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ABSTRACT
We consider the coalition structure generation (CSG) problem on
synergy graphs, which arises in many practical applications where
communication constraints, social or trust relationships must be
taken into account when forming coalitions. We propose a novel
representation of this problem based on the concept of edge con-
traction, and an innovative branch and bound approach (CFSS),
which is particularly efficient when applied to a general class of
characteristic functions. This new model provides a non-redundant
partition of the search space, hence allowing an effective paralleli-
sation. We evaluate CFSS on two benchmark functions, the edge
sum with coordination cost and the collective energy purchasing
functions, comparing its performance with the best algorithm for
CSG on synergy graphs: DyCE. The latter approach is centralised
and cannot be efficiently parallelised due to the exponential mem-
ory requirements in the number of agents, which limits its scal-
ability (while CFSS memory requirements are only polynomial).
Our results show that, when the graphs are very sparse, CFSS is
4 orders of magnitude faster than DyCE. Moreover, CFSS is the
first approach to provide anytime approximate solutions with qual-
ity guarantees for very large systems (i.e., with more than 2700
agents).

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms

Keywords
Coalition Formation, Networks, Graphs, Collective Energy Pur-
chasing

1. INTRODUCTION
Coalition formation is one of the fundamental approaches for es-
tablishing collaborations among agents, each with individual capa-
bilities and properties [12]. In particular, coalition structure gen-
eration (CSG) represents a key computational task in this scenario
[10]. Now, in many real-world applications, sparse synergies be-
tween the agents may constrain the formation of some coalitions
[13, 14].
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These constraints may be due to communication infrastructures
(e.g., non-overlapping communication loci or energy limitations for
sending messages across a network), social or trust relationships
(e.g., energy consumers who prefer to group with their friends and
relatives in forming energy cooperatives), or physical constraints
(e.g., emergency responders that have enough fuel to join only spe-
cific teams).

Recently, several approaches have been proposed to model these
constraints as graphs, where nodes represent agents and edges en-
able the connected agents to form a coalition [13, 14]. Hence, a
coalition is considered feasible only if its members represent the
vertices of a connected subgraph of the constraint graph.

In this context, the most prominent solution techniques for coali-
tion structure generation are presented in [13, 14], and while they
both represent significant contributions to the state of the art, there
are some drawbacks that hinder their applicability. On the one
hand, [13] requires that the valuation function fulfils the indepen-
dence of disconnected members (IDM) property,1 which may not
hold in many real world applications, considering that the addition
of every new agent to a coalition typically has a cost that depends
on the specific application domain [12]. On the other hand, the
memory requirements of [14] grow exponentially in the number of
agents, hence limiting the scalability of such technique. Moreover,
both algorithms are serial and none of them can provide anytime
approximate solutions.

Providing anytime approximate solutions is an important topic in
CSG [11, 9], and currently the work of [9] sets the state-of-the-art
for anytime algorithms. Nonetheless, as discussed in [14], the be-
haviour of such algorithms is undefined for cases where only some
coalitions are feasible, as simply assigning artificially low values
(such as −∞) to unfeasible coalitions would not be suitable for as-
sessing valid bounds.

Against this background, here we propose the first anytime algo-
rithm for coalition structure generation on synergy graphs, called
CFSS (Coalition Formation with Sparse Synergies). Unlike pre-
vious approaches, CFSS provides anytime solutions with quality
guarantees for large scale systems (i.e., more that 2700 agents).
This tremendous speedup is possible because we focus on a general
class of characteristic functions, the so called m + a (monotonic-
antimonotonic) functions, for which we can efficiently provide tight
bounds. Moreover, thanks to the novel representation of the search
space, CFSS can be effectively parallelised, thus fully exploiting
modern multi-core architectures.

In more detail, this paper makes the following contributions to
the state-of-the-art:

1The IDM property requires that, given two disconnected agents i
and j, the presence of agent i does not affect the marginal contri-
bution of agent j to a coalition.
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● We provide a new representation for CSG on synergy graphs
proving that, by performing a series of edge contraction op-
erations on the constraint graph, it is possible to efficiently
build a search tree where each node corresponds to a feasible
coalition structure, while avoiding redundancy (i.e., a coali-
tion structure will appear only once in our search tree). This
new model allows a non-redundant partition of the search
space, enabling an efficient parallel solving algorithm (with
a speedup higher than 7× on a 12 cores machine).

● We propose a branch and bound strategy that, when applied
to m + a functions, can efficiently solve the CSG problem
providing anytime approximate solutions with tight bounds.
Moreover, we study two particular cases of m + a functions
which were previously proposed in the CSG literature: i)
edge sum with coordination cost [13] and ii) collective en-
ergy purchasing [5], detailing the computation of the bounds.

● We compare CFSS with DyCE, the state-of-the-art algorithm
for CSG on synergy graphs. Our results show that CFSS is 4
orders of magnitude faster than DyCE for the edge sum with
coordination cost function and, for very sparse graphs, our
algorithm can solve problems with more than 100 agents, far
beyond the current limit of DyCE. Furthermore, we evaluate
the performance and optimality guarantees that our algorithm
yields when scaling to very large systems (i.e., more than
2700 agents). Our results show that CFSS provides a tight
approximation ratio,2 which is always lower than 1.12, thus
producing solutions that are, in the worst case, at least 88%
of the optimal.

