10.0, 0.2]
and the rest from U[0.8, 1.0] (denoted BIMODAL). These distribu-
tions are derived from real data (see §4.1 of [15] for details). We
use a cycle cap of L = 3, as does UNOS, and include chains.
Lexicographic rule. We begin with the strictest version of the lex-
icographic fair rule: u}; ;. With oo = 1.0, this rule maximizes the
number of highly-sensitized pairs in a match (which aligns with the
theory of Section 3).

Metric Minimum | Average | Maximum | St. Dev.

Loss (Objective) % 0.00% 2.76% 19.04% 4.84%

Loss (Cardinality) % 0.00% 4.09% 33.33% 8.18%
Loss (Cardinality) 0 0.55 4 1.10

Table 1: Minimum, average, and maximum loss in objective
value and match size due to u};\; , across all 73 UNOS match
runs, in the deterministic model.

Table 1 presents results in the deterministic model. Under u};‘; L
the price of fairness in this deterministic model is, on average, quite
small; however, there are outlier cases in which large relative losses
in the objective (of 19%) and overall match size (of 33%) are ob-
served. We now explore this phenomenon in depth, in both the
deterministic and probabilistic model.

Figure 3 presents cumulative distribution functions in efficiency

loss with respective to the UNOS-weighted objective value, for the
NO-FAIL, CONSTANT, and BIMODAL models.> In each of the
models, roughly half of all UNOS match runs see no efficiency
loss when prioritizing highly-sensitized candidates. However, (a)
in each model, there exist a nontrivial number of matches with a
nontrivial loss in efficiency, and (b) increasing the variability in fail-
ure rates increases the price of fairness. Indeed, in the BIMODAL
model, some runs have a nearly 100% loss in efficiency! Intuitively,
this is due to the optimizer being “forced” into including edges—
possibly with a very low chance of successful execution—that re-
sult in a potential highly-sensitized transplant.
Weighted rule. We now give results for the weighted fair rule
ua, where edges are re-weighted under the multiplicative rule A”
defined in Section 4.2. Recall that A% values highly-sensitized
transplants at the same rate as lowly-sensitized ones, A% values
them at 50% over their base value, A™? at 100% over their base
value, etc.

The Pareto frontiers shown in Figure 4 represent the set of Pareto
efficient matchings constrained by ua as (3 increases from 0, for
each of the NO-FAIL, CONSTANT, and BIMODAL models. In-
tuitively, these plots visualize the relationship between favoring a
subset of vertices versus the overall match efficiency. As with the
lexicographic rule, higher diversity in the underlying failure proba-
bility distribution begets a greater price of fairness.

5.2 Simulated results from random graphs

Fielded kidney exchanges are still young and have relatively small
pools, containing at most a couple of hundred pairs at a time. To
explore fairness-aware matching behavior in larger pool sizes, and
to validate the theory developed in Section 3, we now turn to gen-
erated data. We look at two models:

*Cumulative distribution functions of efficiency loss as a function
of match size exhibit similar behavior and are omitted due to space
constraints.
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Figure 3: Cumulative distribution functions of the price of fairness under the lexicographic fairness rule u};) ; according to UNOS’
weighting policy, on 73 UNOS match runs since the inception of the exchange.
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Figure 4: Pareto frontiers for ua under different failure probability distributions, for 5 € {0.0,0.05,...,10.0}.

1. The most well-known model of kidney exchange is due to
Saidman et al. [24]. It generalizes the theoretical model in
Section 3, and includes blood types, three tiers of CPRA
(low, medium, and high), and various other medical aspects
that affect pool composition. We refer to the base Said-
man model, which is parameterized with US national data,
as Saidman (US). We also parameterize the model using
blood type and sensitization statistics from the 73 UNOS
match runs (aggregate data is available in [19]), and denote
this Saidman (UNOS).

2. Some recent theoretical work looks at kidney exchange graphs
without blood types but with increasing sparsity (in the size
of the pool) for highly-sensitized candidates [4, 5]. For these
experiments, the probability of an incoming edge to a highly-
sensitized pair is O(1/n). The probability of an incoming
edge to lowly-sensitized pairs is held constant, as before. We
denote by Heterogeneous this family of random graphs.

Table 2 gives the average loss in efficiency for each of these
models over multiple generated pool sizes, with 40 runs per pool
size per model, under the strict lexicographic rule u};? ;. For all
but the smallest pools, Heterogeneous graphs see no loss in effi-
ciency at all. Efficiency loss in the Saidman (US) and Saidman
(UNOS) families of graphs are low (and statistically indistinguish-
able), aligning with our earlier theoretical results (applied to the
distribution of blood types in the US).*

*Losses under the weighted fair utility rule ua were similarly small
and not included due to space constraints.
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Size || Saidman (US) | Saidman (UNOS) | Heterogeneous
10 0.24% (1.98%) 0.00% (0.00%) 0.98% (5.27%)
25 0.58% (1.90%) 0.19% (1.75%) 0.00% (0.00%)
50 || 1.18% (2.34%) 1.96% (6.69%) 0.00% (0.00%)
100 || 1.46% (1.80%) 1.66% (3.64%) 0.00% (0.00%)
150 1.20% (1.86%) 2.04% (2.51%) 0.00% (0.00%)
200 || 1.43% (2.08%) 1.55% (1.79%) 0.00% (0.00%)
250 || 0.80% (1.24%) 1.86% (1.63%) 0.00% (0.00%)
500 || 0.72% (0.74%) 1.67% (0.82%) 0.00% (0.00%)

Table 2: Average (St. Dev.) percentage loss in efficiency for
three families of random graphs, under the strict u};g_ 1, rule.

6. CONCLUSIONS & FUTURE RESEARCH

Fielded kidney exchanges use utilitarian or near-utilitarian match-
ing rules, at the cost of marginalizing certain classes of patient-
donor pairs. In this paper, we focused on balancing overall ex-
change efficiency while improving access to kidneys for highly-
sensitized patients. We defined the price of fairness in the stan-
dard kidney exchange model, and provided theoretical bounds in
the major kidney exchange model. We introduced two natural def-
initions of fairness—Ilexicographic and weighted—and empirically
explored the tradeoff between prioritizing hard-to-match patients
and the overall efficiency of a utilitarian system, on real data from
the UNOS nationwide kidney exchange and on simulated data from
each of the standard kidney exchange distributions.



How to prioritize highly-sensitized patients—if they should be
prioritized at all—is currently the most contentious issue regard-
ing fairness in kidney exchange, which motivates this paper. We
note that the price of fairness concept applies to valuing any sub-
set of vertices—not just highly-sensitized ones—in the compati-
bility graph, possibly under different prioritization rules. A clear
next step would be developing analogous theoretical results and
empirical techniques applicable to fielded kidney exchange that
generalize the equity versus efficiency tradeoff presented here to
other notions of fairness (while mimicking present-day parame-
ters of the compatibility pool, legal climate, and limits of medical
knowledge). Recent work in finding Lorenz-dominant matchings is
promising [20], but not yet applicable to fielded kidney exchange
due to its simple theoretical model (e.g., only 2-cycles, no chains).

Kidney exchange is naturally dynamic, where patients and donors
arrive to and depart from the pool over time. Both the theoretical
and experimental sides of utilitarian dynamic kidney exchange are
active and important areas of research [2, 5, 7, 13, 27]. Developing
accurate models and scalable algorithms that consider the price of
fairness in the dynamic setting will be of increasing importance as
fielded kidney exchanges move from static to dynamic matching.
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