
Progression and Verification of Situation Calculus Agents
with Bounded Beliefs

Giuseppe De Giacomo
DIAG, Sapienza

Università di Roma
Roma, Italy

degiacomo@dis.uniroma1.it

Yves Lespérance
EECS

York University
Toronto, Canada

lesperan@cse.yorku.ca

Fabio Patrizi & Stavros Vassos
DIAG, Sapienza

Università di Roma
Roma, Italy

lastname@dis.uniroma1.it

ABSTRACT
In this paper we investigate agents that have incomplete informa-
tion and make decisions based on their beliefs, expressed as situa-
tion calculus bounded action theories. Such theories have an infi-
nite object domain, but the number of objects that belong to fluents
at each time point is bounded by a given constant. Recently it has
been shown that verifying temporal properties over such theories is
decidable. Here, we first show that we can actually check whether
an arbitrary action theory maintains boundedness. Secondly, we
examine progression. Progression can be thought of as capturing
the notion of belief states resulting from actions in the situation
calculus. In the general case, such belief states can be expressed
only in second-order logic. Here, we show that for bounded ac-
tion theories, progression, and hence belief states, can always be
represented in first-order logic. Based on this result, we further
prove decidability of temporal verification over online executions,
i.e., those executions resulting from agents performing only actions
that are feasible according to their beliefs.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods

General Terms
Theory, Verification, Language.

Keywords
Situation Calculus, Progression, Bounded Action Theories, Online
Execution, Verification of Agents.

1. INTRODUCTION
In this paper, we develop a computationally grounded framework

to model and verify agents that operate in infinite domains, have
incomplete information and make decisions based on their beliefs,
expressed as situation calculus bounded action theories.

The situation calculus [11, 13] is a widely used and expressive
first-order logical framework for reasoning about action in which
many issues have been addressed, e.g., the frame problem, time,
continuous change, complex actions and processes, uncertainty,
etc. It is also the basis of the Golog family of agent programming

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

languages [8, 2] and has been used to develop rich theories of agent
mental states and action [17].

Here, we use situation calculus action theories to express the
mental model of an agent that can deliberate and act in the world.
That is we take a first-person view of the logical theory where the
theory captures what the agent believes about the domain and how
actions affect it. Specifically, we adopt bounded action theories[4],
for which it was shown that verification of a very expressive class
of first-order µ-calculus temporal properties is decidable. Bounded
action theories are basic action theories [13], where it is entailed
that in all situations the number of fluent atoms that are true is
bounded by a constant. In such theories, the object domain re-
mains nonetheless infinite, as is the domain of situations. Bounded-
ness can often be safely assumed, since in real domains facts rarely
persist indefinitely as everything decays and changes. Moreover,
agents often forget facts either because they are not used or because
they cannot be reconfirmed. [4] gives many examples of domains
modeled as bounded action theories. It also identifies various ways
to obtain bounded action theories: 1. by strengthening precondi-
tions to block actions where the bound would be exceeded, 2. by
ensuring that actions are effect bounded and never make more flu-
ent atoms true than they make false, and 3. by using fading fluents
whose strength fades over time unless they are reconfirmed.

This work presents three key results for the use of bounded action
theories as mental models for agents. First, we show that using the
techniques in [4] we can actually check whether an arbitrary action
theory maintains boundedness. Given that we can usually specify
the initial situation description so that it is provably bounded, this
allows us to verify that the entire action theory is bounded.

Secondly, we examine progression. By progressing the initial
situation description over a sequence of action, we obtain a new
situation description representing all that is known about the sit-
uation after the action sequence. Progression can be thought of
as capturing the notion of belief states1 that result from actions in
the situation calculus. This allows us to obtain a computationally
grounded model of agents [20], in the sense that such a model cap-
tures how the belief states of agents are generated and updated from
the action theory, which describes truth and how truth evolves as
actions are performed. In the general case, progression, and hence
such belief states, can only be expressed in second-order logic [9,
18]. However here, we show that for bounded action theories, pro-
gression, and belief states, can always be represented in first-order
logic. We discuss how a first-order progression can be constructed.

Note that often belief states are a priori thought of as some sort of
first-order theory whose models are the alternative possible worlds
that the agent may be in. However in the situation calculus, first-

1Here, we assume that the agent’s beliefs are always true and use
belief and knowledge interchangeably.

141

order belief states cannot be complete in general (second-order
logic is needed [9, 18]) and must be complemented with the full
action theory (including a description of the past situations) in or-
der to fully capture what is entailed by the information available
to the agent [15, 14]. But when progression is first-order repre-
sentable, then such first-order belief states are indeed “complete”
and no further information (apart from the specification of actions)
is needed.

Finally, we move to verification of agents [6, 10], and exploit the
above result on progression to show the decidability of verifying
temporal properties over the online executions of agents. These
are execution paths where the agent only performs actions that can
surely be executed according to the agent beliefs. We show that
a very rich class of temporal properties expressed in a first-order
variant of the µ-calculus can be verified. Notably, in this language,
one can easily express that there exists a sequence of actions that
reaches a state where a goal is known to be true, even if the agent
has incomplete information about the world (as represented by the
action theory), and hence we can solve conformant planning [1] in
this rich setting, through verification.

2. SITUATION CALCULUS
The situation calculus [11, 13] is a sorted predicate logic lan-

guage for representing and reasoning about dynamically changing
worlds. All changes to the world are the result of actions, which
are terms in the language. We denote action variables by lower case
letters a, action types by capital letters A, and action terms by α,
possibly with subscripts. A possible world history is represented by
a term called a situation. The constant S0 is used to denote the ini-
tial situation where no actions have yet been performed. Sequences
of actions are built using the function symbol do, where do(a, s)
denotes the successor situation resulting from performing action a
in situation s. Besides actions and situations, there is also the sort
of objects for all other entities. Predicates and functions whose
value varies from situation to situation are called fluents, and are
denoted by symbols taking a situation term as their last argument
(e.g., Holding(x, s)). For simplicity, and w.l.o.g., we assume that
there are no functions other than constants and no non-fluent predi-
cates. We denote fluents by F and the finite set of primitive fluents
by F . The arguments of fluents (apart the last argument which is
of sort situation) are assumed to be of sort object.

