
An Interactive Approach for Situated Task Specification
through Verbal Instructions

Çetin Meriçli, Steven D. Klee, Jack Paparian, and Manuela Veloso
cetin@cmu.edu, sdklee@cmu.edu, jpaparia@andrew.cmu.edu, veloso@cmu.edu

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA

ABSTRACT
The ability to specify a task without having to write special
software is an important and prominent feature for a mo-
bile service robot deployed in a crowded office environment,
working around and interacting with people. In this paper,
we contribute an interactive approach for enabling the users
to instruct tasks to a mobile service robot through verbal
commands. The input is given as typed or spoken instruc-
tions, which are then mapped to the available sensing and
actuation primitives on the robot. The main contributions
of this work are the addition of conditionals on sensory infor-
mation that the specified actions to be executed in a closed-
loop manner, and a correction mode that allows an existing
task to be modified or corrected at a later time by providing
a replacement action during the test execution. We describe
all the components of our approach along with the imple-
mentation details and illustrative examples in depth. We
also discuss the extensibility of the presented approach, and
point out potential future extensions.

Categories and Subject Descriptors
I.2.9 [Robotics]

General Terms
Algorithms

Keywords
Robot Task Specification, Human Robot Interaction

1. INTRODUCTION
Interacting with humans and responding to their instruc-

tions in the environment through natural language are very
important capabilities for service robots. Though the robot
is equipped with some task knowledge, it would be very
useful—if not necessary—to also have the ability to specify
new tasks to the robot easily, and preferably without having
to modify the robot control software. We envision such ser-
vice robots to operate around and interact with untrained
people who know what tasks they want the robot to do, but
does not necessarily have the technical abilities to express

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

such tasks in terms of robot sensing and action primitives.
Therefore, being able to specify new tasks through natu-
ral language instructions is a very desired ability for robots
interacting with and getting instructed by such untrained
people.

There are, however, various challenges in instructing robots
using natural language such as robust speech recognition in
case of spoken interaction, dealing with the ambiguity in
given instructions stemming from the flexibility of natural
language, and properly mapping given commands to robot
behavior primitives that can be executed by the robot.

We contribute an approach for enabling users to instruct
the steps needed to perform a task to a mobile service robot
in terms of available sensing and actuation primitives. Our
approach consists of a natural language input module (ei-
ther through speech or by typing), a parser that processes
the raw language instructions and converts them to a graph-
based representation, and an execution module that takes
the generated behavior representation, translates the gener-
ated behaviors into robot primitives, and executes the task.
The user can also interactively correct and modify a part of
an existing task if desired. Our language supports condition-
als and loop structures based on sensing different landmarks
in the environment. Main contributions of this paper are:

• A keyword based filtering approach to the natural lan-
guage input that makes our method robust to different
expressions of the same command to some extent as
long as the proper keywords are used in correct order.

• A task specification language using the available sens-
ing and actuation capabilities of a service robot that
also supports loop structures and conditionals based
on sensing.

• A correction feature that allows the instructor to mod-
ify parts of an existing task as desired.

In the remainder of the paper, we first give a brief overview
of related work in the literature and how our approach differs
from the existing body of research. We then describe all the
components of the contributed approach thoroughly. After
presenting implementation details on our service robot as
well as a set of illustrative examples of task instruction and
correction, we conclude the paper with a discussion of the
approach and remarks on possible future work.

