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ABSTRACT
We consider a resource allocation problem with two types of
goods: a plentiful good that all agents have approximately
the same value for, and a scarce good that agents value
differently (imagine, e.g., job requests on an ordinary com-
puting cluster versus a restricted high-performance cluster).
A social planner seeks to allocate the scarce resource to the
agent who values it most. We depart from the usual mecha-
nism design approach by assuming monetary payments are
infeasible, and instead use lotteries and the threat of non-
allocation to elicit truthful value reporting. Adapting ideas
developed in the context of revenue redistribution, we ex-
amine whether there exist allocation rules yielding expected
welfare that—in ex post equilibrium—exceeds that of a base-
line that randomly assigns the scarce resource, and find that
for i.i.d. values the answer is yes only if the value distribu-
tion is heavy-tailed. For a variant of the problem where
there is a residual claimant for the plentiful good, we iden-
tify a mechanism that obtains welfare converging to that of
perfectly efficient allocation as the population size grows.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
Mechanism design; welfare; resource allocation; budgets

1. INTRODUCTION
Monetary payments are often employed to achieve efficient

outcomes in group decision settings with individuals that are
selfish and hold private information. In the standard setup,
agents are assumed to have quasilinear utility, and trans-
fer payments are defined that transform an inherent game
of competing interests into one where each agent’s utility

∗This work was mostly completed while the author was em-
ployed at Microsoft Research, New York.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

is maximized when utilitarian social welfare is maximized.
This approach has been extremely fruitful, perhaps most
manifestly in auctions—of highly valuable singular goods
such as works of art, large-quantity small-value goods like
online advertising impressions, and practically everything in
between. However, in certain cases this solution paradigm
does not fit the nature of the setting; i.e., money is an inap-
plicable medium for achieving the required incentives, either
because agent utilities are idiosyncratically non-quasilinear
or, more fundamentally, payments are deemed unacceptable,
e.g., for ethical or political reasons. We will consider the
problem of optimally allocating a good amongst a group of
agents when monetary payments are off the table.

What does it mean to make a decision “optimally” or “ef-
ficiently”? When utility is quasilinear and transferable via
payments, agents ascribe a dollar-equivalent value to each
outcome, and Pareto efficiency amounts to choosing an out-
come that maximizes the sum of agent values. But when
money cannot be transferred, Pareto efficiency requires only
that no alternative to the chosen decision is preferred by
some agent without being less preferred by another. In
certain settings this remains a meaningful objective, such
as when there are multiple heterogeneous goods to be al-
located and each agent can consume a limited number of
them. But in a single-item setting (or even with multiple
goods if agents’ values strictly increase as they acquire more
goods), without transfers all allocations are Pareto efficient,
and so the Pareto criterion becomes contentless as an objec-
tive. Yet, the absence of monetary payments as an available
tool does not preclude real distinctions between different
agents’ values; it just complicates their quantification.

We will be motivated by settings where there is no money
and no transfers can take place, but where there is nonethe-
less an alternate numéraire good that allows us to establish
a quantitative measure of social welfare. Specifically, we will
consider a resource allocation setting where there is a single
instance of a high-value good which we’ll call “type-A” and
an unlimited number of identical lower-value“type-B”goods.
Each agent has use for only a single good, whether of type-A
or type-B, so each agent prefers to obtain the type-A good,
but would rather receive a type-B good than nothing. We
will use type-B goods as the numéraire and seek to maximize
utilitarian social welfare—aggregate value to the agents—in
those terms, with each agent privately observing his value
for the type-A good with respect to this numéraire.

Since there is no scarcity of type-B goods, our problem is
at root about how to “efficiently” allocate a single good (the
type-A good); the presence of type-B goods serves the dual
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purpose of providing an inter-agent welfare evaluation met-
ric, and also a means of incentivizing truthful reporting of
private values. To give a sense of our approach, intuitively
one can imagine agents each being granted a type-B good as
an initial endowment, and then competing for the opportu-
nity to trade-in this good for a precisely-defined lottery for
the type-A good. The presence of type-B goods will thus
be an imperfect but useful substitute for money, allowing
us to apply (some) theory from mechanism design with lim-
ited payments, but not, as we will see, providing nearly the
flexibility and power of general monetary transfers.

After describing related work, in Section 1.2 we formally
introduce the details of the model. In Section 2 we show that
it is impossible to do better than random allocation when
values are i.i.d. from a distribution with monotone increas-
ing hazard rate, but we propose and evaluate two incentive
compatible mechanisms that are superior in other cases. In
Section 3 we consider a variant setting in which there is a
residual claimant for the type-B goods, and propose a third
mechanism that converges to perfect efficiency in that con-
text as the population size grows. Due to space limitations,
several proofs are omitted in this version of the paper.

1.1 Relation to previous work
In settings where monetary payments are possible and

utility is quasilinear, efficient solutions to resource allocation
problems with private values exist very generally [Clarke,
1971, Groves, 1973, Vickrey, 1961]. However, classic so-
lutions such as the Vickrey–Clarke–Groves (VCG) mecha-
nism often involve very large payments made to an entity
outside the group. Relatively recent work on so-called “re-
distribution mechanisms” seeks to minimize such payments
(see, e.g., [Bailey, 1997, Cavallo, 2006, Guo and Conitzer,
2007]), with very positive results (i.e., low “revenue”mecha-
nisms) for allocation settings. However, no allocatively effi-
cient mechanism exists that never imposes any aggregate
transfer outside the group, even in single-item allocation
[Hurwicz and Walker, 1990], and redistribution mechanisms
still involve significant payments between agents.