Within the language, one can formulate action theories that de-
scribe how the world changes as the result of the available actions.
Here, we concentrate on basic action theories (BATs) as proposed
in [12, 13]. We also assume that there is a finite number of action
types A. Moreover, we assume that the terms of object sort are in
fact a countably infinite setN of standard names for which we have
the unique name assumption and domain closure. As a result a ba-
sic action theory D is the union of the following disjoint sets: the
foundational, domain independent, (second-order, or SO) axioms
of the situation calculus (Σ); (first-order, or FO) precondition ax-
ioms stating when actions can be legally performed (Dposs); (FO)
successor state axioms describing how fluents change between sit-
uations (Dssa); (FO) unique name axioms for actions and (FO)
domain closure on action types (Dca); (SO) unique name axioms
and domain closure for object constants (Dcoa); and (FO) axioms
describing the initial configuration of the world (D0). A special
predicate Poss(a, s) is used to state that action a is executable in
situation s; precondition axioms in Dposs characterize this pred-
icate. The abbreviation Executable(s) means that every action
performed in reaching situation s was possible in the situation in
which it occured. In turn, successor state axioms encode the causal
laws of the world being modeled; they take the place of the so-
called effect axioms and provide a solution to the frame problem.

One of the key features of basic action theories is the existence of
a sound and complete regression mechanism for answering queries
about situations resulting from performing a sequence of actions
[12, 13]. In a nutshell, the regression operator R∗ reduces a for-
mula φ about some future situation to an equivalent formulaR∗[φ]
about the initial situation S0, by basically substituting fluent re-
lations with the right-hand side formula of their successor state
axioms. Here, we shall use a simple one-step only variant R of
the standard regression operator R∗ for basic action theories. Let
φ(do(α, s)) be a formula uniform in the situation do(α, s). In
essence, a formula φ(s) is uniform in a situation term s if s is
the only situation term it contains; see [13] for a formal defini-
tion. Then R[φ(do(α, s))] stands for the one-step regression of φ
through the action term α, which is itself a formula uniform in s.

3. PROGRESSION AND BELIEF STATES
The progression of a basic action theory is the problem of updat-

ing the initial description of the world in D0 so that it reflects the
current state of the world after some actions have been performed.
In other words, a one-step progression of D w.r.t. a ground action
α is obtained by replacing the initial knowledge base D0 in D by a
suitable set Dα of sentences so that the original theory D and the
theory (D − D0) ∪ Dα are equivalent w.r.t. how they describe the
situation do(α, S0) and the situations in the future of do(α, S0).

The seminal paper [9] gives a model-theoretic definition for the
progression Dα of D0 w.r.t. α and D, which we briefly review.
Denote by Sα the situation term do(α, S0) and let M and M ′ be
structures with the same domains for sorts action and object. We
write M ∼SαM ′ if: (i) M and M ′ have the same interpretation of
all situation-independent predicate and function symbols; and (ii)
M and M ′ agree on all fluents at Sα, that is, for every relational
fluent F , and every variable assignment µ, M,µ |= F (~x, Sα) iff
M ′, µ |= F (~x, Sα). Then, for Dα a set of (possibly second-order)
sentences uniform in Sα, we say that Dα is a progression of D0

w.r.t. α if for any structure M , M is a model of Dα iff there is
a model M ′ of D such that M ∼Sα M ′. The definition in [9]
essentially requires for the two theoriesD and (D−D0)∪Dα that
any model of one is indistinguishable from some model of the other
w.r.t. how they interpret the situations in Sα and the future of Sα.

Observe that we can take progression as a way to characterize the
belief state of an agent in a particular situation, i.e., what the agent
believes about the current situation and what may happen in the fu-
ture. In the context of the situation calculus, the notion of belief
states may be captured by everything that is entailed in a particular
situation.2 The progressed knowledge base is a sentence that essen-
tially represents this. It has been shown that in general, progression,
hence this form of belief states, can only be captured in second-
order logic [9, 18]. Nonetheless, we will show that for bounded
action theories a first-order progression can always be constructed.

4. BOUNDED ACTION THEORIES
Let b be some natural number. We can use the notation
|{~x | φ(~x)}| ≥ b to stand for the FO formula:

∃~x1, . . . , ~xb.φ(~x1) ∧ · · · ∧ φ(~xb) ∧
∧

i,j∈{1,...,b},i6=j

~xi 6= ~xj .

We can also define (|{~x | φ(~x)}| < b)
.
= ¬(|{~x | φ(~x)}| ≥ b).

Using this, [4] defines the notion of a fluent F (~x, s) in situation
2In fact, also accounts in epistemic variants of the situation calculus
has been studied [16, 7], but here we appeal to an interpretation
directly based on entailment.

142

s being bounded by a natural number b as BoundedF,b(s)
.
=

|{~x | F (~x, s)}| < b and the notion of situation s bounded by b:

Boundedb(s)
.
=

∧
F∈F

BoundedF,b(s).

An action theory D then is bounded by b if it entails that:
∀s.Executable(s) ⊃ Boundedb(s). [4] shows that for bounded
action theories, verification of sophisticated temporal properties is
decidable. It also identifies interesting classes of such theories.

Example 1. Consider a factory where items are moved by robots
between available working stations, may be painted when located at
a particular station, and shipped out of the factory when placed at
the shipping dock. Items may be heavy or fragile, in which case
a different type of robot is required for moving them. We also
consider an item for which there is incomplete information about
its properties as heavy or fragile, in which case a conformant plan
needs to be obtained for processing it. We introduce the following
action theory where fluents and actions have the intuitive meaning.3

Action Precondition Axioms:

• Poss(move(r, x, l), s) ≡ IsRobot(r) ∧ IsLoc(l)
• Poss(ship, s) ≡ ∃xAt(x, ShipDock, s)
• Poss(paint(x), s) ≡ At(x, PaintStn, s)

Successor State Axioms:

• At(x, l, do(a, s)) ≡ γ(x, l, a, s)+∨¬γ−(x, l, a, s)∧At(x, l, s),
where:

γ+(x, l, a, s) ≡ ∃r.a = move(r, x, l) ∧ ∃zAt(x, z, s)∧
¬∃yAt(y, l, s) ∧ (Heavy(x) ⊃ HandlesHeavy(r))∧
(Fragile(x) ⊃ HandlesFragile(r)), and

γ−(x, l, a, s) ≡ a = ship ∧At(x, ShipDoc, s)∨
∃r∃l′.a = move(r, x, l′) ∧ l 6= l′∧
¬∃yAt(y, l′, s) ∧ (Heavy(x) ⊃ HandlesHeavy(r))∧
(Fragile(x) ⊃ HandlesFragile(r));

• Painted(x, do(a, s)) ≡ a = paint(x)∨
Painted(x, s) ∧ ¬Shipped(x, s);

• Shipped(x, do(a, s)) ≡ a = ship(x);

Initial State Axioms:

• IsRobot(r) ≡ r = R1 ∨ r = R2;

• HandlesHeavy(r) ≡ r = R1;

• HandlesFragile(r) ≡ r = R2;

• IsLoc(l) ≡ l = Hold1 ∨ l = Hold2 ∨ l = Hold3∨
l = PaintStn ∨ l = ShipDock;

• At(x, l, S0) ≡ (x = I1 ∧ l = Hold1)∨
(x = I2 ∧ l = Hold2) ∨ (x = I3 ∧ l = Hold3);

• ∀x¬Painted(x, S0) ∧ ∀x¬Shipped(x, S0);

• (Heavy(x) ≡ x = I1)∧ (Fragile(y) ≡ (y = I2∨ y = I3))∨
(Heavy(x) ≡ (x = I1 ∨ x = I3)) ∧ (Fragile(y) ≡ y = I2).