The rest of the paper is organised as follows: Section 2 illustrates
the background on CSG on synergy graphs and on the DyCE algo-
rithm. Section 3 gives a method to generate our search space while
Section 4 details our branch and bound approach. Section 5 dis-
cusses our empirical evaluation and Section 6 concludes the paper.

2. PROBLEM AND BACKGROUND
The purpose of this section is twofold. First, in Section 2.1 we de-
fine the CSG problem on synergy graphs based on the definition
introduced in [14]. Second, in Section 2.2 we provide some back-
ground on the DyCE algorithm.

2.1 Problem definition
Consider a set of agents A = {a1, . . . , aN}, where N is the total
number of agents. Consider also a connected3 graph G = (A,E),
where E ⊆ A × A is a set of edges between agents, representing
the relationships between them. We say that a coalition of agents
C ⊆ A is feasible if and only if there exists a connected subgraph
G′ = (C,E′) whose vertices are the agents in C, and whose edges
are a subset of those inG, namelyE′ ⊆ E. Thus, the set of feasible
coalitions is restricted by the relationships represented by the graph
G. Henceforth, we refer to the set of all feasible coalitions in G as
FC(G). For example, assume the graph in Figure 2(a) represents
a social network between users that want to buy energy together
at reduced tariffs. Edges here represent the friend relationship and
hence two agents that are not direct friends (e.g., D and F ) cannot
form a coalition on their own (i.e., {D,F} /∈ FC(G)). However,
the same agents can form a coalition if a common friend joins such
coalition: {A,D,F} ∈ FC(G).
2The ratio between the upper bound on the optimal solution and
the value of the solution returned by our approach.
3If the graph is not connected we decompose the problem into
smaller independent subproblems, each with a connected graph.

To value a feasible coalition C ∈ FC (G), we assume that there
is a function v ∶ FC(G) → R. Although function v may be ar-
bitrarily defined, we will assume that the value of a coalition is
independent of any other coalitions that may exist. For example, in
the collective energy purchasing scenario, the value of a coalition
is the total cost to the agents if they buy energy together, and this
cost does not depend on which coalitions other agents will form.
Given the coalitional values, the CSG problem on synergy graphs
involves finding the optimal coalition structure (i.e., a partition of
the set of agents) represented by the graph. Hence, the optimal so-
lution is represented by the best set of disjoint feasible coalitions
that collectively cover all agents. To find the optimal coalition
structure, we must consider the set of all feasible coalition struc-
tures, FCS(G), namely the set of coalition structures that only
contain feasible coalitions. Then, solving the CSG problem on a
synergy graph G amounts to find the coalition structure CS∗:

CS∗ = argmax
CS∈FCS(G)

∑
C∈CS

v (C)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f(CS)

(1)

where the function f ∶ FCS (G) → R is obtained by adding the
coalitional values of the single coalitions. Given this objective, we
next describe the current best solution approach, namely the DyCE
algorithm (which we benchmark against in Section 5).

2.2 The DyCE algorithm
DyCE [14] uses dynamic programming to find the optimal coali-
tion structure by progressively splitting the current solution into its
best partition. This modus operandi is similar to IDP [8], with the
fundamental addition of an initial preprocessing phase that enumer-
ates all feasible coalitions. Then, DyCE considers only such coali-
tions significantly reducing the run time of the overall approach.
However, DyCE requires an exponential amount of memory in the
number of agents (i.e., O (2n)) and is not an anytime approach.
Hence, the scalability of such approach is limited to systems con-
sisting of tens of agents (e.g., around 30). Moreover, DyCE is a
serial algorithm and cannot be efficiently parallelised due to the ex-
ponential memory requirements in the number of agents. To over-
come these limitations, we propose a new way of representing the
CSG problem, and in particular its search space, by means of edge
contractions, as detailed in the next section.

3. REPRESENTING THE SEARCH SPACE
In this section we show that all feasible coalition structures induced
byG can be easily modelled as a search tree in which each feasible
coalition structure is represented only once. Specifically, we first
detail how we can use edge contractions to represent the CSG prob-
lem and then we provide an algorithm to build the search space.

3.1 Representing CSG via edge contractions
The main idea to generate our search space is that each feasible
coalition structure can be represented as the contraction of a set
of edges of G, and that each contraction of a set of edges of G
represents a feasible coalition structure. In more detail, let us define
an edge contraction as follows:

DEFINITION 1. Given a graph G = (V,E) and an edge e =
(u, v), where e ∈ E and u, v ∈ V , the result of the contraction of
edge e = (u, v) is a graph G′ obtained by removing edge e and
adding a new vertex w obtained by merging u and v (i.e., labelling
w with the union of their labels). Moreover, each edge incident to
either u or v in G will become incident on w in G′, merging the
parallel edges4 that may result from the aforementioned operations.
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{A}

{B}

{C}

(a) Before contraction

{A,C} {B}

(b) After contraction

Figure 1: Example of an edge contraction in a triangle graph (the
dashed edge is contracted to give the graph on the right)

Intuitively, a contraction of an edge represents the merging of the
coalitions associated to its incident vertices. Figure 1 shows the
contraction of the edge ({A} ,{C}), which results in a new vertex
{A,C} connected to vertex {B}. Notice that edge contraction is a
commutative operation (i.e., first contracting e and then e′ results
in the same graph as first contracting e′ and then e). Hence, we can
define the contraction of a set of edges as the result of contracting
each of the edges of the set in any given order. We can now show
that the following propositions holds:

PROPOSITION 1. The graph resulting from the contraction of
any set of edges represents a feasible coalition structure, where
coalitions correspond to the labels of the vertices of the resulting
graph.