On the other hand, in a paper rich with results,
Hartline and Roughgarden [2008] consider the problem of
maximizing aggregate agent welfare (value of the allocation
minus payments) when no payments can be made between
the agents, a scenario the authors describe as “money burn-
ing” since any required payments are viewed as pure loss.
Their motivation and setup is related to the one we adopt
here, with a few critical differences. Hartline and Rough-
garden take as motivation settings where service degrada-
tion could form the basis of money burning “payments”, and
assume that such payments can be precisely defined and im-
posed independent of agents’ private information. However,
it seems much more natural to instead expect the rate at
which degraded service diminishes experienced utility to in-
herently depend on the agents’ private values.1 In the model
we adopt in this paper, each agent’s disutility for the kind of
“degradation” we impose (i.e., probabilistic non-allocation)
flows naturally from his single private value for the high-

1In the conclusion of their paper, Hartline and Roughgarden
call attention to this issue, observing that when “burnt pay-
ments” correspond to degraded service quality, “the designer
may not know each agent’s relative disutility for such pay-
ments” and that this issue “motivates considering the more
general setting where agents have a private value for burnt
money in addition to their private value for service.”

value good to be allocated. We will call attention to other
ways in which our setting differs from that of Hartline and
Roughgarden in the next section.

Other work explicitly addresses allocation with private
values when monetary payments are completely disallowed,
as in our setting. Hylland and Zeckhauser [1979] use a mar-
ket mechanism to find Pareto optimal probabilistic alloca-
tions in an assignment problem with multiple heterogeneous
items; however, the procedure is vulnerable to strategic ma-
nipulation except in the limit as the number of agents be-
comes large. Harrenstein et al. [2009] seek to map some of
the attributes of the VCG mechanism to a setting where
there is no numéraire good, proposing a “qualitative VCG”
mechanism that obtains a Pareto efficient outcome in allo-
cation and other settings. Guo et al. [2009] seek approxi-
mations to optimal welfare in a repeated allocation setting
using an artificial currency but no real monetary payments.
Dughmi and Ghosh [2010] consider assignment problems
(with multiple goods and multiple agents), and achieve re-
sults without payments for the restricted case where each
agent’s value is either zero or some known value, but it is
not known which. Procaccia and Tennenholtz [2009] design
non-monetary mechanisms that approximate optimal wel-
fare in a facility-location problem, where agents bear costs
proportional to their distance from the location selected at
which to build the facility. Guo and Conitzer [2010] derive
clever mechanisms for two agents with normalized values;
they do not posit a prior over values and instead seek mech-
anisms that approximate the optimal allocation value even
in the worst-case. However, this and two related subsequent
papers (Han et al. [2011] and Cole et al. [2013b]) impose
a structure on agent valuations that renders the problem
meaningless in settings where private valuation information
regards only a single item, as in the current setting.

A very different line of research considers the so-called
“King Solomon dilemma”, wherein each agent knows whether
or not she is the one with highest value for a good
to be allocated [Glazer and Ma, 1989, Olszewski, 2003,
Perry and Reny, 1999, Qin and Yang, 2009].2 In this
work efficient equilibrium outcomes without payments are
achieved through a multi-step process in which the threat of
payments and the common knowledge assumption play crit-
ical roles. Such mechanisms provide compelling solutions
when payments are merely undesirable, but they require
that payments could be made in principle and in fact are
made if agents play off-equilibrium strategies.

Finally, the work of Cole et al. [2013a] is of a similar spirit
to the approach we apply, though the objectives are quite
different. As in our approach, the authors achieve incen-
tive compatibility by probabilistically forgoing opportunities
for welfare-improving allocation (discarding fractions of re-
sources, in their case).3 They are concerned with optimizing
a fairness measure rather than welfare.

1.2 Preliminaries
There is a set of agents I = {1, . . . , n} and there are two

types of goods: a single type-A good, and an unlimited sup-
ply of type-B goods. Each agent has a cardinal utility for

2See Moore [1992] for a very clear explication of early re-
search in this vein.
3See also Feige and Tennenholtz [2010], where lotteries are
used to obtain truthful reporting of utility functions in a
single-agent setting.
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each good, is capable of utilizing only a single good (of ei-
ther type), and is risk neutral. We normalize each agent’s
utility for receiving a type-B good to 1, and then each i’s
utility for receiving the type-A good is denoted vi. For each
i ∈ I , vi is private and in [1, U ], for some U ∈ [1,∞]; vi can
be thought of as i’s proportional value for the type-A good
versus the type-B good.4 Letting ui(qi, pi) denote i’s ex-
pected utility for obtaining the type-A good with probabil-
ity qi, a type-B good (and no type-A good) with probability
pi ∈ [0, 1− qi], and nothing with probability 1− qi−pi, note
that ui(qi, pi) = qivi + pi. Importantly, this parallels the
standard quasilinear utility model for single-item allocation,
with pi here in the place of monetary payments.