Note that each station may hold at most one item at any given time.
Also, Shipped(x, s) holds if item x has been shipped in the last
performed action, while Painted(x, s) keeps track of items that
have been painted until Shipped(x, s) becomes true.

It is not difficult to show that this theory is in fact bounded by 5.
First note that there are 5 locations initially and as IsLoc is a non-
fluent predicate this always remains true (and similarly for the other
3We omit leading universal quantifiers for readability. For simplic-
ity we use non-fluent predicates, e.g., IsLoc; to conform with the
assumptions of previous section, such predicates can be modeled
by fluents whose SSA preserves their truth value in all situations.

non-fluent predicates). For the fluent At, initially it is bounded by
3 and the action theory maintains this bound since moving an item
replaces one atom of At by another, shipping removes one, and
painting has no effect on At. Note that here we do not model the
arrival of new items (we will do this in the next example), however
since there can be at most one item in each location, even in this
case At would remain bounded by 5. For the fluent Shipped, it
is bounded by 1 as initially it is an empty relation and the action
theory ensures that the ship action leaves at most one atom true at
each situation, namely the item that was just shipped. Finally, for
the fluent Painted it is bounded by 3 as no new items can arrive
and only those present in the factory can be painted.

The case of item I3 is interesting as it illustrates how incomplete
knowledge affects planning. The above action theory entails that a
plan exists such I3 is eventually shipped. In this conformant plan,
both robots will attempt to move item I3 to the shipping dock in se-
quence with exactly one of them successfully moving it (depending
on whether it is fragile or heavy), and then it will be shipped.

On the other hand, for either robot r the action theory does not
entail that r can successfully move I3 to the shipping dock: in case
I3 is heavy, only R1 can move it, while in case it is fragile only
R2 can move it. As a result, the plan of robot R1 moving I3 to the
shipping dock and then shipping it is not feasible because the agent
in control does not know that I3 will be at the shipping dock after
R1 tries to move it and as a result the ship action will not be known
to be executable (and similarly for a plan that only involves R2).

Finally, the theory entails that there exists a plan such that even-
tually all objects are painted and shipped. We discuss how such
statements can be specified and verified in the remainder.

In the above example, it is straightforward to satisfy the bound-
edness assumption as the domain of objects that may be affected in
any future situation is in fact limited to the objects mentioned in the
description of the initial state. Nonetheless, we can easily extend
it to the case where arbitrary items may be introduced through an
arrive action that brings new objects to the factory.

Example 2. We adapt the theory of Example 1 so that it also
includes action arrive(x), where item x is placed in the shipping
dock provided that the dock is free and the item is not already in
the factory. This can be seen as an exogenous action that is invoked
periodically when new items arrive and need to be processed.

The new theory is the same as before except that the following
action precondition axiom is added

Poss(arrive(x), s) ≡ ¬∃yAt(y, ShipDock) ∧ ¬∃lAt(x, l, s),

and γ+(x, l, a, s) in the successor state axiom for At(x, l, s) is
replaced by the following formula:

a = arrive(x) ∧ l = ShipDock
∨ ∃r.a = move(r, x, l) ∧ ∃zAt(x, z, s) ∧ ¬∃yAt(y, l, s)
∧ (Heavy(x) ⊃ HandlesHeavy(r))
∧ (Fragile(x) ⊃ HandlesFragile(r)).

First, note that as there are infinitely many constants, which are
standard names, effectively an unbounded number of items may
be handled by subsequent arrive, move, and ship actions. Observe
though that since there are only a fixed number of stations in the
factory, at any given situation the number of items present in the
factory remains bounded, in fact by the same number as before. We
can reason about this in a similar way as for the previous example.

As before,At is initially bounded by 3 but now the action theory
ensures that it remains bounded by 5. This is because new items
may arrive at the shipping dock only when the shipping dock is

143

empty. As moving an item replaces one atom ofAt by another, and
shipping an item removes one atom, there can be at most 5 items
in the factory, one in each of the 5 available stations. As a result,
Painted is also bounded by 5 as only those items present in the
factory can be painted, and Shipped is bounded by 1 as before.

In the previous examples all individuals that may appear in the
extensions of fluents are standard names mentioned in the descrip-
tion of the initial knowledge base or in the arguments of subsequent
actions. Nonetheless, this is not necessary for boundedness. In
the following example we adapt the theory to express that initially
there is an item at station Hold3 which is either fragile or heavy,
but whose identity is not known.

Example 3. Consider again Example 1 and assume that the iden-
tity of the object at station Hold3 is unknown. The new theory
is the same as before except for the initial state axioms for At,
Heavy, and Fragile, now combined into the following:

∃i. ¬IsLoc(i) ∧ ¬IsRobot(i) ∧ i 6= I1 ∧ i 6= I2
∧ ∀x{At(x, l, S0) ≡ (x = I1 ∧ l = Hold1)
∨ (x = I2 ∧ l = Hold2) ∨ (x = i ∧ l = Hold3)}

∧ ∀x∀y{(Heavy(x) ≡ x = I1)
∧ (Fragile(y) ≡ (y = I2 ∨ y = i))

∨ (Heavy(x) ≡ (x = I1 ∨ x = i))
∧ (Fragile(y) ≡ y = I2).}

This shows that the boundedness condition does not require the
identity of the individuals involved in the relations to be known.
This allows for representing rich scenarios where initially it is only
specified that a bounded number of objects will be in the extension
of some property, and where the identity of these objects may be
discovered later. For example, in an university admissions scenario
we may know that at most ten new doctoral students will be admit-
ted, and later on learn who these new students are.

5. CHECKING BOUNDEDNESS
We show that we can always check whether any BAT maintains

boundedness for a given bound. That is if the initial situation de-
scription is bounded then the entire theory is too (for all situations).

We capture the notion of being bounded at the next step as:

∧
A∈A

∀~x.Poss(A(~x), s) ⊃ BoundedF,b(do(A(~x), s)).

Notice that each BoundedF,b(do(A(~x), s)) is regressable through
A(~x). As a result the formula above is equivalent to a first-order
situation calculus formula uniform in s; we call the latter formula
NextOrigBoundedF,b(s), and we call NextOrigBoundedb(s)
the formula

∧
F∈F NextOrigBoundedF,b(s).