2. RELATED WORK
Natural language based interaction with robots has been

examined in various different scenarios ranging from com-

1069

manding robotic forklifts to teaching robots how to give a
tour. Recently, approaches that leverage probabilistic mod-
els trained on a labelled corpus have been proposed to deal
with the uncertainty in the unrestricted natural language
instructions. In [1], an approach using Spatial Description
Clauses (SDC) is proposed for parsing a spoken natural lan-
guage command and extracting the spatial information. The
extracted spatial commands are then grounded to the avail-
able actions that can be executed by the robot. The pro-
posed approach is evaluated in a navigation scenario. [2]
presents Generalized Grounding Graphs (G3) for parsing
commands given through speech using natural language.
A Conditional Random Field (CRF) is trained on a man-
ually labelled corpus and then used to infer the most likely
G3 representation for a given natural language command.
They applied their method to robotic navigation and ma-
nipulation domains. Similarly, a method that uses a parser
that learns through statistical machine translation methods
is presented in [3] for enabling a robot to follow navigation
instructions. In [4], a speech-based robot operation system
is proposed for handling cargo in an outdoor scenario by
a robotic forklift. Contrary to the probabilistic approaches
discussed above, this approach is not robust against flexible
natural language commands. Instead, the proposed system
expects commands to be given according to the specified
syntax. Another approach for verbal instruction is presented
in [5]. Similar to the works discussed above, they also use a
parser to convert the given natural language command into
an action representation. If an unknown word is encoun-
tered in the command, their proposed approach first tries to
find a similar word with a known concept using WordNet.
If no such words can be found, that part of the command
is ignored. Ignoring an unknown and unexpected part of
the command bears resemblance to our approach for deal-
ing with ambiguity, but our approach deliberately checks for
the known commands instead of trying to parse the entire
instruction. An approach for updating plans generated by a
planner using natural language instructions given through
speech is introduced in [6]. A multi-modal spatial lan-
guage system that utilizes gestures along with the verbal
instruction is presented in [7]. The parser of the system
relies on well-defined grammar, and the extracted lexical
items are then mapped on the robot primitives. The main
difference between our approach and these aforementioned
works is that the other approaches do not allow robots to
learn from the provided instructions, as the instructions are
merely used to operate the robot without saving them for
future use.

Teaching tasks to a robot through verbal instruction has
also been studied in various domains. Rybski et al. intro-
duced a method for teaching tasks composed of available
action primitives for a service robot using spoken verbal in-
structions [8]. Their approach does not perform any disam-
biguation on the received verbal command converted to text
via a speech recognition module; therefore, their approach
mandates a strict syntax for the commands. As a part of the
teaching process, the robot can also learn navigation trajec-
tories by following the demonstrator. The main difference
between our approach and this work is that our algorithm
allows repetitions (cycles) in the task representation and en-
ables the user to modify and correct an existing task. In [9],
a method that translates given natural language instructions
into formal logic goal description and action languages is pre-

sented. The parsing of instructions is done through the use
of predefined associations between the lexical items in the
instructions and the corresponding λ-expressions.

A method for instructing the robot how to navigate is
presented in [10]. The proposed method maps the received
instruction to the defined action primitives. An interest-
ing aspect of this work is that these action primitives are
extracted from a corpus collected from several subjects. In
[11], a method for learning representations of high level tasks
is proposed. Their approach allows learning a task composed
of non-repetitive sequences of predefined robot primitives; in
addition, it supports revisions of the taught task and gener-
alizations of task representations over multiple demonstra-
tions of the same task. Although mapping the instruction
to action primitives in these two studies resembles our ap-
proach, our language differs as our primitives are parame-
terized and our instruction language also contains condition-
als. Teaching soccer skills via spoken language is addressed
in [12]. In their approach, there is a predetermined set of
actions and natural language commands that maps on those
actions. An interesting aspect in their proposed framework
is that it allows the teacher to query the robot for accessing
its internal state. Their vocabulary includes a set of actions
like shoot and pass, and if-then-else control expressions that
can be coupled with queries about the state features. Among
the main differences with this work and our approach is the
ability of our approach to execute the task step by step to
enable verification of the taught task as well as modifying
and correcting the taught actions.

3. APPROACH
Our interactive and situated task specification approach

takes place in three consecutive operations:

• Processing verbal instruction

• Generating task representation

• Execution and correction

An overview of our approach is given in Figure 1. In this
section, we review all components of our approach in detail.

3.1 Instruction Graphs
We represent tasks as a composition of available robot

primitives using a special graph structure called an Instruc-
tion Graph (IG). An IG consists of a tuple G = 〈V,E〉
formed from n instructions, where V = {vi | ∀ i ∈ [0, n]},
and vi corresponds to the ith command given to the robot
ranging from 1 to n. The starting node of G is denoted
with v0. E is a set of tuples 〈vi, vj〉 representing a directed
edge from vi to vj . An edge between two vertices denotes
a possible transition from one command to the other. A
vertex is a 3-tuple of the form v=〈ID,ActionType,Action〉.
Each vertex is given a unique identification number that also
specifies their relative order in execution so that ∀ vi ∈ V ,
ID= i.