We will use the term welfare to denote the sum of agent
utilities—denominated by type-B good value, as described
above—for a given allocation. For any given vector of values
v and any i ∈ I , we use v−i to denote the vector with vi
excluded and, for any k ∈ {1, . . . , n}, v(k) to denote the kth-

largest element of v (with v
(k)
−i defined analogously). We will

frequently consider expectations over outcomes given a prior
distribution over values for the type-A good; we will only
consider i.i.d. settings, and denote the p.d.f. and c.d.f. of
the common distribution as f and F , respectively.

From the perspective of a social planner (henceforth, “the
center”) seeking to maximize welfare, there are only n out-
comes that could possibly be optimal, corresponding to the
allocation of the single type-A good to one of the agents
and type-B goods to all others; these are depicted in Ta-
ble 1. Ideally the center would be able to ascertain which
agent’s value for the type-A good is highest and choose the
corresponding outcome, which would maximize welfare.

u1 u2 ... un

o1 v1 1 1 1

o2 1 v2 1 1

... 1 1 vi 1

on 1 1 1 vn

Table 1: Depiction of agent utilities over the space
of possibly optimal outcomes (allocations), given un-
known agent values v1, . . . , vn for the type-A good. oi
represents allocation of the type-A good to agent i
and allocation of a type-B good to all other agents.

However, if the center’s only power is to choose amongst
these n specific outcomes—making no payments as is the
supposition of this paper—he can do no better than to
choose independent of the value information held privately
by the agents. In other words, assuming agent values are
i.i.d., the center can do no better than to pick amongst the
n outcomes arbitrarily, as in the following “mechanism”.

Mechanism 1. (Arbitrary Allocation Mecha-
nism (AAM)) An agent is chosen arbitrarily and allo-
cated the type-A good. All others receive a type-B good.

Remark 1. Expected welfare under AAM equals
∫ U

1
f(x)xdx+ n− 1.

4Obtaining a type-A good and a type-B good still yields
only utility vi for i; obtaining more than one type-B good
(and no type-A good) still yields utility only 1.

But this description of the problem elides the fact that
the center has the power to not allocate goods. In other
words, there are more alternatives besides the n enumerated
in Table 1; leveraging them will be the focus of our approach.

2. INCENTIVE COMPATIBLE ALLOCA-
TION MECHANISMS

The scenario pictured in Table 1 leaves out the fact that
each depicted outcome o has a distinct corresponding out-
come o′ in which the agent chosen to receive the type-A good
in o instead receives nothing. We can extend this reasoning
also to the type-B goods, and so the full outcome space ac-
tually includes all modifications of the outcomes in Table 1
produced by eliminating a subset of the agents’ allocations
(yielding 0 value for those agents).

Considering the structure of the setting, if we allow for
probabilistic selection of outcomes, the mechanism space can
then be described as follows: each agent i reports a claim
about his value vi for the type-A good, and then for each
i the center chooses a probability qi with which i will ob-
tain the type-A good and a probability pi with which i will
obtain a type-B good. Formally, a mechanism Mq,p defines
a vector of functions (q1, . . . , qn, p1, . . . , pn), where, ∀i ∈ I ,
qi : [1, U ]n → [0, 1] and pi : [1, U ]n → [0, 1]. A mechanism
is feasible if it respects the laws of probability and agents’
individual “capacity constraints”:

Definition 1 (Feasible mechanism). A fea-
sible mechanism is a vector of functions Mq,p =
(q1, . . . , qn, p1, . . . , pn) with, ∀i ∈ I, qi : [1, U ]n → [0, 1] and
pi : [1, U ]n → [0, 1], satisfying: ∀v ∈ [1, U ]n,

∑

i∈I
qi(v) ≤ 1

and, ∀i ∈ I, qi(v) + pi(v) ≤ 1. 5

We will be concerned with outcomes that occur in ex post
equilibrium. By the revelation principle, it will be sufficient
to consider mechanisms under which truthful value reporting
is a dominant strategy.

Definition 2. (Dominant strategy incentive com-
patibility (DSIC)) A mechanism Mq,p is dominant strat-
egy incentive compatible if and only if, ∀i ∈ I, ∀v ∈ [1, U ]n,
∀v̂i ∈ [1, U ], qi(vi, v−i)vi + pi(vi, v−i) ≥ qi(v̂i, v−i)vi +
pi(v̂i, v−i).

To reiterate: type-B goods serve as numéraire and provide
the basis for evaluation of welfare, a role typically played by
money. Unlike money, though, type-B goods are indivisible
and an agent can receive a limited amount. But indivis-
ibility is not a practically important distinction in a set-
ting that allows probabilistic allocation—receiving a type-
B good with 50% probability is identical to receiving half
of a type-B good, from an incentives and expected welfare
perspective, given risk neutral agents. And the “capacity
constraint” (qi + pi ≤ 1) is analytically similar to a bud-
get constraint.6 The relatively close relationship between
this setting and that of single-item allocation (of the type-A
5More precisely, any mechanism meeting this definition can
be feasibly implemented, as follows: the type-A good lot-
tery is executed first, according to q, and then each agent i
receives a type-B good with probability pi