To check that the theory is bounded by b it is sufficient to ver-
ify that the theory entails the temporal formula (expressed in the
language of [4]):

AGNextOrigBoundedb
.
= νZ.NextOrigBoundedb ∧ [−]Z,

which expresses that always along any path NextOrigBoundedb
holds. Unfortunately deciding whether this formula is entailed by
the action theory is directly doable with the techniques in [4] only
if the theory is bounded, which is what we want to check. However
we can construct a modified version of the action theory that is
guaranteed to be bounded and that can be used to do the checking.

Let D be the action theory. We define a new action theory DD
obtained by augmenting D as follows:

• DDS0
= DS0

∪ {φ[~F/ ~F ′]|φ ∈ DS0
}

• DDssa = Dssa ∪ {F ′(~x, do(a, s)) ≡ Φ(~x, a, s)∧
NextOrigBoundedb(s) | F (~x, do(a, s)) ≡ Φ(~x, a, s) ∈ Dssa}

• DDposs = {Poss(A(~x), s) ≡ Ψ(~x, a, s)∧
NextOrigBoundedb(s) | Poss(A(~x), s) ≡ Ψ(~x, a, s) ∈ Dposs}

Intuitively DD extends D with primed copies of fluents, which are
axiomatized to act, in any situation, as the original ones as long as
the original theory remains bounded by b in that situation, other-
wise they become empty (and actions cannot be executed according
to Poss.) It is easy to show the following key property for DD.

LEMMA 1. DD |= ∀s.(∀ŝ.ŝ < s ⊃
NextOrigBoundedb(ŝ)) ⊃ ∀~x.(F ′(~x, s) ≡ F (~x, s)).

Now we define a new action theory D′ which can be considered
a sort of projection of DD over the primed fluents only. Let D′ be:

• D′S0
= {φ[~F/ ~F ′]|φ ∈ DS0

}.

• D′ssa = {F ′(~x, do(a, s)) ≡ Φ[~F/ ~F ′](~x, a, s)∧
NextOrigBoundedb[F/F

′](s) |
F (~x, do(a, s)) ≡ Φ(~x, a, s) ∈ Dssa}

• D′poss = {Poss(A(~x), s) ≡ Ψ[~F/ ~F ′](~x, a, s)∧
NextOrigBoundedb[F/F

′](s) |
Poss(A(~x), s) ≡ Ψ(~x, a, s) ∈ Dposs}

Notice that D′ is bounded by construction if D′S0
is, and further-

more it preserves the information about the original theory being
bounded at the next step, though in terms of primed fluents. Ex-
ploiting the above lemma on DD and the construction of D′, we
can show that D′ has the following notable property:

LEMMA 2. D |= AGNextOrigBoundedb(S0) iff
D′ |= AGNextOrigBoundedb[

~F/ ~F ′](S0).4

Proof (sketch). By Lemma 1, it is immediate to
see that D |= AGNextOrigBoundedb(S0) implies D′ |=
AGNextOrigBoundedb[

~F/ ~F ′](S0). For the opposite direc-
tion, suppose that D′ |= AGNextOrigBoundedb[

~F/ ~F ′](S0),
but D |= AGNextOrigBoundedb(S0) does not hold. This
means that there exists a model of D and a situation S where
¬NextOrigBoundedb(S) holds, though in all previous situa-
tions s < S we have that NextOrigBoundedb(s) holds. Now
by Lemma 1, we have that we can construct a model for D′
such that the truth values of F are replicated in F ′ as long as
NextOrigBoundedb holds in the previous situation. So in S, we
must have ¬NextOrigBoundedb(S), which is a contradiction.

By Lemma 2, since D′ is bounded by b if D′S0
is, it follows that:

THEOREM 1. Given a BAT whose initial situation description
is bounded by b, then checking whether the entire theory is bounded
by b is decidable.

Notice that we pose no restriction on the initial situation descrip-
tion except that it is representable in first-order logic, hence check-
ing its boundedness remains undecidable:

THEOREM 2. Given a FO description of the initial situation
D0 (a FO theory without functions, except for constants, and in-
terpreted over standard names) and a bound b, it is undecidable to
check whether all models of D0 are bounded by b.
4Notice that NextOrigBoundedb[

~F/ ~F ′] expresses that in the orig-
inal theory the next situations are bounded, though now syntacti-
cally replacing original fluents with their primed version.

144

Proof (sketch). By reduction to FO unsatisfiability. Suppose we
have an algorithm to check whether a FO theory D0 is bounded by
0. Then we would have an algorithm to check (un)-satisfiability of
D0. Indeed consider for a fixed fluent F̂ :

D̂0 = (D0 ∧ ∃~x.F̂ (~x, S0)) ∨ (
∧
F∈F

∀~x.¬F (~x, S0))

Notice that
∧
F∈F ∀~x.¬F (~x, S0) has only models bounded by 0,

while ∃~x.F̂ (~x, S0) has only models with at least one tuple (and
thus one object) in F̂ . Hence we get that D̂0 is bounded by 0 iffD0

is unsatisfiable. A similar argument holds for every bound b.

Nonetheless in many cases we know by construction that the initial
situation is bounded. In such cases the proof technique of Th. 1
provides an effective way to check if the entire theory is bounded.

6. PROGRESSING BOUNDED THEORIES
We now proceed to show that all bounded action theories are

first-order progressable. We start by showing a general result about
progression that holds for more general action theories.

THEOREM 3. Let D be a basic action theory without the stan-
dard names restriction. Let Prog(ϕ, α) denote the progression of
any arbitrary sentence ϕ uniform in S0 w.r.t. a ground action α and
(D −D0) ∪ {ϕ}.5 The following holds:

Prog(
∨
i

ϕi, α) ≡
∨
i

Prog(ϕi, α),

where ϕi are (possibly second-order) sentences uniform in S0.

PROOF. (⇐) Suppose not. Then there exists a model M such
that M |= Prog(ϕk, α) for some k, and M 6|= Prog(

∨
i ϕi, α).

By the definition of progression, sinceM 6|= Prog(
∨
i ϕi, α), there

exists noM ′ such thatM ′ |= (D−D0)∪{
∨
i ϕi} andM ∼SαM ′.

Also by the same definition, since M |= Prog(ϕk, α), there exists
anM ′′ such thatM ′′ |= (D−D0)∪{ϕk} andM ∼SαM ′′, which,
in turn, implies that there exists an M ′′ such that M ′′ |= (D −
D0) ∪ {

∨
i ϕi} and M ∼SαM ′′. Hence we get a contradiction.