PROOF. It is easy to see that an edge contraction in a graph
representing a feasible coalition structure will generate a coalition
structure still feasible, without any loss of information: in fact,
only redundant constraints (i.e., the parallel edges resulting from
the contraction) are removed, while any other edge in the original
graph is preserved. Hence, by induction starting from the coalition
structure of all singletons, a sequence of edge contractions will re-
sult in a feasible coalition structure.

PROPOSITION 2. Any feasible coalition structure CS can be
generated by contracting a set of edges of G.

PROOF. Each coalition Ci ∈ CS induces a connected subgraph
of G, namely SGi = (Vi,Ei), in which Vi is the set of agents
members of Ci and Ei is the set of edges among them in G. Every
Ci can be generated by contracting the set of edges of any possible
spanning tree of the corresponding subgraph SGi, and repeating
this operation for all Ci ∈ CS we can generate CS. Notice that the
contraction of the edges of SGi will not affect the edges of a differ-
ent subgraph SGj , since only redundant edges are removed.

Thus, a possible way of listing all feasible coalition structures is
to list the contraction of every subset of edges of the initial graph.
However, notice that the number of subsets of edges is larger than
the number of feasible coalition structures over the graph. For ex-
ample, in the triangle graph in Figure 1(a), contracting any two
edges leads to the grand coalition A = {A,B,C}. Thus, we need
a way to avoid listing feasible coalition structures more than once.
To avoid such redundancies, we mark each edge of the graph so to
keep track of the edges that have been contracted so far. Notice that
there are only two different alternative actions for each edge: either
we contract it, or we do not. If we decide to contract an edge, such
edge will be removed from the graph in all the subtree rooted in the
current node, but if we decide not to contract it we have to mark
such edge to make sure that we do not contract it in the future op-
erations of the search space generation. To represent such marking,
we will use the notion of 2-coloured graph:
4Two edges are parallel if they are incident on the same two ver-
tices.

{A}

{B}

{C}

{D}

{F}

(a) Before contraction

{B}{A,C}{D}

{F}

(b) After contraction

Figure 2: Example of a green edge contraction in a 2-coloured
graph (the dashed edge is contracted to give the graph on the right)

DEFINITION 2. A 2-coloured graph Gc = (V,E, c) is com-
posed of a set of vertices V and a set of edges E, as well as a func-
tion c ∶ E → {red, green} that assigns a colour (red or green) to
each edge of the graph.

In our case, a red edge means that a previous decision not to con-
tract that edge was made. On the other hand, green edges can be
still contracted. Figure 2(a) shows an example of a 2-colour graph
in which edge ({A} ,{D}) is coloured in red: hence, in any sub-
sequent step of the algorithm it is impossible to contract it. On the
other hand, all other edges in such graph can still be contracted. In
a 2-coloured graph, we define a green edge contraction as follows:

DEFINITION 3. Given a 2-coloured graph G = (V,E, c) and
a green edge e = (u, v), where e ∈ E and u, v ∈ V , the result
of the contraction of edge e = (u, v) is a graph G′ obtained by
performing the contraction of the edge e in the graph G. Whenever
two parallel edges are merged into a single one, the resulting edge
is coloured in red if at least one of them is red-coloured, and it is
green-coloured otherwise.

The rationale behind marking parallel edges in this way is that,
whenever we mark an edge e = (u, v) to be red, we want the
nodes of that edge to be in separate coalitions, hence whenever
we merge some edges with e we must mark the new edge as red to
be sure that future edge contractions will not generate a coalition
that contains both the agents corresponding to nodes u and v. For
example, note that in Figure 2 the red edge ({D} ,{A}) (dotted in
the figure) and the green edge ({D} ,{C}) are merged as a con-
sequence of the contraction of edge ({A} ,{C}), resulting in an
edge ({D} ,{A,C}) marked in red. In this way, we enforce that
any possible contraction in the new graph will keep agents A and
D in separate coalitions.

Having defined how we can use the edge contraction operation
to represent coalition structures, we now provide a way to model
the search space of the CSG problem on synergy graphs.