1−qi
if he did not

get the type-A good and with probability 0 if he did.
6The important difference is that our capacity constraint is
more restrictive, since—if mapped to a monetary setting—
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good) with money and budget constraints allows us to fairly
directly apply Myerson’s foundational result characterizing
DSIC auctions [Myerson, 1981], giving us the following:

Proposition 1. A mechanism Mq,p is DSIC if and only
if, ∀v ∈ [1, U ]n, ∀i ∈ I, ∀v′i ∈ [vi, U ], qi(vi, v−i) ≤ qi(v

′
i, v−i)

and:

pi(vi, v−i) = pi(1, v−i) + qi(1, v−i) (1)

−
[

viqi(vi, v−i)−
∫ vi

1

qi(z, v−i) dz
]

Clearly AAM is DSIC (and feasible) since qi(v) =
1
n

and

pi(v) = n−1
n

, ∀i ∈ I , ∀v ∈ [1, U ]n. From a social welfare
perspective, we will now see, the only mechanisms worth
considering allocate some good with certainty to any agent
that reports the lowest possible value (i.e., 1).7

Lemma 1. For any DSIC and feasible mechanism Mq,p

where, for some i ∈ I and v−i ∈ [1, U ]n−1, pi(1, v−i) +
qi(1, v−i) < 1, there exists an alternate DSIC and feasible
mechanism Mq′,p′ that yields at least as much welfare as
Mq,p on every instance, with, ∀i ∈ I, ∀v−i ∈ [1, U ]n−1,
p′i(1, v−i) + q′i(1, v−i) = 1.

Proof. Consider arbitrary DSIC and feasible mechanism
Mq,p that, for some i ∈ I and v−i ∈ [1, U ]n−1, defines
pi(1, v−i)+qi(1, v−i) < 1. Note that for arbitrary vi ∈ [1, U ],

qi(vi, v−i) = viqi(vi, v−i)−
∫ vi

1

qi(vi, v−i) dz

≤ viqi(vi, v−i)−
∫ vi

1

qi(z, v−i) dz

And from Proposition 1 we know that, for arbitrary vi ∈
[1, U ],

pi(vi, v−i) +
[

viqi(vi, v−i)−
∫ vi

1

qi(z, v−i) dz
]

= pi(1, v−i) + qi(1, v−i)

Putting these facts together, we have, ∀vi ∈ [1, U ]:

pi(vi, v−i) + qi(vi, v−i) ≤ pi(1, v−i) + qi(1, v−i) < 1

Then, consider an alternate mechanism Mq,p′ that is iden-
tical to Mq,p except that it defines p′i(v) = pi(v) +

[

1 −
pi(1, v−i)− qi(1, v−i)

]

, ∀v ∈ [1, U ]n. This mechanism is also
DSIC and feasible and yields strictly greater expected effi-
ciency than Mq,p.

Since we are concerned with maximizing welfare in domi-
nant strategies, given Proposition 1 and Lemma 1 it is suf-
ficient to consider only mechanisms that define pi(1, v−i) =
1−qi(1, v−i) and pi(v) = 1−

[

viqi(vi, v−i)−
∫ vi
1

qi(z, v−i) dz
]

,
∀v ∈ [1, U ]n, ∀i ∈ I . Let M denote the set of all such mech-
anisms. Then, for arbitrary type-A good allocation function
vector q, let Mq denote the member of M with the specified
q, i.e., Mq = Mq,p for p as defined above.

it would also imply a minimum on how much an agent is
required to pay as a function of the probability of alloca-
tion; this combined with our adoption of DSIC rather than
Bayesian incentive compatibility makes the results of Maskin
[2000] and Pai and Vohra [2008] on efficient allocation with
budget constraints inapplicable here.
7See footnote 5 on how lotteries can be implemented in an
interdependent way to achieve this.

Theorem 1. For arbitrary q = (q1, . . . , qn), Mq is DSIC
and feasible if and only if, ∀v ∈ [1, U ]n, ∀i ∈ I, ∀v̂i ∈ [vi, U ],
qi(vi, v−i) ≤ qi(v̂i, v−i) and the following two conditions are
satisfied:

(C1) ∀v ∈ [1, U ]n,
∑

i∈I
qi(v) ≤ 1

(C2) ∀v ∈ [1, U ]n, ∀i ∈ I, viqi(vi, v−i)−
∫ vi
1

qi(z, v−i) dz ≤ 1

No DSIC mechanism that violates (C1) or (C2) is feasible.

Theorem 1 establishes that evaluating the space of possi-
ble (welfare maximizing) mechanisms for this problem re-
duces to evaluating type-A good allocation functions (q)
that satisfy (C1) and (C2). Now, the following lemma es-
tablishes that the expected welfare of any mechanism in the
class M can be described very concisely in terms of the
type-A good allocation rule and the value distribution.

Lemma 2. The expected welfare of a mechanism Mq ∈
M equals:

∑

i∈I

Eṽ

[

1− F (ṽi)

f(ṽi)
qi(ṽ)

]

+ n

With these facts in hand, we will now explore the design
of DSIC mechanisms. First, we will see that given the three
preceding results—Lemma 1, Theorem 1, and Lemma 2—
there is a relatively short path to proving that when the
value distribution satisfies a monotone hazard rate condi-
tion, it is impossible to achieve better expected welfare than
arbitrary allocation does.