(⇒) Suppose not. Then there exists a model M , such that
M |= Prog(

∨
i ϕi, α), and M 6|= Prog(ϕi, sα) for any i. By the

definition of progression, sinceM |= Prog(
∨
i ϕi, sα) there exists

aM ′ such thatM ′ |= (D−D0)∪{
∨
i ϕi} andM ∼SαM ′, there-

fore there exists a model M ′ such that M ′ |= (D − D0) ∪ {ϕk}
and M ∼Sα M ′ for some k. Also by the same definition, since
M 6|= Prog(ϕi, α) for any i, there exists no model M ′′ such that
M ′′ |= (D − D0) ∪ {ϕi} and M ∼Sα M ′′ for any i. Hence we
get a contradiction.

Now we turn to bounded action theories. By results in [4] it
follows that the models of the initial situation description D0 of
any bounded action theory D can be partitioned into a finite set of
isomorphism types whose active domain is bounded. Each isomor-
phism type with an active domain of size b can be captured by a
characteristic sentence of the form:

∃w1, . . . , wb.AllDistinct(w1, . . . , wb) ∧
∧ni=1∀~xi.(Fi(xi, S0) ≡ φi(~xi, w1, . . . , wb))

where AllDistinct(w1, . . . , wb) is a formula of inequalities stating
that all w1, . . . , wb assume distinct values; and φi(~xi, w1, . . . , wb)
is a formula of equalities and inequalities that gives the extension
of the fluent Fi(xi, S0) in the models of the isomorphism type:
5A second-order progression of ϕ is always guaranteed to exist by
results in [9].

THEOREM 4. The characteristic sentence above captures one
isomorphism type of D0 for a bounded basic action theory D.

Proof (sketch). Recall that in a bounded D there is only a finite
number of fluent atoms F (~x, s) for every situation s and in par-
ticular in the initial situation S0 that D0 specifies. Indeed it can
be shown that all models of the characteristic sentence belong to
one isomorphism type and all models that are isomorphic to one of
them are also models of the characteristic sentence.

Next we observe that a characteristic sentence for an isomor-
phism type is actually a relatively complete initial knowledge base
with bounded unknowns, cf. Definition 3 in [19]. This implies that
each of the finite number of the characteristic sentences has in fact
a first-order progression (which is expressed again as a relatively
complete sentence with bounded unknowns) by Theorem 1 in [19].
Now applying Theorem 3 for the form of D0 expressed as a dis-
junction of the (finitely many) characteristic sentences, we get the
main result of this section:

THEOREM 5. All bounded action theories are iteratively first-
order progressable.

Note that while progression applies to a single action, since the re-
sult of progression is still a disjunction of characteristic sentences,
we can apply it iteratively to deal with arbitrary action sequences.

This view of the knowledge base as a disjunction of a finite set
of characteristic sentences provides a practical abstraction based
on the boundedness assumption that also illustrates how it can be
updated. We next show one step of progression for Example 3.

Example 4. The initial knowledge base can be logically equiva-
lently expressed as the disjunction of two characteristic sentences,
ψ1 ∨ ψ2, the first of which is the following:

∃w.Distinct(w, {R1, R2, Hold1, Hold2, Hold3}) ∧
Distinct(w, {PaintStn, ShipDock, I1, I2}) ∧
∀r(IsRobot(r) ≡ r = R1 ∨ r = R2) ∧
∀r(HandlesHeavy(r) ≡ r = R1) ∧
∀l(IsLoc(l) ≡ l = Hold1 ∨ l = Hold2 ∨ l = Hold3) ∧
∀x∀l{At(x, l, S0) ≡ (x = I1 ∧ l = Hold1) ∨

(x = I2 ∧ l = Hold2) ∨ (x = I3 ∧ l = w)} ∧
∀x(Painted(x, S0) ≡ false) ∧ ∀x(Shipped(x, S0) ≡ false) ∧
∀x(Heavy(x) ≡ x = I1) ∧ ∀x(Fragile(y) ≡ (y = I2 ∨ y = w)),

whereDistinct(x, {t1, . . . , tn}) denotes that x is distinct from all
elements in the set. The second characteristic sentence is exactly
the same except for the last two conjuncts in which item w is rep-
resented as heavy instead of fragile.

Now consider the action move(R1, I1, ShipDock). Using the
progression method explained in [19] for each characteristic sen-
tence separately, it is easy to show that the progressed version of
the knowledge base is logically equivalent to ψ1 ∨ ψ2 after the lo-
cation of I1 is updated in the specification of At.

7. VERIFYING ONLINE EXECUTIONS
Dynamic properties over online executions of BATs can be ex-

pressed using a variant of the µ-calculus, called µLO, whose syn-
tax is as follows:

Φ ::= holds(ϕ) | ¬Φ | Φ1 ∧ Φ2 | 〈−〉Φ | Z | µZ.Φ,
where ϕ is an arbitrary closed uniform situation-suppressed (i.e.,
with all situation arguments in fluents suppressed) situation calcu-
lus FO formula, whose constants must appear in D, and Z is an
SO (0-ary) predicate variable. We use the following standard ab-
breviations: Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2), [−]Φ = ¬〈−〉¬Φ, and

145

νZ.Φ = ¬µZ.¬Φ[Z/¬Z]. As usual in the µ-calculus, formulae of
the form µZ.Φ (and νZ.Φ) must satisfy syntactic monotonicity of
Φ wrt Z, which states that every occurrence of the variable Z in Φ
must be within the scope of an even number of negation symbols.

The fixpoint formulas µZ.Φ and νZ.Φ denote respectively the
least and the greatest fixpoint of the formula Φ seen as a predicate
transformer λZ.Φ (their existence is guaranteed by the syntactic
monotonicity of Φ). We can express arbitrary temporal/dynamic
properties using least and greatest fixpoint constructions. For in-
stance, to say that it is possible to achieve ϕ, where ϕ is a closed
situation suppressed formula, we use the least fixpoint formula
µZ.ϕ ∨ 〈−〉Z. Similarly, we can use a greatest fixpoint formula
νZ.ϕ ∧ [−]Z to express that ϕ always holds.

As to semantics, since µLO contains formulae with predicate
free variables, given an action theory D, we introduce a predicate
variable valuation V , i.e., a mapping from predicate variables Z to
situation terms. Then we assign semantics to formulae by associ-
ating with D and V an extension function (·)DV which maps µLO
formulae to subsets of ground situation terms. We denote by Γ
the set of ground executable situation terms, inductively defined
as follows: 1. S0 ∈ Γ; 2. If σ ∈ Γ, A is an action type with
parameters ~x, ~n ∈ ~N is a vector of names s.t. |~n| = |~x|, and
D |= Poss(A(~n), σ), then do(A(~n), σ) ∈ Γ.