The ActionType field describes the type of each vertex
whereas the Action field tells the interpreter which actions
and sensing are necessary. There are four defined action
types that a vertex can have:

• Do: A vertex is designated with the Do action type if
it performs an action completely in open loop.

1070

Generate Task
Representation

Process Speech

Text
instruction

Extracted actions
and parameters

Process Text
Instruction

Spoken instruction

Typed instruction

Instruction
Graph

Robot
Primitives

Figure 1: Overview of our task specification approach.

• DoUntil: As opposed to the Do action type, DoUn-
til refers to an action that has a sensory component,
where the execution of the action continues until a spe-
cific condition about the sensory input is satisfied.

• Conditional: This action type refers to a vertex with
more than one outgoing edge, representing a fork in
the flow of execution. The Action element stores the
specific condition to be evaluated to determine which
branch of execution to follow at runtime.

• GoTo: This action type is used internally to imple-
ment loop structures. TheAction field contains the ID
of the vertex that the interpreter will jump to. GoTo
vertices are never created directly by the user.

Our language also has three special commands without
specified action types as they are not used in the tasks:

• Save: This command saves the current task in mem-
ory to a file under a specified name.

• Load: This command loads a previously saved task
into the memory and appends it to the current node
in the execution flow. The details of how the load
command works are discussed in the next subsection.

• Shutdown: This command terminates the task exe-
cution.

3.2 Generating IGs from User Input
When processing the given instruction to create the in-

struction graph, we search for specific keywords in the user
input to determine what type of command has been re-
quested. Once we infer the action type and the action, we
make certain assumptions about the input form such as the
existence and order of the expected keywords. Also, we filter
out any unknown words in the input, therefore, a command
can still be successfully parsed even if it is expressed differ-
ently as long as the keywords are correctly used and are in
order. After extracting the action type, action name, and
corresponding parameters (if any), a new vertex and new
edge are added to the current task instruction graph G. In-
structing a task is an interactive process as the robot asks
for confirmation for each inferred action. After each confir-
mation, a relevant node is created and added to the current
IG. A graph node has an ID field, a field that indicates
the type of the node, and a parameters field containing the
type-specific parameters of the node. Table 1 and Table 2
shows the supported action types and actuation commands,
respectively.

Action Type Keyword(s)
Do No Keyword

DoUntil “until”

Conditional
“if”,“while”,“do while”,“end if”,
“end while”

Table 1: Action types and corresponding keywords.

As opposed to the Do and DoUntil action types which are
single-step commands, While and DoWhile commands cre-
ate loops over a group of nodes that can also contain nested
loops. Therefore, generation of such conditional nodes dif-
fer from the actuation nodes. For a conditional node, a
Conditional vertex with two children is created. For an If
node, the execution continues with the first child vertex if
the specified condition evaluates to true, and the execution
continues from the second otherwise.

Action Type Action Keyword
Do move forward “forward”
Do turn the robot “turn”
Do speak to the user “say”

DoUntil move forward in closed-loop “forward”
DoUntil turn in closed-loop “turn”

Table 2: Defined actuation commands and corresponding
keywords.

For the loops, an additional GoTo node is created. The
difference between the While and DoWhile constructs is
whether to evaluate the loop condition at the beginning or
end of the loop. In the case of a While loop, the Conditional
node is inserted at the beginning. A GoTo node is placed
at the end of the loop and points back to the Conditional
node. The body of the loop consists of everything added to
the graph between these two nodes. In case of a DoWhile
loop, the Conditional node is placed at the end of the body.
When the condition evaluates to true, the Conditional node
transitions to a GoTo node, which jumps to the first node in
the body of the loop (Figure 2). This loop implementation
guarantees at least one full execution of the loop body.

Table 1 and Table 2 shows the supported action types and
actuation commands, respectively.

Algorithm 1 and Algorithm 2 show the algorithms for the
creation of actuation and conditional nodes, respectively.
The flow of execution through actuation nodes is straight-

1071

forward; however, closing conditional statements requires
knowledge of their starting location. To accomplish this, we
utilize a stack to store a record of conditionals in the order
they were entered. When the body of a conditional is closed,
an element is popped off the stack. This element references
the starting location of the conditional to be closed.