2.1 Optimality of arbitrary allocation in
MIHR settings

Hartline and Roughgarden [2008], considering a single-
item allocation environment with money, demonstrate
that the expected aggregate utility of the agents in
any DSIC mechanism with allocation rule x equals
∑

i∈I
Eṽ

[ 1−F (ṽi)
f(ṽi)

xi(ṽ)
]

. Mapping x to our type-A good al-

location function q, Lemma 2 demonstrates that expected
welfare in our setting is simply a constant plus the same
expression derived by Hartline and Roughgarden. In con-
sidering welfare-optimal mechanisms, then, the distinction
between the results they obtain and what we can expect here
will be driven by two factors: 1) Hartline and Roughgarden
adopt a no positive transfers restriction (which would map
to a constraint that pi(v) = 0, ∀v, here) that is not at play
in our environment, and 2) we are bound by the capacity
constraint: ∀i ∈ I , ∀v ∈ [1, U ]n, qi(v) + pi(v) ≤ 1.

However, when a hazard rate condition on the value dis-
tribution holds, we will show that those distinctions do not
lead to a different outcome. We now adapt a lemma from
the Hartline and Roughgarden paper; it applies to our set-
ting with essentially no modification. The hazard rate of a

distribution F , evaluated at x ∈ [1, U ] is defined as: f(x)
1−F (x)

.

F has monotone increasing hazard rate (MIHR) if and only

if, ∀x, x′ ∈ [1, U ] with x ≤ x′, f(x)
1−F (x)

≤ f(x′)
1−F (x′)

.

Proposition 2. [Hartline and Roughgarden, 2008]8 If
the value distribution has MIHR, then, ∀i ∈ I,

Eṽ

[

1−F (ṽi)
f(ṽi)

qi(ṽ)
]

≤
( ∫ U

1
f(x)xdx− 1

)

Eṽ

[

qi(ṽ)
]

.

8In fact Lemmas 2.8 and 2.10 of Hartline and Roughgarden

[2008] together constitute the claim that Eṽ

[ 1−F (ṽi)
f(ṽi)

qi(ṽ)
]

≤
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This result, which was derived for somewhat different ends
in a different context, when combined with Lemma 2 and
dominance of the M class of mechanisms, yields the follow-
ing fact bounding possible expected welfare in our setting.

Corollary 1. If the value distribution has MIHR, then
no DSIC and feasible mechanism yields expected welfare ex-

ceeding
∫ U

1
f(x)xdx+ n− 1 in equilibrium.

Now, the combination of Remark 1, Lemma 1, Lemma
2, and Corollary 1 establishes that when the value distribu-
tion has MIHR, no mechanism yields expected welfare that
exceeds that yielded by arbitrary allocation.

Theorem 2. If the value distribution has MIHR, then no
DSIC and feasible mechanism yields greater expected welfare
than AAM in equilibrium.

2.2 A substantive DSIC mechanism without
payments

The preceding analysis demonstrates that the case is
closed for i.i.d. environments with MIHR distributions—
disappointingly, there is no hope of doing better than ar-
bitrary allocation. But many real-world settings will fall
outside this class. For instance in the case of i.i.d. values
with monotonically decreasing hazard rate (MDHR), from
Lemma 2 we can see that if we could allocate the good

to agent i ∈ argmaxj∈J

1−F (vj)

f(vj)
with probability 1, such a

mechanism would yield the maximum possible expected ef-
ficiency.9 Such a mechanism would not be feasible because
it would violate (C2) of Theorem 1, but the following mech-
anism is a feasible (and DSIC) modification of this idea. In-
tuitively, the appropriate incentives are created by—instead
of directly allocating the type-A good—allocating the high-
bidder a lottery for it, defined such that only the agent with
highest value would prefer the lottery to the type-B good he
would get (with certainty) as a loser.

Mechanism 2. (Lottery Incentive Mechanism

(LIM)) Each agent i ∈ I submits a bid v̂i. Letting q(k)(v̂)

and p(k)(v̂) respectively denote the type-A and type-B
good allocation probabilities for the agent submitting the
kth-highest bid, breaking ties arbitrarily,

q(1)(v̂) =
1

v̂(2)
and p(1)(v̂) = 0

q(k)(v̂) = 0 and p(k)(v̂) = 1, ∀k ∈ {2, . . . , n}

Remark 2. In the truthful equilibrium, given value pro-

file v, expected welfare under LIM equals n− 1 + v(1)

v(2) .

Consider an example with 4 agents whose values are 2,
1.8, 1.5, and 1.2, respectively. Under LIM, agents 2, 3, and
4 receive a type-B good; agent 1 receives a type-A good
with probability 1

1.8
and receives nothing with probability

0.8
1.8

. Expected social welfare equals 3 + 2
1.8

.
∫ U

1
f(x)x dxEṽ

[

qi(ṽ)
]

, but this is apparently a minor over-
sight; the claim as given would hold true only for value dis-
tributions that have 0 as the lowest possible value (note that
ours have 1 as the lowest possible value).
9Hartline and Roughgarden [2008] make this very conclu-
sion for their setting with money.

Besides being DSIC and feasible, this mechanism is opti-
mal among mechanisms that never allocate the type-A good
to anyone other than the high-bidder.