The extension function is defined inductively as follows:

(holds(ϕ))DV = {σ ∈ Γ | D |= ϕ[σ]}
(¬Φ)DV = Γ− (Φ)DV
(Φ1 ∧ Φ2)DV = (Φ1)DV ∩ (Φ2)DV
(〈−〉Φ)DV = {σ ∈ Γ |

∨
A ∃~n ∈ ~N .

do(A(~n), σ) ∈ Γ ∧ do(A(~n), σ) ∈ (Φ)DV }
(Z)DV = V(Z)
(µZ.Φ)DV =

⋂
{E ⊆ Γ | (Φ)DV[Z/E] ⊆ E}

Notice that given a closed uniform situation-suppressed situation
calculus formula ϕ, by a slight abuse of notation, we denote by
ϕ[σ] the formula ϕ with the situation argument reintroduced and
assigned to σ. Also, given a valuation V , a predicate variable Z,
and a set E of situation terms, we denote by V[Z/E] the valuation
obtained from V by changing the value of Z to E . Notice also that
when a µLO formula Φ is closed (w.r.t. predicate variables), its
extension (Φ)DV does not depend on the predicate valuation V . The
only formulas of interest in verification are those that are closed.

We say that a theory D entails a closed µLO formula Φ, written
D |= Φ, if S0 ∈ (Φ)DV (for any valuation V , which is in fact
irrelevant for closed formulas).

We next show some examples. For simplicity we adopt the no-
tation of the well-known logic CTL∗, which can be thought of as
a fragment of µLO. In particular E% and A% respectively express
that there exists an (infinite) path (of action executions) satisfying %
and that all paths satisfy %; andG% andF% respectively express that
along a path % always holds and along a path % eventually holds.

Example 5. For the agent in Example 1, one property that we
may want to verify is that it is possible for the agent to eventu-
ally know that it has shipped all items that were in the factory.
This can be expressed in our language as a least fixpoint formula
µZ.¬∃x∃l.At(x, l) ∨ 〈−〉Z or, in CTL∗: EF¬∃x∃l.At(x, l).

In the above, we rely on the fact that if there are no items left in
the factory, then all items that were there must have been shipped.
It is easy to check that the theory of Example 1, D1, entails this
formula. More generally, a formula EFϕ represents an instance of
a conformant planning problem. It is satisfied by a theory if there
exists an executable sequence of actions such that afterwards the
agent knows that ϕ holds. In fact we can also show that the above
property can always be achieved: D1 |= AGEF¬∃x∃l.At(x, l).

Another property that can be shown to hold for this example do-
main is that it is possible for the agent to eventually know that it
has shipped all items that were in the factory and that every shipped
item was painted. We express this as follows:
D1 |= E((F¬∃x∃l.At(x, l)) ∧ (G ∀x(Shipped(x) ⊃ Painted(x))).

Example 6. For the agent in Example 2, with associated the-
ory D2, we can show that: D2 |= EF ((∀l¬∃x.At(x, l)) ∧
F (∀l∃x.At(x, l))), i.e. it is possible to eventually have all items
shipped out of the factory and then later to eventually have all lo-
cations filled with items. Moreover, we can also show that always
if an item is at the shipping dock it can be shipped out:
D2 |= AG((∃x.At(x, ShipDock)) ⊃ 〈−〉(¬∃x.At(x, ShipDock))).
However, this is not the case for other locations, as it is possible for
all locations to become occupied, at wich point the agent must ship
the item at the shipping dock before it can move the item at another
location out: D2 |= ¬AG((∃x∃l.At(x, l)) ⊃ 〈−〉(¬∃x∃l.At(x, l))).

It can be easily seen that because Γ and N are infinite in gen-
eral, one cannot check whether D |= Φ using an exhaustive search
procedure, as typically done in classical µ-calculus model check-
ing [5]. This is obviously true also for bounded theories. How-
ever, under the boundedness assumption, the construction of a finite
structure becomes possible, which can be used to easily carry out
the verification task. The following result, whose proof is discussed
in the rest of the section is based on this observation.

THEOREM 6. Let D be a BAT bounded by b and Φ a closed
µLO formula. Then, deciding whether D |= Φ is decidable.

The proof involves two steps. Firstly, we provide an alternative
semantics of µLO formulas, equivalent, or more precisely online-
execution bisimilar to the one above, that is based on a transition
system TD derived from D, which we call progression-based, that
captures the state evolution of the theory. In the second step, we
exploit the results on progression of bounded theories to show that
a finite-state transition system TF can be effectively constructed,
and then prove that it is equivalent, for the purpose of verification,
to TD . Since standard model checking algorithms can be executed
on TF , this is enough to guarantee decidability of verification.

We start by introducing the notion of transition system. For-
mally, an (online-execution) transition system (TS) is a tuple T =
〈Q, q0, λ,→〉, where: (i)Q is the set of possible states; (ii) q0 ∈ Q
is the initial state; (iii) λ : Q → 2LS0 is the labeling function, as-
sociating each state q with a setDq of uniform situation-suppressed
sentences over standard namesN ; (iv)→ ⊆ Q×Q is the transition
relation. As can be seen, this is a special case of standard labelled
transition system, where states are labelled by (possibly non first-
order) logical theories. We call this class of TSs online-execution,
to stress that, as it will be clarified later on, they can accommodate
all the information relevant to online executions.

Next, we detail the semantics of µ-calculus formulas Φ over a
TS T , for a valuation V:

(holds(ϕ))TV = {q ∈ Q | λ(q) |= ϕ}
(¬Φ)TV = Q− (Φ)TV
(Φ1 ∧ Φ2)TV = (Φ1)TV ∩ (Φ2)TV
(〈−〉Φ)TV = {q ∈ Q | ∃q′.q → q′ ∧ q′ ∈ (Φ)TV}
(Z)TV = V(Z)
(µZ.Φ)TV =

⋂
{E ⊆ Q | (Φ)TV[Z/E] ⊆ E}

We say that T verifies a closed µLO formula Φ, written T |= Φ
if q0 ∈ (Φ)DV (for any valuation V , which is irrelevant). This is
essentially the standard semantics of the µ-calculus [5], with satis-
faction replaced by entailment on state labels.

146

We can now associate a theory D with its progression-based
transition system TD = 〈Q, q0, λ,→〉, defined as follows:

• Q = Γ (recall Γ is the set of executable action terms);
• q0 = S0;
• λ is inductively defined as follows:

– λ(q0) = D̃0, where D̃0 is the situation-suppressed ver-
sion of D0;

– if q → q′ and q′ = do(A(~n), q), for some action type
A with parameters ~x and names ~n ∈ ~N , then λ(q′) is
the situation-suppressed version of the progression of
λ(q)[q] w.r.t. A(~n).