Algorithm 1 Creating a Node for Actuation Commands.

1: function addActuation(vcurrent,id,instruction)
2: if checkKeyword(instruction,“forward”) then
3: action← “Move′′

4: else if checkKeyword(instruction,“turn”) then
5: action← “Turn′′

6: else if checkKeyword(instruction,“say”) then
7: action← “Say′′

8: end if
9: if checkKeyword(instruction,“until”) then

10: actionType← “DoUntil′′

11: else
12: actionType← “Do′′

13: end if
14: params← parseInformation(actionType, action)
15: id← id+ 1
16: v = createNode(id, actionType, action, params)
17: vcurrent.children[0]← v
18: vcurrent ← v

CONDITIONALID

CONDITION

TYPEID

PARAMETERS

GOTOID

NODE: node

true

 false

TYPEID

PARAMETERS

.

.

.

.

.

First instruction
after the loop

Figure 2: An illustration showing how loops are imple-
mented as a combination of conditionals and GoTo nodes.

3.3 Saving and Loading Tasks
Once the instruction is completed, the resulting instruc-

tion graph in the memory can be saved to a file for future
use by using the Save command along with a file name to
save the task to.

A previously saved task can be loaded into memory with
the Load command. The Load command works as follows.
Given that the user is creating an instruction graph G =
(Vg, Eg) with n inputs, we denote the most recently created
node as vgn . The Load command loads another instruction
graph H = (Vh, Eh) from the specified file. With the newly
loaded task at hand, a new instruction graph is formed as
(Vh∪Vg, Eh∪Eg ∪{(v, vh0)}). In other words, the resulting
graph is the union of G and H with one additional edge con-
nected the most recently created vertex of G to the source-
vertex of H. Leveraging this capability, a library of subtasks
can be created and used to compose new tasks.

Algorithm 2 Creating Branches and Cycles in the Flow of
Execution
1: function beginConditional(stack,vcurrent,id,condition)
2: actionType← checkActionType(condition)
3: v ← createNode(id, actionType, condition)
4: stack.push(v)
5: vcurrent.child[0] = v
6: vcurrent = v
7: id = id+ 1
8:
9: function endConditional(stack,vcurrent,id)

10: vconditional ← stack.pop()
11: vconditional.child[1]← vcurrent

12: if vconditional.actionType == “While” then
13: v ← createNode(id, “GoTo”, vconditional.ID)
14: vcurrent.child[0]← v
15: vcurrent ← v
16: id← id+ 1
17: end if

3.4 Executing Tasks
Execution of a task in the form of an instruction graph

is a traversal operation that starts from the first node (v0),
and follows defined transitions. The Do and DoUntil nodes
have only one directed edge outward. This edge is followed
once the action is performed, and the execution continues
with the next node. Conditionals have two directed out-
ward edges. Their Action field is a conditional statement
that evaluates to true or false at runtime. If the condition
evaluates to true, the first child of the node is set as the next
node to be executed. If the condition evaluates to false, the
second child of the vertex is chosen. The algorithm for exe-
cuting an instruction graph is given in Algorithm 3.

We have three main robot primitives that the given in-
structions are mapped to. The Move primitive is used to
execute motion. The supported motion types of moving for-
ward and turning are specified by the tuple

m = 〈∆x,∆y,∆Θ, vt, vr〉

where ∆x, ∆y represent the forward and lateral displace-
ment, respectively, and ∆Θ represents the amount of rota-
tion. vt and vr represent the maximum translational and
rotational velocities respectively. All translational motion
is specified in meters, and all rotational motion in radians.
The Say primitive allows the robot to speak a given text
message. Finally, the Sensing primitive makes use of the
available sensory information on the robot.

3.5 Modifying and Correcting Tasks
A major feature of our approach is the ability to let the

instructor correct parts of the task as desired. This can
vary from editing the parameters of an action to replacing
an action with a new one. We envision three major reasons
why a user may want to correct a portion of a learned task:

• Changing open loop parameters to make instructions
more accurate

• Switching from open loop to closed loop, or vice-versa

• Modifying a few instructions of an existing task to pop-
ulate new tasks (code reuse)

1072

Algorithm 3 Executing a task.