Theorem 3. The Lottery Incentive Mechanism is DSIC
and feasible. For arbitrary value distribution, among all
DSIC and feasible mechanisms under which only the high-
bidder has positive probability of receiving the type-A good,
LIM maximizes expected welfare.

Proof. Consider arbitrary agent i ∈ I and arbitrary value
profile v. First, we show that LIM is in M, which re-
quires that, ∀v, pi(1, v−i) + qi(1, v−i) = 1 and pi(v) =
1 −

[

viqi(vi, v−i) −
∫ vi
1

qi(z, v−i) dz
]

. pi(1, v−i) = 1 and

qi(1, v−i) = 0 unless v
(1)
−i = 1 and i wins the tie-breaker,

in which case pi(1, v−i) = 0 and qi(1, v−i) = 1. 1 −
[

viqi(vi, v−i)−
∫ vi
1

qi(z, v−i) dz
]

= 0 if vi > v
(1)
−i and equals 1

otherwise, so the conditions for membership in M are both
satisfied. Therefore, by Theorem 1, to show DSIC and fea-
sibility it is sufficient to show that, ∀v, qi is monotone in
vi,

∑

i∈I
qi(v) ≤ 1 and viqi(vi, v−i) −

∫ vi
1

qi(z, v−i) dz ≤ 1.
Satisfaction of each of these is obvious from LIM’s definition.

Now consider arbitrary DSIC and feasible mechanism
Mq,p that allocates the type-A good with positive probabil-
ity only to the high-bidder. Consider arbitrary value profile
v with v(2) > 1 (when v(2) = 1 LIM is clearly optimal),
and let i ∈ argmaxj∈I vj . Assume ties are broken in fa-
vor of i (the proof extends easily otherwise). By DSIC and
Proposition 1, pi(v) = pi(1, v−i)+qi(1, v−i)−

[

viqi(vi, v−i)−
∫ vi
1

qi(z, v−i) dz
]

. By the assumption that only the high-
bidder receives the type-A good with positive probability,

pi(v) = pi(1, v−i)−
[

viqi(vi, v−i)−
∫ vi

v
(1)
−i

qi(z, v−i) dz
]

Now assume for contradiction that for some v′i ≥ v
(1)
−i ,

qi(v
′
i, v−i) = 1/v

(1)
−i + δ for some δ > 0. Then:

pi(v
′
i, v−i) = pi(1, v−i)−

[

v′i

( 1

v
(1)
−i

+ δ
)

−
∫ v′

i

v
(1)
−i

qi(z, v−i) dz
]

≤ pi(1, v−i)−
[

v′i

( 1

v
(1)
−i

+ δ
)

−
∫ v′

i

v
(1)
−i

( 1

v
(1)
−i

+ δ
)

dz
]

= pi(1, v−i)− 1− v
(1)
−i δ < 0

The first inequality holds by monotonicity of qi with respect
to vi, and the second since pi(1, v−i) ≤ 1. We’ve reached a
contradiction, since pi cannot be negative. Thus, among all
DSIC and feasible mechanisms that only ever allocate the
type-A good to the highest bidder, LIM minimizes the prob-
ability that the type-A good remains unallocated on every
instance. This combined with Lemmas 1 and 2 entails that
LIM maximizes expected efficiency among all such mecha-
nisms.

In cases where there is more than one bidder who values
the type-A good vastly more than he values type-B goods,
under LIM the type-A good will unfortunately remain unal-
located with very high probability. However, as the proof of
Theorem 3 establishes, this is a necessary characteristic of
any DSIC mechanism that only allocates the type-A good
to the high-bidder.

But for some natural non-MIHR distributions LIM will
in fact yield greater expected welfare than arbitrary alloca-
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tion. To take one example, consider the Weibull distribu-
tion, bounded below at 1, with scale parameter λ = 1 and
shape parameter k = 0.5: ∀x ∈ [1,∞], f(x) = 1

2e
√

x−1
√

x−1

and F (x) = 1 − 1

e
√

x−1
. This distribution is not at all un-

reasonable in our setting—intuitively, values for the type-A
good close to the value for the type-B good are most proba-
ble, with density falling off sharply as the increase in value
over that for type-B goods increases. Expected social wel-
fare under AAM equals:

∫∞
1

x

2e
√

x−1
√

x−1
dx = 3. Expected

social welfare under LIM when there are 2 agents equals:

2

∫ ∞

1

x

2e
√
x−1

√
x− 1

∫ x

1

1

2ye
√
y−1

√
y − 1

dy dx ≈ 3.174

And so with this value distribution, when there are 2 agents,
in expectation LIM obtains greater equilibrium welfare than
the baseline AAM.

2.3 A mechanism that redistributes allocation
probability

Theorem 3 demonstrated that LIM is optimal under the
constraint that only the high-bidder may receive the type-
A good, but such a constraint is not particularly well-
motivated; if allocating the good to lower bidders improves
welfare, why shouldn’t we do so? In this section we take
inspiration from Bailey [1997] and Cavallo [2006], wherein
mechanisms with monetary payments are derived with an
eye towards minimizing the revenue (i.e., aggregate pay-
ments made by the agents to the center) in order to max-
imize the agents’ aggregate welfare. The project in these
papers is framed as “redistribution” of the revenue gener-
ated by the VCG mechanism. The setting we are concerned
with here—and the inadequacy of LIM—is quite different,
but an analogy can be drawn between revenue in the VCG
mechanism and probability of non-allocation in LIM.