3.2 Generating the entire search space
Given the green edge contraction operation defined above, we can
generate each feasible coalition structure only once. In more de-
tail, at each point of the generation process, each red edge indicates
that it has been discarded for contraction from that point onwards,
and hence its vertices cannot be joined. Observe that the way we
defined green edge contraction guarantees that the information in
red edges is always preserved. Thus, given a 2-coloured graph,
its children can be readily assessed as follows: for each edge in
the graph, we generate the graph that results from contracting that
edge. Moreover, we colour the selected edge in red so that it cannot
be contracted again in subsequent edge contractions. As an exam-
ple, Figure 3 shows the search tree of a square graph. Algorithm 1
shows the procedure that builds our search tree, and it is possible to
show that such algorithm visits all feasible coalition structures and
each of them is visited only once. In more detail, we can prove the
following proposition:
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{A}

{B}

{C}

{D}

{A,B}
{C}

{D}

{A,B,C}

{D}

{A,B,C,D}

3

2

{A,B}

{C,D}

4

{A,B,D}

{C}

5

1

{B}

{C}
{A,D}

11

{A}
{B,C}

{D}

{A,D}

{B,C}

7

{A}

{B,C,D}

8

6

{A}

{B}

{C,D}

{B}

{A,C,D}

10

9

Figure 3: Search tree for a square graph

PROPOSITION 3. Given a 2-coloured graphGc, the tree rooted
atGc contains all the coalition structures compatible withGc, and
each of them appears only once.

PROOF. See Appendix.

Then, as a consequence of the previous proposition, we can prove
the following corollary:

COROLLARY 1. There is a bijection betweenFCS (G) and the
nodes visited by Algorithm 1.

PROOF. By direct application of Proposition 3 to the initial graph
G with all edges coloured green.

Corollary 1 ensures that by visiting the entire search tree and eval-
uating the value of each coalition structure, we can always find the
optimal solution. Moreover, each feasible coalition is represented
only once in the tree, hence if we search different branches in par-
allel (i.e., assigning different iterations of the for all statement at
line 2 to different threads/cores) we will not have redundant com-
putations.5

Algorithm 1 VISITALLCOALITIONSTRUCTURES(Gc)
1: VISIT(Gc)
2: for all G ∈ CHILDREN (Gc) do
3: VISITALLCOALITIONSTRUCTURES(G)
4:
5: function CHILDREN(Gc)
6: G′ ← Gc ▷ Initialise graph G′ with Gc

7: Ch← ∅ ▷ Initialise the set of children
8: for all e ∈ Gc ∶ c (e) = green do ▷ For all green edges
9: Ch← Ch ∪ {GREENEDGECONTRACTION (G′, e)}

10: Mark edge e with colour red in G′

11: return Ch ▷ Return the set of children

Nonetheless, it is possible that, even for sparse graphs, the number
of feasible coalition structures is very large, making their visit not
affordable. Hence, in the next section we propose a branch and
bound technique that prunes significant parts of the search space.

4. THE CFSS ALGORITHM
In this section we describe CFSS, our branch and bound approach
to CSG on synergy graphs. In particular, we will focus on a general
class of characteristic functions (called m + a functions). Next, we
show that two specific functions, previously used in the literature,
are m+ a functions, detailing how we can provide bounds for such
functions so to drive the branch and bound strategy.
5This is important when several agents with heterogeneous capa-
bilities need to share the computation of the solution.

4.1 A general branch and bound algorithm for
m + a functions

As shown in Equation 1, our objective is to maximise a function
whose domain is the set of feasible coalition structures FCS(G).
On the other hand, a strategy to prune significant portions of the
search space is needed to have a computationally affordable solu-
tion technique. In what follows, we detail some properties of our
reference domain that our branch and bound approach exploits:

PROPERTY 1. FCS (G) is a lattice, i.e., a partially ordered
set, in which every two elements CSi and CSj have a supremum
(CSi ∨CSj) and an infimum (CSi ∧CSj).

In particular, we define the following partial order over partitions:

DEFINITION 4. Given any two partitionsCSi andCSj , we say
thatCSi ≤ CSj if every element ofCSi is a subset of some element
of CSj .

As an example, {A,B}{C} ≤ {A,B,C}, but the order between
{A,B}{C} and {A}{B,C} is not defined. It is well known that
with this partial order the set of partitions forms a complete lattice
(see Section V.4 in [6]), called the partition lattice or equivalence
lattice. It is easy to see that our domain of interest is the sublattice
generated by the set of feasible coalition structures and thus it is a
lattice. Furthermore, in our scenario, the grand coalition represents
a supremum of any two elements, while the coalition structure of
all singletons represents an infimum.

PROPERTY 2. The elements of FCS(G) can be arranged in
an order-preserving tree: whenever CSj is a descendant of CSi in
the tree, then CSj ≥ CSi. Thus, CSi is the infimum of the subtree
rooted at CSi:

CSi =⋀ST (CSi) = inf ST (CSi)

In the search tree defined in Section 3 each child is the result of
contracting an edge in the parent. As a consequence of the con-
traction, two of the coalitions in the parent are merged, making the
child coalition coarser than that of the parent. Hence, by direct
application of Property 1, the above statement holds.

PROPERTY 3. Given a node CSi, there is a computationally
efficient procedure to assess an element CSi that is bigger than
any of the elements of the subtree:

CSi ≥⋁ST (CSi) = supST (CSi)

It is easy to see that CSi can be found by removing all red edges
from the 2-coloured graph representing CSi and then contracting
all the remaining green edges (which is equivalent to find the con-
nected components in the graph after the removal of all red edges).
What we are doing can be interpreted as finding the coarsest parti-
tion forgetting that we decided not to contract some edges. Clearly,
any partition in the subtree will be at most as coarse as this one.
This procedure can be implemented in time O(N +E), visiting all
the vertices that can be reached from any starting node by means
of a breadth-first search, and iterating this procedure starting from
any node that could not be reached, until all the vertices have been
visited.