1: G← loadTask()
2: vcurrent = G.vertices[0]
3: while vcurrent 6= ∅ do
4: if vcurrent.actionType == “Do′′ then
5: executeAction(vcurrent.action)
6: vcurrent ← vcurrent.children[0]
7: else if vcurrent.actionType == “DoUntil′′ then
8: while vcurrent.senseCondition is not true do
9: executeAction(vcurrent.action)

10: vcurrent ← vcurrent.children[0]
11: end while
12: else if vcurrent.actionType == “GoTo′′ then
13: vcurrent ← vcurrent.children[0]
14: else if vcurrent.actionType == “Conditional′′ then
15: if evaluateConditional(vcurrent.action) then
16: vcurrent ← vcurrent.children[0]
17: else
18: vcurrent ← vcurrent.children[1]
19: end if
20: end if
21: end while

The first example is likely to occur when a parameter value
is not as accurate as predicted. This often happens due to
miscalculations, unexpected changes, or faulty calibration of
the robot. A successful framework must be flexible enough
to adapt to inconsistencies and uncertainty in its environ-
ment. It is also necessary for a framework to easily integrate
new sensory information or deal with a particular sensor
becoming unavailable. To that end, we support switching
from open loop commands to their closed loop equivalents,
and vice-versa. For example, if necessary sensory data are
no longer available, it is possible to change the code where
the data were used from closed loop to open loop without
re-instructing the entire task. Lastly, when writing a new
function that is similar to an existing one, it should be pos-
sible to reuse the bulk of the code. For example, consider
a task created to search for books in a library. This task
has two unique components: searching through an area and
looking for a specified object type. By modifying this ob-
ject type, the same task can also be used to search for other
objects.

In our approach, the task correction and modification oc-
curs during the task execution phase. When the correction
mode is set, the robot speaks out the next action and asks
for confirmation. If the user wants to correct or change that
action, the robot then asks for a replacement instruction.
Once the corrected instruction is processed, the original ac-
tion is substituted by the new instruction.

4. IMPLEMENTATION DETAILS
In this section, we describe the actual implementation on

our mobile service robot in detail. We implemented and
tested our approach on our CoBot mobile service robot [13].
The CoBot service robot has an omnidirectional mobile base,
and is equipped with a variety of sensors including a cam-
era, a laser range finder, microphones, and Microsoft Kinect
sensors. The users interact with the robot using its touch
screen interface and microphones (Figure 3). The CoBot
robot is able to navigate within our multi-floor building and

performs tasks for the building inhabitants such as deliver-
ing messages, transporting items, and escorting visitors.

Figure 3: The CoBot mobile service robot that our approach
is implemented on.

The Instruction Graph framework, and access to the robot
action and sensing primitives are implemented in Python.
We heavily leverage the runtime code evaluation capability
of Python. Each graph node has a field for the code to be
executed, and during the task execution, the Python code
specified in that field is executed using the eval() function
in Python. Therefore, each action type is implemented as
a function call. We define the robot primitives as Python
functions in a separate source file, and we load the primitive
definitions when the robot is initialized. A separate variable
dictionary is maintained for the robot primitives to provide
proper variable scope for the evaluated code.

When a verbal instruction is given to the robot, the parser
processes the input, and synthesizes a Python function call
with proper parameters. Specifically, we use a rule-based
approach that pattern matches user input to a function by
searching for specific keywords. For example, a rule maps
the keyword“forward”to a function that actuates the robot’s
motors. The keywords “say” or “talk” map to a function
that has the robot broadcast a message. To determine the
parameters of our functions, we make a simplifying assump-
tion that they appear near these keywords. For example, if
the user mentions the word “forward”, we assume that the
nearest numerical value next to the “forward” keyword is
the distance in meters denoting the distance that the robot
should move forward. Similarly if the user mentions the
word“turn”, first we look for the direction specifier keywords
“left” and “right” next to the “turn” keyword. Once we find
the direction specifiers, the first numerical value after the di-
rection specifier is considered as the amount of turn towards
the specified direction in degrees. This filtering approach
allows us to interpret the instructions such as “turn right
for 60 degrees” and “turn to your right 60 degrees” the same
without having to examine the instruction grammatically or
run sophisticated parsing techniques.