Revenue redistribution mechanisms succeed by establish-
ing, for each agent i, a lower-bound on the VCG revenue
that would result independent of the type i announces; this
provides a basis for returning revenue to i that neither alters
his incentives nor runs the risk of a budget deficit. Here, we
will instead seek to establish, for each agent i, a lower-bound
on the probability with which the type-A good remains un-
allocated that is independent of i’s bid; we will then use this
as a basis for allocating the good to i with a probability
that neither changes i’s incentives nor runs a risk of making
the mechanism infeasible (by specifying a total probability
of allocation greater than 1 across all the agents).

Mechanism 3. (Lottery Redistribution Mecha-
nism (LRM)) Each agent i ∈ I submits a bid v̂i. Let-

ting q(k)(v̂) and p(k)(v̂) respectively denote the type-A and
type-B good allocation probabilities for the agent submit-
ting the kth-highest bid, breaking ties arbitrarily,

q(1)(v̂) =
1

v̂(2)

(

1−
1− 1

v̂(3)

n

)

+
1− 1

v̂(3)

n
and p(1)(v̂) = 0,

q(2)(v̂) =
1− 1

v̂(3)

n
and p(2)(v̂) = 1−

1− 1
v̂(3)

n
,

q(k)(v̂) =
1− 1

v̂(2)

n
and p(k)(v̂) = 1−

1− 1
v̂(2)

n
, ∀k ∈ {3, . . . , n}

To describe the mechanism in a more concise way that
highlights the “redistribution” character of it, we can let

ri =
1
n

(

1−1/v̂
(2)
−i

)

, ∀i ∈ I , ∀v̂ ∈ [1, U ]n; then the high-bidder

h receives the type-A good with probability 1

v̂
(1)
−h

(1−rh)+rh

and never receives the type-B good, while each other agent j
receives the type-A good with probability rj and the type-B
good with probability 1 − rj . It is not hard to show that
as n grows, the probability that the type-A good remains
unallocated converges to 0, regardless of the value distribu-
tion. LRM is feasible, provides the proper incentives, and
outperforms LIM on every possible value profile.

Theorem 4. The Lottery Redistribution Mechanism is
DSIC and feasible, and yields weakly greater expected wel-
fare than LIM on every value profile.

Remark 3. In the truthful equilibrium, given value pro-
file v, expected welfare under LRM equals:

n− 1 +

(

1− r(1)(v)

v(2)
+ r(1)(v)

)

v(1) +
∑

2≤j≤n

r(j)(v)(v(j) − 1),

where, r(1)(v) = r(2)(v) = 1
n

(

1− 1

v(3)

)

, and ∀k ∈ {3, . . . , n},
r(k)(v) = 1

n

(

1− 1

v(2)

)

.

In most cases LRM will yield much greater welfare than
LIM. However, despite its superiority, we know from The-
orem 2 that for MIHR value distributions it will still not
outperform AAM (nothing does). As with LIM, the situa-
tion is different when the value distribution is heavy-tailed.
We will forgo a specific illustration of these welfare differ-
ences, but in the next section will provide a comparative
analysis across a range of distributions under a somewhat
different evaluation metric.

3. RESIDUAL CLAIMANT FOR THE
NUMÉRAIRE GOOD

We were able to identify scenarios under which the ex-
pected welfare under LIM or LRM significantly exceeds the
baseline of random allocation. But for i.i.d. values and
many “typical” distributions (uniform, normal, etc.), ran-
dom allocation cannot be beat (Theorem 2). Intuitively,
the impossibility of exceeding that benchmark stems from
the fact that, in order to provide the proper incentives for
truthtelling, the agent allocated the high-value good must
bear a significant probability of receiving nothing—not even
a type-B good. LRM mitigates this issue by largely “redis-
tributing” the type-A good non-allocation probability to the
other agents (so that the type-A good is very unlikely to not
be allocated). But this does not change the fact that there
is a pure loss whenever the winning agent receives no goods
rather than the numéraire (type-B) good.

In this section we will move away from the assumption
that type-B goods contribute to social welfare only if con-
sumed by the agents, instead considering their allocation to
be essentially inconsequential to welfare. There are several
ways to motivate this: for instance, the center may be able
to consume excess type-B goods himself, or there may be
a pool of other agents with no interest in the type-A good
who would obtain value for a type-B good.

Here the connection to mechanisms with a very con-
strained space of possible monetary payments becomes
stronger; analogically, if type-B goods were money, the prob-
lem would amount to achieving high-welfare allocations of a
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single good under the following conditions: each agent has
a fixed budget of $1, values for the good are greater than
$1, no positive transfers to the agents are allowed, and each
agent must pay at least his allocation probability (to satisfy
the capacity constraint).