PROPERTY 4. The function f is anm+a function (f = f++f−),
i.e., it is the sum of a monotonic function f+ and an anti-monotonic
function f−.6

6A function g is monotonic (resp. anti-monotonic) if, for all x and
y such that x ≤ y, one has that g (x) ≤ g (y) (resp. g (x) ≥ g (y)).
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Functions that satisfy this property are interesting because they al-
low us to efficiently provide a tight bound that can drive the branch
and bound strategy. Moreover, as shown in Section 4.2, Property 4
captures several realistic scenarios considered in the coalition for-
mation domain.

It is interesting to note that several relevant optimisation prob-
lems, beyond CSG, satisfy these properties. As an example, con-
sider the winner determination problem in combinatorial exchanges,
where the objective is to label (winning or losing) several bids sub-
mitted by some buyers, so as to maximise the auctioneer’s revenue
under the constraint that each item can be allocated to at most one
bidder. The domain of such problem can be understood as the lat-
tice of subsets of bids with inclusion ordering. Moreover, the ob-
jective function can be split into a monotonic part, adding accepted
buy offers (with positive values) and an anti-monotonic part adding
accepted sell offers (with negative values).7

PROPOSITION 4. If a domain satisfies the aforementioned prop-
erties, an efficient technique can be used to compute a tight bound-
ing function. In particular, given a node CSi:

M (CSi) = f− (CSi) + f+ (CSi)

is an admissible bound for the subtree rooted at CSi:

M (CSi) ≥max{f(CSi)∣CSj ∈ ST (CSi)}
PROOF. Consider that, for the subtree rooted at CSi, the max-

imum of an anti-monotonic function f− will be achieved at CSi
(Property 2), i.e., f−(CSi) ≥ max{f−(CSj)∣CSj ∈ ST (CSi)}.
On the other hand, the maximum of a monotonic function f+ will
be reached at one of the leaves. However, since assessing the
supremum CSi of the subtree is computationally efficient (Prop-
erty 3), we can bound f+ in the subtree as follows: f+ (CSi) ≥
max{f+(CSj)∣CSj ∈ ST (CSi)}. Finally, since our function is
m+a (Property 4), then we can easily provide a bound for the func-
tion f we are trying to maximise by composing these two results,
i.e., M (CSi) = f− (CSi) + f+ (CSi).

Building on Property 4, we can efficiently assess a bound for each
subtree and prune it if the value of such bound is smaller than the
value of the best solution found so far (as shown in Algorithm 2):

Algorithm 2 CFSS(Gc)
1: best← Gc ▷ Initialise current best solution with singletons
2: F ← ∅ ▷ Initialise frontier F with an empty stack
3: F.PUSH(Gc) ▷ Push Gc as the first node to visit
4: while F ≠ ∅ do ▷ Branch and bound loop
5: node← F.POP() ▷ Get current node
6: if M(node) > f (best) then ▷ Check bound value
7: if f (node) > f (best) then ▷ Check function value
8: best← node ▷ Update current best solution
9: F.PUSH(CHILDREN (node)) ▷ Update frontier F

10: return best ▷ Return optimal solution

Notice that such branch and bound procedure can be directly ap-
plied to compute an overall bound of an m + a function, with any-
time properties. More precisely, let us consider the frontier F re-
ported in Algorithm 2. When we expand the frontier F (Line 9) we
can keep track of the highest value of the function f evaluated in
all visited nodes. Hence, given a frontier F on the search tree, the
bound B(F ) is defined as:
7A more detailed analysis of the CFSS approach in such domain is
outside the scope of this paper and will be subject of future work.

B(F ) =max{f (best) , max
CS∈F

M (CS)} (2)

In other words,B(F ) is the maximum between the values assumed
by f inside the frontier and an estimated bound outside of it.

Since each of these bounds is admissible, taking the maximum
ensures the admissibility of B(F ). Furthermore, the quality of
B(F ) can only be improved by expanding the frontier F : if F ′

is such expansion, then B (F ) ≥ B (F ′) ≥ max{f (CS) ∣CS ∈
FCS (G)}. This can be easily verified recalling the definition of
M : each bound resulting from the children of a substituted node
n ∈ F must be less or equal to M (n), hence the above inequality
holds. Intuitively, the more search space is explored, the better
the bound provided. The fastest way to compute a bound for f is
considering a frontier formed exclusively by the root: assessing this
bound has the same time complexity of computing the functionM ,
and its quality can be satisfactory, as shown in Section 5.4.

Even though Algorithm 2 could be applied to any characteristic
function, the result in Section 4.1 can be used to prune significant
portions of the search space as long as the characteristic function is
the sum of a monotonic and an anti-monotonic function. Next, we
provide two examples of functions that fulfil such property.

4.2 Benchmark functions for CSG on synergy
graphs

In what follows, we focus on two benchmark functions for the CSG
problem on synergy graphs, namely the collective energy purchas-
ing function and the edge sum with coordination cost function.
These functions are typical of realistic coalition formation prob-
lems as shown in [4, 5]. In particular, we are interested in their
characterisation as m + a functions, showing that they can be seen
as the sum of a monotonic and an antimonotonic part, thus enabling
the aforementioned bounding techniques to prune part of the search
space during the execution of the CFSS algorithm.