One downside our simple the rule based approach is that
since it depends on the order of the keywords and parame-
ters, it cannot parse instructions that contain irregularly or-
dered keywords and or parameters. For example, instead of

1073

User : While landmark 1 is visible
Robot: What should I do in this loop?
User : Turn until landmark 1 is ahead
Robot: I will turn until I am facing

Landmark 1.
Robot: What should I do next?
User : Forward until 0.5 meters from

Landmark 1 max 0.2 meters
Robot: What should I do next?
User : End Loop
Robot: Loop Ended. What should I do

next?
User : Stop

(a) (b)

Figure 4: (a) The instruction conversation for the “follow the sign” task, and (b) the resulting instruction graph.

saying “go forward 5 meters”, a user could say “it is 5 more
meters away”. With the lack of a keyword related to for-
ward displacement, the rule-based approach cannot match
this command to a function. However, the advantage of this
approach is that this greatly simplifies the problem of un-
derstanding the user’s request by restricting them to direct
commands with recognizable keywords. As we have stated
above, in case the robot fails to successfully parse a given
instruction, it simply notifies the user that the last given in-
struction cannot be interpreted, and asks the user to repeat
the instruction.

Once the function call and parameters are determined,
they are placed in the code field of the created node. This
approach makes defining the robot primitives and process-
ing the user input completely independent from the instruc-
tion graph implementation. New robot primitives or sens-
ing components can easily be added by just providing the
Python functions for accessing the action primitive or the
sensory input, and specifying how the function call code for
that new primitive or sensing component should be gener-
ated for a given action keyword and a set of parameters.

In our approach, the user can instruct the robot through
typing the instruction or through speech recognition. For
the speech recognition, we use an unofficial version of the
Google Speech API. In the speech mode, the instruction
giving process is triggered by pressing a Speak button on
the user interface of the robot. Once the button is pressed,
the user can speak out the instruction. An audio record
process is launched when the Speak button is pressed, and
the recording continues as long as there is a substantially
strong audio signal. The recording is terminated if the input
signal is weaker than a specified threshold. The recorded
raw data is then converted to a mono FLAC file at 16KHz
sampling rate, and then submitted to the Google servers
for processing. The Google service returns a list of possible
interpretations of the input, along with the likelihood values.
We use the hypothesis with the maximum likelihood value
as our final input. We developed our own ROS interface
to the Google Speech API that runs as a synchronous ROS
service. One disadvantage of this approach is that it requires
Internet connectivity, and since it is a blocking service call,
losing connectivity while giving an instruction might lead
to a long waiting time, and an eventual error message from
the robot, saying that it did not understand the instruction,
and asking the user to repeat it. It should also be noted
that our approach does not depend on Google Speech API
or any other speech recognition software as it just accepts

an instruction sentence in plain text form. Therefore, the
Google Speech API can easily be discarded and substituted
with a different speech recognition software.

In the current implementation of our approach, we use
Augmented Reality (AR) tags as the sensory input. AR tags
are visual signs that can be detected and recognized uniquely
through image processing. In addition to the identification
number for a detected AR tag, the relative 6 degrees of free-
dom pose of the tag with respect to the camera is also com-
puted. Leveraging this detailed detection ability, the exe-
cution of a task can be conditioned upon the existence, the
relative distance, and the relative angle of a certain AR tag
in our approach. We use the ar track alvar ROS package
with the proper frame transformations to convert the ex-
tracted relative pose of a recognized AR tag with respect
to the robot camera to the coordinate frame of the robot
base since the users intuitively tend to address the relative
distances and angles with respect to the robot body rather
than the sensor itself. The AR recognition software runs
at 30Hz, and our robot primitives specification code creates
a callback function to access the most recent list of visible
AR tags. Another Python function wraps this functionality
and the instruction parser converts instructions with sensory
conditionals into the function calls to that wrapper function.

5. ILLUSTRATIVE EXAMPLES
In the this section, we present various examples to task

instruction and correction. When presenting examples, we
first describe the tasks, followed by the initial instruction
conversation between the instructor and the robot. Next,
we illustrate the generated instruction graph after process-
ing the instructions. Finally, we present an example cor-
rection scenario and discuss the changes reflected upon the
instruction graph for the task as a result of the correction.