• → ⊆ Q × Q is the transition relation s.t. q → q′ iff q′ =
do(A(~n), q), for some action type A and names ~n ∈ ~N .

Observe that TD is essentially the (infinite) situation tree labelled
by the progressed theory, at each step. As such, it retains all the
information entailed by D at every situation. This, as shown by the
following result, is all and only the information needed to evaluate
the semantics of any µLO formula.

THEOREM 7. Let D be a BAT (not necessarily bounded), and
Φ a µLO formula, then (Φ)DV = (Φ)TD

V .

Proof (sketch). By induction on the situation terms and the for-
mula, using the classical results about progression [9].

As a corollary, we have that: D |= Φ iff TD |= Φ. Thus, we can
check whether D |= Φ, using the progression-based transition sys-
tem TD , instead of the theoryD. Notice, though, that TD is also in-
finite. Thus, even assuming TD available, this result is not enough,
alone, to prove decidability of verification. To overcome this obsta-
cle, we construct a finite-state TS that is equivalent to TD w.r.t. ver-
ification, and that we can use to effectively perform the check. To
this end, we first introduce the notions of logical equivalence mod-
ulo renaming between theories, and online-execution bisimulation
between TSs, together with stating relevant results about them.

Two theories D and D′, over the same signature and standard
names N , are said to be logically equivalent modulo renaming,
written D ∼ D′, if there exists a bijection h : N → N s.t. D |=
h(D′) and D′ |= h−(D) (for h− the inverse of h), where: h(D′)
stands for the theory obtained fromD′ by replacing each constant n
occurring in it by h(n); and similarly h−(D) is the theory obtained
by replacing each constant of n occurring in D, by h−(n). We say
that h preserves C, for C ⊆ N a set of constants, if h(c) = c,
for every c ∈ C. We write D ∼C D′ to denote that D and D′ are
logically equivalent modulo renamings preserving C.

Logical equivalence modulo renaming captures the intuition that
D and D′ have exactly the same models, modulo element renam-
ing. It can be proven that theories that are logically equivalent mod-
ulo renaming satisfy exactly the same closed formulas.

THEOREM 8. Let D and D′ be two theories over same signa-
ture and standard names N , s.t. D ∼C D′, for C ⊆ N a set of
constants. Then, for any closed formula ϕ with constants in C, we
have that D |= ϕ iff D′ |= ϕ.

Thus, to check whether a closed formula ϕ is entailed by a class of
logically equivalent (modulo renaming) theories, it is sufficient to
evaluate the formula against an arbitrary representative of the class.

Logical equivalence modulo renaming can be applied to state la-
bels of TSs, to lift standard bisimulation to online-execution TSs.
To this end, let T1 = 〈Q1, q10,→1, λ1〉 and T2 = 〈Q2, q20,→2

, λ2〉 be two TSs, and C ⊆ N a set of constants. An (online-
execution) bisimulation between T1 and T2 preserving C is a rela-
tion B ⊆ Q1 ×Q2 s.t. B(q1, q2) implies:

• λ1(q1) ∼C λ2(q2);

• for every transition q1 →1 q
′
1, there exists a transition q2 →2

q′2, s.t. 〈q′1, q′2〉 ∈ B;

• for every transition q2 →2 q
′
2, there exists a transition q1 →1

q′1, s.t. 〈q′1, q′2〉 ∈ B.

T1 and T2 are said to be (online-execution) bisimilar w.r.t. C, writ-
ten T1 ≈C T2, if 〈q10, q20〉 ∈ B, for some bisimulationB preserv-
ing C. As standard, bisimilarity is an equivalence relation.

A notable property of online-execution bisimulations is that they
preserve entailment of µLO formulas.

THEOREM 9. Given two TSs T1 and T2, and a set of constants
C ⊆ N , if T1 ≈C T2 then, for every closed µLO formula Φ, with
constants in C, we have that T1 |= Φ iff T2 |= Φ.

Proof (sketch). Analogous to bisimulation-invariance theorem for
standard µ-calculus [5], using Th. 8 for local conditions, i.e., to
evaluate uniform (situation-suppressed) closed FO formulas.

Observe that this result can hold, in principle, even between an
infinite-, say TD , and a finite-state TS, say TF . When this is the
case, the verification can be performed on TF using standard µ-
calculus model checking techniques, which essentially perform fix-
point computations on a finite state space. However, two major ob-
stacles prevent this approach from being effective. Firstly, Th. 9 ap-
plies only provided TF is available, thus the question arises whether
it is possible to compute one such TS. Secondly, µ-calculus model
checking requires a procedure to check whether state labelings of
TF , i.e., theories, entail atomic subformulas of Φ, a question that
is, in general, undecidable. For the former, we next describe an
actual procedure. For the latter, it suffices to observe that, under
boundedness, decidability of entailment follows straightforwardly
as a special case of Th. 15 of [4].

We construct TF using Algorithm 1, which takes a BAT D
bounded by b as input, and returns a finite-state TS TF =
〈U, u0, γ,;〉 bisimilar to TD . This procedure generates TF

Algorithm 1 Computation of a finite-state TS bisimilar to TD .

U := {u0}; γ(u0) := D̃0; ;:= ∅;
for all action type A with parameters ~x do

let Cγ(u) be the set of constants occurring in γ(u);
let O ⊂ N be any (finite) set s.t. |O| = |~x| and

O ∩ (C ∪ Cγ(u)) = ∅;
for all parameter assignments v : ~x→ Cγ(u) ∪O do

let Du,α be the progression of γ(u) w.r.t. α = A(v(~x));
if there exists u′ ∈ U s.t. Du,α ∼C γ(u′) then

;:=; ∪{u; u′};
else

let U := U] {u′}, for u′ a fresh state, with γ(u′) = Du,α,
and ;:=; ∪{u; u′};

end if
end for

end for

by iteratively progressing D, starting from the initial (situation-
suppressed) knowledge base. In doing so, not all the infinitely
many executable actions are considered for progression at each
step, but only a finite subset. These can be chosen so as to obtain
one representative for each equivalence class, w.r.t. logical equiva-
lence modulo renaming, of progressions that can be obtained after
applying all possible actions. This is actually achieved by including
in O a distinct value for each parameter, distinct also from all the
elements ofC andCγ(u). Then, to guarantee coverage of all equiv-
alence classes, all action types and all assignments of parameters to

147

O ∪C ∪Cγ(u) are considered. Notice that by the boundedness as-
sumption and Th. 5, the progression ofDu,α is indeed computable,
an obvious necessary condition in order for the algorithm to ter-
minate. Similarly, it is required that testing the condition of the
if statement be decidable, which is implied by the next result, once
observed that,D being b-bounded, so are all of the theories labeling
the states of U .