In this model our definition of mechanism as a vector of
functions (q1, . . . , qn, p1, . . . , pn) remains, but now the social
welfare objective is to maximize

∑

i∈I qivi subject to the
constraint that

∑

i∈I
qi ≤ 1 and, ∀i ∈ I , pi ∈ [0, qi]. Propo-

sition 1 and Theorem 1 characterizing DSIC and feasible
mechanisms continue to apply. As in the case without a
residual claimant, there exists no DSIC and feasible mecha-
nism outside of M that yields greater expected welfare than
the best DSIC and feasible mechanism in M. But now,
expected welfare equals

∑

i∈I
Eṽ[ṽiqi(ṽ)] and even in MIHR

settings arbitrary allocation may no longer be optimal. This
is in fact the case; now for large enough populations of agents
LRM dominates AAM for all bounded value distributions.
We bypass formal statement and proof of this because, in
fact, a much stronger asymptotic result is available.

We propose the following mechanism that, intuitively, can
be thought of as granting each agent an initial endowment
of a type-B good and then auctioning off lottery tickets for
the type-A good; the number of lottery tickets is selected
such that the “Vickrey price” of each (in terms of type-B
good allocation probability) is less than each agent’s initial
endowment (i.e., 1). Recall that U is the maximum value
any agent could possibly have.

Mechanism 4. (Multi-lottery Vickrey Mecha-
nism (MVM)) Each agent i ∈ I submits a bid v̂i. Let

C = ⌈U⌉, and let q(k)(v̂) and p(k)(v̂) respectively denote
the type-A and type-B good allocation probabilities for the
agent submitting the kth-highest bid, breaking ties arbi-
trarily. If C ≥ n then q(k)(v̂) = 1

n
and p(k)(v̂) = n−1

n
,

∀k ∈ {1, . . . , n}. If C < n, then:

q(k)(v̂) =
1

C
and p(k)(v̂) = 1− v̂C+1

C
, ∀k ∈ {1, . . . , C}

q(k)(v̂) = 0 and p(k)(v̂) = 1, ∀k ∈ {C + 1, . . . , n}

Theorem 5. For arbitrary value distribution with sup-
port [1, U ], for arbitrary finite U > 1: MVM is DSIC and
feasible; for arbitrary ǫ > 0, ∃n ∈ Z+ such that if there are
at least n agents and a residual claimant for type-B goods,
expected welfare under MVM is within ǫ of the expected wel-
fare of optimal allocation.

Theorem 5 is very good news when the number of agents is
large. But to get a sense of how quickly MVM converges to
optimal welfare,10 and also of how the various mechanisms
we’ve proposed compare with each other for smaller numbers
of agents, we numerically computed expected allocation val-
ues under each across a range of different value distributions.
For many distributions and small population sizes, LRM is
actually superior to MVM, though only the latter will con-
verge to optimality as the population size grows. Figure 1
illustrates these findings for three distributions (with other
tested examples omitted due to lack of space).

10Note that convergence time will increase as a function of the
upper-bound of the value distribution, and MVM reduces to
AAM for unbounded distributions.
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Figure 1: Expected value yielded from allocation of
the type-A good under AAM, LIM, LRM, and MVM
as a fraction of the no-private-information optimum
(i.e., the expected highest value for the good), under
3 different value distributions. MVM coincides with
AAM in the case of unbounded value distributions.

4. CONCLUSION
In this paper we explored non-monetary mechanism de-

sign for settings where there are two kinds of goods to be
allocated, one that is singular and of high (but variable)
value, and another that is plentiful and of common value.
We found that if values for the singular good are i.i.d. ac-
cording to a distribution that has monotone increasing haz-
ard rate, no mechanism yields more welfare than allocating
the good arbitrarily, oblivious to the agents’ values. But in
other cases better mechanisms do exist. We adapted tech-
niques of redistribution from a line of research that seeks
efficient mechanisms with minimal revenue, and derived a
mechanism that outperforms the baseline in a variety of set-
tings. We also proposed a mechanism that asymptotes to
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perfect efficiency as the population size grows when there is
a residual claimant for the plentiful (numéraire) good.

Though space limitations prevented us from including an
analysis of settings with non-identical value distributions, it
is in such settings that these mechanisms really shine—all
three of the mechanisms we introduced very often perform
significantly better than arbitrary allocation. Intuitively, the
type-A good allocation-value under LIM equals the ratio of
highest to second highest value; in the i.i.d. case this discrep-
ancy will be large in expectation only for heavy-tailed dis-
tributions, but if value distributions are asymmetric across
agents then it will be large in a broad range of cases.

From a design perspective, we should be curious not just
about mechanisms that outperform a baseline, but further
about welfare-optimal mechanisms. It would be nice to
pinpoint, for any given value distribution, a mechanism
that maximizes expected welfare among all feasible and
DSIC mechanisms. But this is more daunting than it may
first seem; it is a more constrained variant of the welfare-
optimal mechanism design problem for a setting with pay-
ments and budget-constraints, where known results are rela-
tively modest. Recent work there has either identified opti-
mal mechanisms in restricted classes or sought distribution-
independent worst-case approximations—not even to the
welfare of the optimal mechanism, but to a proxy for that
welfare (see Devanur et al. [2013]).

In an environment where monetary transfers are impossi-
ble, the mere existence of a mechanism that reaches better-
than-random allocations is significant; and in some settings
the mechanisms we proposed go far beyond that. The two-
tiered resource allocation problem we’ve addressed is one of
many where mechanisms without payments could be useful;
future work may explore other compelling examples.
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