5.1 Following a Visual Landmark
This task illustrates the use of loop structures to have a

continuous behavior as long as the loop condition holds. The
purpose of the task is to make the robot follow a visual sign.
At each execution cycle, the robot first faces itself toward
the specified visual landmark if the landmark is visible, and
it performs a turning motion to search for the sign if the sign
is not seen by the robot. If the landmark is in the field of
view of the robot and the robot is currently facing towards
it, then, the robot goes toward the sign while maintaining
a certain distance from it. Finally the whole process is re-
peated as long as the visual landmark stays in the sight of the

1074

User : Move Forward until you are 0.1 meters
from Landmark 1 max 5 meters.

Robot: What should I do next?
User : Turn right until you are

30 degrees from Landmark 2.
Robot: What should I do next?
User : Forward 5 meters
Robot: What should I do next?
User : Turn left
Robot: What should I do next?
User : If Landmark 3 is visible
Robot: What should I do if Landmark 3

is seen?
User : Say ‘‘I would like to order a

cup of coffee’’
Robot: What should I do next?
User : End If
Robot: What should I do in the other

case?
User : Shutdown
User : Stop

(a) (b)

Figure 5: (a) The instruction conversation for the “get coffee” task, and (b) the resulting instruction graph.

robot. Both the turning and going forward motions are con-
ditioned upon the specified visual landmark, therefore they
both translate to DoUntil nodes. The While loop translates
to a Conditional node, and a GoTo node. Figure 4 shows
the interaction for instructing the robot to follow a visual
sign and the corresponding generated instruction graph.

5.2 Getting Coffee
The second example we present instructs the robot how to

go to a cafe from a starting point and order a cup of coffee.
The task consists of motions performed in a mixture of open-
loop and closed-loop manner. The getting coffee task also
demonstrates an example use of an if clause to determine the
course of execution depending on the visibility of a visual
landmark.

In the first part of this task, the robot navigates out of
our lab and around a bend. It performs these actions in
a closed-loop using properly placed landmarks to orient it-
self. Conditionals here take the form of moving forward or
turning until a landmark is seen. Figure 6 shows a moment
from the get coffee task execution where the CoBot is navi-
gating the bend. The motion commands in the first part of
this task are conditioned on sensing landmarks, so they are
translated into the DoUntil action type.

In the second part of the task, the robot approaches the
cafe counter by going forward past the bend and then turn-
ing to the left. Then, it checks for the presence of a visual
landmark. If the specified landmark is visible, the robot in-
fers that the cafe is open, and therefore it proceeds with the
ordering. Otherwise, the robot infers that the cafe is closed,
so it terminates the task execution. Figure 8 depicts the
CoBot checking to see if the cafe is open.

The motion in the second part of the task does not depend
on sensory input, so they are translated into the Do action
type, and are executed in an open-loop manner. The check
for the visual landmark to determine if the cafe is open is
translated into an If clause, conditioned on the visibility of
the specified visual landmark. Finally, speaking a request
for coffee requires no sensing, so it is also translated into a
Do node.

Figure 5 shows the interaction between the instructor and
the robot during instruction and the resulting instruction
graph.

Figure 6: The CoBot navigates a bend by orienting itself
with respect to several landmarks.

5.3 Task Correction
If the user observes that the parameters for the open-loop

actions are imprecise, he or she can make a revision without
re-creating the task from scratch using the debugging and
correction mode. In the correction mode, the robot speaks
the action description for each action, and asks whether the
user confirms that action or wants to make a correction. If
the user confirms the action, the robot leaves that action
intact and proceeds to the next action. However, if the user
decides to correct the action, the robot then asks for a re-
placement action. Once the user specifies the replacement
action with its parameters, the original node is updated as
to reflect the correction. Figure 7 shows an example in-
teraction for correcting an action on the “get coffee” task
presented above.

1075

Robot: Go forward for 5 meters.

Robot: Should I confirm this action or revert it?

User : Revert.

Robot: Please give me a new command to

replace this with.

User : Forward 6 meters

Robot: Action revised. The new action is

go forward for 6 meters.

Figure 7: An example interaction during step-by-step exe-
cution to correct an action.