4.2.1 Collective energy purchasing function
In the first scenario taken into account, each agent is characterised
by an energy consumption profile that represents its energy con-
sumption throughout a day [5]. In more detail, a profile records the
energy consumption of a household at fixed intervals (every half
hour in our case). Hence each profile is a vector of T elements
(where T = 48 in our case), whose values represent the actual mea-
surements collected over a month from 2732 households in UK.
The characteristic function of a coalition of agents is the total cost
that the group would incur if they buy energy as a collective on two
different markets: the spot market, a short term market intended for
small amounts of energy, and the forward market, a long term one
in which bigger portions of energy can be bought at cheaper prices.
In particular, following [5] the characteristic function is defined as:

v (C) =
T

∑
t=1
qtS (C) ⋅ pS + T ⋅ qF (C) ⋅ pF + κ (C) (3)

where pS and pF represent the unit price of energy in the spot
and forward market respectively,8 qF (C) stands for the time unit
amount of electricity to buy in the forward market and qtS (C) for
the amount to buy in the spot market at time slot t. These quan-
tities are the ones that optimise the buying strategy of the group
while satisfying the group electricity demand (see [5] for further
details). Finally, κ (C) stands for a coalition management cost that
depends on the size of the coalition and captures the intuition that
larger coalitions are harder to manage.
8Following [5], in our experiments we fixed pS = −80 and pF =
−70, using negative unit prices to reflect the direction of payments.
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The definition of this cost depends on several low level issues
(e.g., the power network capacity of customers in the groups, legal
fees, and other costs associated to group contracts, etc.), hence a
precise definition of this term goes beyond the scope of this paper.
Following [5], we use κ (C) = −∣C ∣γ to introduce a non-linear
element that penalises the formation of big coalitions, so that the
grand coalition is not always the best coalition structure.

Hence, the collective energy purchasing function is defined as:

f (CS) = ∑
C∈CS

[
T

∑
t=1
qtS (C) ⋅ pS + T ⋅ qF (C) ⋅ pF ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f+(CS)

+ ∑
C∈CS

κ (C)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f−(CS)

PROPOSITION 5. The collective energy purchasing function is
an m + a function.

PROOF. As shown in the above equation, this characteristic func-
tion can be seen as a m+a function, being the sum of a monotonic
function, consisting of the cost of the energy necessary to fulfil
the aggregated consumption profiles of the coalitions, and an anti-
monotonic one (i.e., the sum of the coalition management costs).
In fact, given any coalition structure CS different from the grand
coalition, it is possible to merge two coalition C1,C2 ∈ CS and
form a new coalition structure CS′ = CS∖{C1,C2}∪{C1 ∪C2}.
Considering Definition 4, it is easy to verify that CS < CS′; more-
over, f+ (CS) ≤ f+(CS′), since in CS′ more (or equal) energy
can be bought on the forward market at a cheaper price, hence the
value of such coalition structure will be higher (if negative costs
are considered). On the other hand, f− (CS) ≥ f−(CS′), because
κ (C1) + κ (C2) ≥ κ (C1 ∪C2).

4.2.2 Edge sum with coordination cost function
Our second test case is represented by the edge sum with coordina-
tion cost function, in which every edge is associated to a real value
by means of a function w ∶ E → R.9 This value defines a pairwise
relation between two nodes, that could represent how well (or bad)
those agents perform together, or the cost of completing a particular
coordination task in a robotic environment [4].

The characteristic function of a coalition is then calculated as
the sum of the weights of the edges among its members. In order
to have a better description of the management and communica-
tion costs in big coalitions, we also introduced a penalising factor
κ (C),10 with the same definition given in the previous section:

v (C) = ∑
e∈E(C)

w(e) + κ (C) (4)

with E (C) defined as the set of all the edges connecting any two
members of the coalition C:

E (C) = {(v1, v2)∣v1 ∈ C ∧ v2 ∈ C}

To help its characterisation as an m + a function, it is useful to
rewrite Equation 4 as:

v (C) = ∑
e∈E(C)

[w+(e) +w−(e)] + κ (C)

with w+(e) and w−(e) defined as:

w+(e) = {w(e) if w(e) ≥ 0
0 otherwise w−(e) = {w(e) if w(e) < 0

0 otherwise
9In our experiments we assigned a random weight ∈ [−10,10] to
each edge.

10This was not considered in [13] and it is the element that violates
the IDM property.

In other words, ∑e∈E(C)w+(e) represents the sum of all the pos-
itive weights of the edges in E (C), while ∑e∈E(C)w−(e) repre-
sents the sum of the negative ones.

The edge sum with coordination cost function is then defined as:

f (CS) = ∑
C∈CS

⎡⎢⎢⎢⎢⎣
∑

e∈E(C)
w+(e)

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f+(CS)

+ ∑
C∈CS

⎡⎢⎢⎢⎢⎣
∑

e∈E(C)
w−(e) + κ (C)

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f−(CS)

PROPOSITION 6. The edge sum with coordination cost function
is an m + a function.