THEOREM 10. Let D01 and D02 be two finite sets of uniform
situation-suppressed sentences over standard names N , and let C
be a finite set of constants possibly occurring in them. If D01 and
D02 are bounded by a given b, then checking whether D01 ∼C
D02 (i.e. D01 and D02 are logically equivalent modulo renaming
preserving C) is decidable.

Proof (sketch). Associate each theory D0i (i = 1, 2) with the for-
mula Φi = Boundedb∧∃~x.AllDistinct(~x).D0i[~c/~x], where~c are
all the constants different from those in C, that occur inD0i, and ~x
is a fresh set of variables s.t. |~c| = |~x|. Finally, with a slight abuse
of notation, we use D0i[~c/~x] for the conjunction of formulas in
D0i, with the constants in ~c syntactically replaced by the variables
in ~x. It then suffices to check the equivalence (without modulo
renaming) of Φ1 and Φ2, which is decidable by boundedness.

Termination of the algorithm is shown by the following result.

THEOREM 11. If D is a BAT bounded by b, then Algorithm 1
terminates and produces a TF with a finite number of states in U .

Proof (sketch). Consequence of the fact that D is bounded by b,
thus only finitely many equivalence classes of theories, w.r.t. logical
equivalence modulo renaming, exist, which constitute U .

Finally, we obtain that Algorithm 1 returns a TS bisimilar to TD .

THEOREM 12. If D is a BAT bounded by b, then TF ≈C TD.

Proof (sketch). We show the thesis by co-induction. In particular,
let B ⊆ Q × U s.t. 〈q, u〉 ∈ B iff q ∼C u. Then it can be shown
that B is a bisimulation s.t. 〈q0, u0〉 ∈ B.

As a consequence, we obtain the desired result, i.e., Th. 6.

8. CONCLUSION
We have proposed a decidable framework for verifying agents

with bounded beliefs operating in infinite state domains. The agent
has bounded beliefs if the action theory that models the agent’s be-
liefs and deliberation process entails that the number of tuples that
belong to any fluent in any situation is bounded by a constant. We
have shown that this boundedness condition is sufficient to ensure
that the agent’s belief state in any situation can be progressed and
remain first-order representable. The framework allows complex
subjective temporal properties to be specified and verified over on-
line executions of the agent, i.e., executions where the agent only
performs actions that it knows are feasible. As well, we have shown
that checking whether boundedness is maintained is decidable.

We observe that in the case where the initial situation descrip-
tion is in the form studied in [19], computing progression becomes
particularly easy. In turn, this simplifies verification by making it
simple to compute the finite transition system on which the model
checking algorithm is applied. Our approach is related but quite
different from that in [3]. The latter is based on a version of the
situation calculus with a knowledge modality and develops a more
restrictive notion of bounded epistemic action theory, where the
number of tuples that the agent thinks may belong to any given flu-
ent is bounded. Here, we only require that it be entailed that the

number of distinct tuples in any fluent is bounded, and the agent
need not know anything about which.

In future work, we want to extend our online executions veri-
fication framework to deal with sensing actions, and partially ob-
servable actions and forgetting (which helps to maintain bounded-
ness); this will require changes to the specification language as it
introduces forms of nondeterminism that are not under the agent’s
control. We also want to allow some forms of quantification across
situations in the specification language. Finally, we want to extend
the framework to support the verification of agent programs.

Acknowledgements. The authors acknowledge support of EU
Project FP7-ICT 318338 (OPTIQUE) and Sapienza Award 2013
“Spiritlets” project.

9. REFERENCES
[1] B. Bonet. Conformant plans and beyond: Principles and complexity.

Artificial Intelligence, 174(3-4):245 – 269, 2010.
[2] G. De Giacomo, Y. Lespérance, H. J. Levesque, and S. Sardina.

IndiGolog: A High-Level Programming Language for Embedded
Reasoning Agents. In Multi-Agent Programming: Languages, Tools
and Applications. Springer, 2009.

[3] G. De Giacomo, Y. Lespérance, and F. Patrizi. Bounded Epistemic
Situation Calculus Theories. In Proc. of IJCAI’13.

[4] G. De Giacomo, Y. Lespérance, and F. Patrizi. Bounded Situation
Calculus Action Theories and Decidable Verification. In Proc. of
KR’12.

[5] E. A. Emerson. Model Checking and the Mu-calculus. In Descriptive
Complexity and Finite Models, 1996.

[6] M. Fisher and M. Wooldridge. On the Formal Specification and
Verification of Multi-Agent Systems. Int. J. Cooperative Inf. Syst.,
6(1):37–66, 1997.

[7] G. Lakemeyer and H. J. Levesque. Only-knowing: Taking it Beyond
Autoepistemic Reasoning. In Proc. of AAAI’05.

[8] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl.
GOLOG: A Logic Programming Language for Dynamic Domains.
JLP, 31:59–84, 1997.

[9] F. Lin and R. Reiter. How to Progress a Database. Artificial
Intelligence, 92(1-2):131–167, 1997.

[10] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A Model Checker
for the Verification of Multi-Agent Systems. In Proc. of CAV’09.

[11] J. McCarthy and P. J. Hayes. Some Philosophical Problems From the
StandPoint of Artificial Intelligence. Machine Intelligence,
4:463–502, 1969.

[12] F. Pirri and R. Reiter. Some Contributions to the Metatheory of the
Situation Calculus. J. ACM, 46(3):261–325, 1999.

[13] R. Reiter. Knowledge in Action. Logical Foundations for Specifying
and Implementing Dynamical Systems. MIT Press, 2001.

[14] S. Sardiña, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On
Ability to Autonomously Execute Agent Programs with Sensing. In
Proc. of AAMAS’04.

[15] S. Sardiña, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On
the Limits of Planning over Belief States under Strict Uncertainty. In
Proc. of KR’06.

[16] R. Scherl and H. J. Levesque. Knowledge, action, and the frame
problem. Artificial Intelligence, 144(1–2):1–39, 2003.

[17] S. Shapiro, Y. Lespérance, and H. J. Levesque. The Cognitive Agent
Specification Language and Verification Environment. In
Specification and Verification of Multi-Agent Systems/Programs.
Springer, 2010.

[18] S. Vassos and H. J. Levesque. How to progress a database III.
Artificial Intelligence, 195:203–221, 2013.

[19] S. Vassos and F. Patrizi. A Classification of First-Order Progressable
Action Theories in Situation Calculus. In Proc. of IJCAI’13.

[20] M. Wooldridge and A. Lomuscio. A Computationally Grounded
Logic of Visibility, Perception, and Knowledge. Logic Journal of the
IGPL, 9(2):257–272, 2001.

148