Figure 8: The CoBot checks to see if the cafe is open by
conditioning on the presence of a landmark

6. CONCLUSION AND FUTURE WORK
In this paper, we presented an approach for enabling users

to compose tasks for a mobile service robot using spoken
or written verbal instructions. Among the main contribu-
tions of our approach, we can name the closed-loop actuation
primitives conditioned on perceiving visual signs, the abil-
ity to represent repetitive tasks using loop structures, and
the correction mode that allows step by step execution and
modification of the desired portion of the task. By actively
seeking for the known keywords instead of trying to parse
the entire instruction, our approach is partially immune to
the flexibility of natural language.

We designed and implemented our approach in a modu-
lar manner. The task specification language is agnostic to
the underlying robot primitives and input interface such as
the different speech recognition or text input interfaces as
long as the received instruction is represented as plain text.
Therefore, extending the language with additional sensing
and actuation elements is relatively straightforward.

We are planning to extend the current correction mode
to the task instruction phase, hence, enabling the trainer
to immediately see the outcome of an action and modify or
correct it as desired. We are also planning to expand the
correction notion to the situation-bounded corrections that
can be stored with the state of the robot at the time of
correction, and then retrieved and re-used when a similar
situation is encountered. Furthermore, we are planning to
increase the number of sensing elements based on the sensory
information such as the human presence around the robot.

Acknowledgments
This research was partially supported by the National Sci-
ence Foundation award numbers NSF IIS-1012733 and NSF
IIS-1218932. The views and conclusions contained in this
document are those of the authors only.

7. REFERENCES
[1] Thomas Kollar, Stefanie Tellex, Deb Roy, and

Nicholas Roy. Toward understanding natural language
directions. In Proc. of HRI, 2010.

[2] S. Tellex, T. Kollar, S. Dickerson, M.R. Walter, A.G.
Banerjee, S. Teller, and N. Roy. Understanding
natural language commands for robotic navigation
and mobile manipulation. In Proc. of AAAI, 2011.

[3] Cynthia Matuszek, Dieter Fox, and Karl Koscher.
Following directions using statistical machine
translation. In Proc of HRI, 2010.

[4] E. Chuangsuwanich, S. Cyphers, J. Glass, and
S. Teller. Spoken command of large mobile robots in
outdoor environments. In Proc. of Spoken Language
Technology Workshop (SLT), 2010.

[5] Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. Walk the talk: Connecting language,
knowledge, and action in route instructions. In Proc.
of AAAI, 2006.

[6] Rehj Cantrell, Kartik Talamadupula, Paul
Schermerhorn, J. Benton, Subbarao Kambhampati,
and Matthias Scheutz. Tell me when and why to do
it!: run-time planner model updates via natural
language instruction. In Proc. of HRI, 2012.

[7] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz,
W. Adams, M. Bugajska, and D. Brock. Spatial
language for human-robot dialogs. Trans. Sys. Man
Cyber Part C, 34(2):154–167, May 2004.

[8] Paul Rybski, Jeremy Stolarz, Kevin Yoon, and
Manuela Veloso. Using dialog and human observations
to dictate tasks to a learning robot assistant. Journal
of Intelligent Service Robots, Special Issue on
Multidisciplinary Collaboration for Socially Assistive
Robotics, 1(2):159–167, April 2008.

[9] J. Dzifcak, M. Scheutz, C. Baral, and
P. Schermerhorn. What to do and how to do it:
Translating natural language directives into temporal
and dynamic logic representation for goal management
and action execution. In Proc of ICRA, 2009.

[10] Stanislao Lauria, Guido Bugmann, Theocharis
Kyriacou, Johan Bos, and Ewan Klein. Personal robot
training via natural-language instructions. IEEE
Intelligent Systems, 16:38–45, 2001.

[11] Monica N. Nicolescu and Maja J. Mataric. Natural
methods for robot task learning: Instructive
demonstrations, generalization and practice. In Proc.
of AAMAS, 2003.

[12] A. Weitzenfeld, A. Ejnioui, and P. Dominey. Human
robot interaction: Coaching to play soccer via
spoken-language. In IEEE/RAS Humanoids’10
Workshop on Humanoid Robots Learning from Human
Interaction, 2010.

[13] S. Rosenthal, J. Biswas, and M. Veloso. An effective
personal mobile robot agent through symbiotic
human-robot interaction. In Proc. of AAMAS, 2010.

1076