PROOF. The above equation highlights the f+ and f− compo-
nents of this characteristic function. The first part is clearly mono-
tonic: if we consider the same CS and CS′ defined in the proof
of Proposition 5, it is easy to verify that f+ (CS) ≤ f+(CS′), be-
cause in f+(CS′) more (or none) positive weights are added. Since
f− (CS) refers to the negative ones, then f− (CS) ≥ f−(CS′)
(note that ∑C∈CS κ (C) has already been proven to be antimono-
tonic). Hence, this function can be consideredm+a, and the afore-
mentioned bounding technique can be used.

Moreover, in this case f+ (CS) can be calculated directly by adding
all the positive edges that can still be contracted from CS.

In the next section we detail how these m + a functions are used
to compare CFSS against the current state-of-the-art algorithm for
CSG on synergy graphs, i.e., DyCE.

5. EMPIRICAL EVALUATION
Having described and analysed our branch and bound approach for
the CSG problem on synergy graphs, we now present the empirical
evaluation. In what follows, we first discuss the methodology we
use for comparison and then present the results obtained in the two
domains described in Section 4.2.

5.1 Evaluation Methodology
The main goals of the empirical analysis are: i) to evaluate the
performance of our approach in terms of runtime with respect to
DyCE, ii) to evaluate the speedup that can be obtained by using
multi-core machines, and iii) to evaluate the anytime performance
and guarantees that our approach can provide when scaling to very
large number of agents (i.e., more than 2700). Following [14], all
our experiments have been made considering scale-free networks
generated with the Barabási-Albert model [1] with the parameter
m ∈ {1,2,3}. We compare our approach with DyCE in our two
reference domains, measuring the runtime in seconds. Moreover,
we implemented a multi-threaded version of our algorithm, and we
analyse the speedup of such parallel version using Amdahl’s law
[2]. Finally, we run our approach on a very large set of agents by
fixing the total runtime (100 seconds) and evaluating the approxi-
mation ratio, i.e., the ratio between the upper bound on the optimal
solution and the value of the solution returned by our method. Our
approach is implemented in C and executed on a machine with a
3.40GHz processor and 16 GB of memory. For DyCE we used the
implementation provided by the authors of [14].

5.2 Comparison with DyCE
In our experiments, CFSS is found to outperform DyCE when coali-
tion values are shaped by the above detailed benchmark functions
(see Figures 4 and 5). Specifically, for the edge sum with coor-
dination cost function, CFSS outperforms DyCE by 4 orders of
magnitude for m = 2, and by 3 orders of magnitude for m = 3.
Most probably this is due to the very tight bounding function used
to prune search nodes.

18



Number of agents

E
xe

cu
tio

n
tim

e
(s

)

20 25 30 35 40 45 50 55 60
10−3

10−2

10−1

100

101

102

103

104

105

106

105 seconds limit

DyCE
limit

Figure 4: Edge sum with coordination cost function
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Figure 5: Collective energy purchasing function
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In the collective energy purchasing scenario with m = 2 CFSS is
4.7 times faster than DyCE for 30 agents, and with m = 1 it is at
least 2 orders of magnitude faster. However, DyCE is significantly
faster than CFSS with m = 3 (44 times). On both figures, we in-
creased the number of agents until the execution time of the algo-
rithm does not exceed 105 seconds (which represents a reasonable
time limit for a single experiment). It is important to note that, in
general, DyCE cannot scale over 30 agents (due to its exponential
memory requirements), while CFSS does not have such limitation,
hence it is possible to reach instances with thousands of agents, as
shown in Section 5.4.

CFSS (m = 1) DyCE (m = 1)

CFSS (m = 2) DyCE (m = 2)

CFSS (m = 3) DyCE (m = 3)

5.3 Parallel CFSS
Here we detail the parallelisation approach of the multi-threaded
version of CFSS, analysing the speedup w.r.t. its serial version.
Following [3], such parallel version is obtained by having different
threads to search different branches of the search tree. The only
required synchronisation point is the computation of the current
best solution that must be read and updated by every thread. In
particular, the distribution of the computational burden among the
n available threads is done by considering the first i subtrees rooted
in every node of the first generation (starting from the left) and
assigning each of them to tj threads (1 ≤ j ≤ i). The remaining
rightmost subtrees are computed by a team of n −∑ij=1 tj threads
using a dynamic schedule.11 Parameters i and tj are arbitrarily set,
since it is assumed (and verified by an empirical analysis) that the
distribution of the nodes over the search tree does not significantly
vary among different instances. More advanced techniques found
in literature, such as estimating the number of nodes in the search
tree as suggested in [7], will be considered in the future.

We ran the algorithms on random instances with 27 agents and
m = 2, using a machine with 2 Intel® Xeon® E5-2420. The
speedup measured during these tests has been compared with the
maximum theoretical one provided by Amdahl’s Law, considering
an estimated non-parallelisable part of 6%, due to memory alloca-
tion and thread initialisation. As can be seen in Figure 6, the actual
speedup follows quite closely the theoretical one until the number
of threads does not exceed 12, the number of physical cores. After
that, Hyper-threading still provides some improvement, reaching a
final speedup of 9.44 with all 24 threads active.

11Once a thread has completed the computation of one subtree, it
starts with one of the remaining, if available.

5.4 Anytime performance
Figure 7 shows the value of the approximation ratio (i.e., the ratio
between the provided bound and the solution returned by CFSS)
obtained in 6 particular configurations for the collective energy pur-
chasing scenario (using n ∈ {100,500,1000,1500,2000,2732}
and m = 4) and considering a time limit of 100 seconds.12 For
each configuration, we plot the average and the standard error of the
mean over 20 repetitions. The results show that, for 100 agents, the
provided bound is only 4.7% higher than the solution found within
the time limit, reaching a maximum of +11.65% when the entire
dataset is considered. In the worst case, CFSS provides an approx-
imation ratio of 1.12 and thus solutions that are at least 88% of the
optimal. This confirms the effectiveness of this bounding technique
applied to the energy domain, which allows us to provide solutions
and quality guarantees for problems involving a very high number
of agents.

In our experiments, the bound is assessed at the root, without any
frontier expansion. In this way, the bound can be computed almost
instantly thus devoting all the available runtime to the search for a
solution. This choice is further motivated by the fact that, in this
scenario, the bound improves of a negligible value in the first levels
of the search tree, due to the particular definition of the characteris-
tic function. More precisely, if we consider a frontier formed by the
children of the root, in each of them the bound of f− will improve
by a factor of 2γ − 2 ≈ 1.5 (i.e., the difference between the κ of the
new coalition and the ones of the two merged singletons). On the
other hand, the bound of f+ will remain constant: in fact, since we
are taking the maximum (i.e., the worst) bound at the frontier (as
shown in Equation 2), the result of this maximisation will still be
equal to the f+ value of the grand coalition (as it was at the root),
because in at least one of the children nodes the computation of
CS will result in joining all the agents together. Hence, for this
domain it is not reasonable to expand the frontier from the root,
since the gain would be insignificant with respect to the additional
computational cost.

6. CONCLUSIONS
In this paper we considered the coalition structure generation prob-
lem on synergy graphs, proposing a branch and bound solution ap-
proach (the CFSS algorithm) that can be applied to a general class
of functions (the m+a functions). Our empirical evaluation shows
that CFSS outperforms DyCE, the state-of-the-art algorithm, when
applied to two benchmark functions: the edge sum with coordina-
tion cost and the collective energy purchasing functions. Specifi-
cally, CFSS is at least 3 orders of magnitude faster than DyCE in
the former scenario, while solving bigger instances in the latter one.

12Other values for m show a similar behaviour (not reported here).
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Figure 7: Approximation ratio

Moreover, our algorithm provides approximate solutions with good
quality guarantees (i.e., with an approximation ratio of 1.12 in the
worst case) for systems of unprecedented scale (i.e., more than
2700 agents).

Future work will look at improving the distribution of the com-
putation in the parallel version of CFSS, focusing on different multi-
threading models (e.g., GPGPU). Moreover we aim at extending
the algorithm to work on other hard optimisation problems, such
as the winner determination problem for combinatorial exchanges,
where m + a functions also apply.
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APPENDIX
We report here the proof of Proposition 3 and some definitions we
use in such proof. Let Gc be a 2-coloured graph, each vertex of
such graph is labelled with a coalition. Recall that a red edge e
between coalitions C1 and C2 encodes a constraint imposing that
each pair of elements (c1, c2), where c1 ∈ C1 and c2 ∈ C2, do not
lie in the same coalition.

DEFINITION 5. Given a 2-coloured graph Gc, we say that a
coalition structure is compatible with Gc if it can be obtained by
contracting green edges and without breaking any of the constraints
imposed by red edges.

DEFINITION 6. A green edge e is red-colourable w.r.t. CS if
CS satisfies the constraint imposed by e when we color it red.

DEFINITION 7. Given a coalition structure CS and an edge e,
we say that e is contractible w.r.t. CS if the coalition formed by
contracting e is included into one of the coalitions of CS.

Note that if CS is compatible with Gc each edge should be either
red-colourable or contractible w.r.t. CS. Based on the previous
definitions we can prove the following proposition:

PROPOSITION 3. Given a 2-coloured graphGc, the tree rooted
atGc contains all the coalition structures compatible withGc, and
each of them appears only once.

PROOF. By induction on the number of green edges. If there
is no green edge, then the tree has just one element which corre-
sponds to the only coalition structure compatible with Gc. Assume
that the statement is true for n − 1 green edges. Let Gc have n
green edges and CS be a coalition structure compatible with Gc.
If no edge in Gc is contractible with respect to CS, then CS is the
coalition represented by Gc, and it cannot be in any of its children,
because each of them contracts an edge in Gc. Thus CS appears
in the tree rooted at Gc only once (at the root). Assume then that
there is at least one green edge in Gc contractible w.r.t. CS. Then
CS cannot be the coalition structure at the root. We would like to
identify a child G′ such that CS is compatible with G′. The first
child of the root contracts an edge e. If e is contractible w.r.t. CS,
then the first child of Gc is compatible with CS. Otherwise e is
red-colourable w.r.t. CS. The same procedure goes on with the re-
maining children. Thus, by construction the root has three kind of
children w.r.t. CS: some which contract a red-colourable edge, a
single child G′ that contracts a contractible edge and red-colours
some red-colourable edges, and from there on some that red-color
a contractible edge. It is easy to see that CS is compatible only
with one child, namely G′. Now G′ has at most n − 1 green edges
and by induction CS must appear in that subtree only once. Thus,
it appears in the tree rooted at Gc only once.
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