
Diagnosing Faults in a Temporal Multi-Agent
Resource Allocation
(Extended Abstract)

Yedidya Bar-Zev
Information Systems

Department in Ben-Gurion
University of the Negev

ybz1984@gmail.com

Roni Stern
Information Systems

Department in Ben-Gurion
University of the Negev

roni.stern@gmail.com

Meir Kalech
Information Systems

Department in Ben-Gurion
University of the Negev
kalech@bgu.ac.il

General Terms
Algorithms, Experimentation

Keywords
Planning and Reasoning (single and multi-agent), Multi-robot
systems, Social simulation

1. INTRODUCTION
In this research we study multi-agent systems that use a Temporal
Multi-Agent Resource Allocation (TMARA), which is a planned
allocation of resources to agents over time. Every resource has a
capacity, which is the maximal agents that can use that resource
concurrently. In a proper TMARA resources are allocated to
agents such that no resource is allocated to more agents than its
capacity. In reality agents may malfunction due to software or
hardware failures and use resources not according to the TMARA.
This faulty behavior may cause the multi-agent system to fail.

As an example, consider a set of mobile robots moving around
between rooms and performing tasks. Assume that the doorways
connecting rooms are only wide enough to allow a single robot to
pass. A TMARA can be used to schedule when each robot is
allowed to pass through the doorway. A faulty robot that does not
obey the TMARA may attempt to pass through a doorway
simultaneously with another robot, causing a collision.

In this research we aim to diagnose such failed executions,
identifying the faulty agents that caused the failure (by using
resources not allocated to them in the TMARA). We name this
problem TMARA-Diag. A diagnosis of such problem is a set of
agents that the assumption they are faulty is consistent with the
observation and the TMARA. Our goal is to find all minimal sets
of agents that are a diagnosis. Identifying the faulty agents can
shorten the recovery time of the multi-agent system by fixing or
replacing only the faulty agents.

There are some work on diagnosis of multi-agent plans [1, 2, 3],
but in TMARA-Diag we do not assume a plan is available, only a
plan of the resource allocation (the TMARA).

2. MBD for TMARA-Diag
We model TMARA-Diag as a model-based diagnosis (MBD)
problem by formalizing it in propositional logic.

Given the MBD formalization of TMARA-Diag, one can solve
TMARA-Diag with standard MBD solvers.

2.1 SAT-Based Approach
First, we attempted to apply a standard SAT-based MBD
approach using the standard SAT encoding of an MBD problem,
introduced by Smith et. al. [4]. The logical description of the
system behavior (SD) and the observation (ܱܵܤ) are compiled to
a SAT formula ߙ = ܦܵ ∧ are the health ߙ The variables of .ܵܤܱ
variables ℎ(∙), which indicates if an agent is faulty or not, and the
resources used by the agents before the observation time ݐ௢௕௦. A
satisfying assignment of ߙ represents a diagnosis, where ℎ(ܽ௜) .means that ܽ௜ is assumed to be faulty ݁ݏ݈݂ܽ=

The main limitation of the SAT-based approach to TMARA-Diag
is the size of the propositional formula. Although current SAT
solvers can solve instances with millions of clauses, this approach
is not a scalable solution, as every possible resource allocation
needs to be encoded. According to our analysis, in a case with 15
agents, a 30 × 30 grid cells as resources, and a time horizon
 of 50 time steps. The expected number of clauses is (௢௕௦ݐ)
9,112,500,000. Furthermore, the analysis is given in clauses stated
in propositional logic. Standard SAT solvers usually compile the
input clauses to CNF, which causes the number of CNF clauses to
be even larger.

2.2 Conflict-Directed Approach
An alternative class of MBD algorithms uses conflicts to find
diagnoses. It has been shown that diagnoses are hitting-sets of
conflicts [5]. Conflict-directed diagnosis algorithms are built on
this observation. Outlined by Williams and Rango [6], first, a set
of conflicts is found using a conflict detection algorithm such as
ATMS [7] or LTMS. Then, a minimal hitting set of these conflicts
is found using a hitting set algorithm. If this hitting set is found to
be a consistent diagnosis it is added to the set of diagnoses.
Otherwise, a new conflict is generated and added to the set of
conflicts to hit. Conflict-directed MBD algorithms vary in the
implementation of this framework. If the initial set of conflicts
contains all minimal conflicts, then every minimal hitting set is
guaranteed to be consistent [5].

Generating minimal conflicts may be computationally expensive
[7]. We present a fast polynomial algorithm to detect conflicts in a
TMARA-Diag problem. This algorithm considers the reservation
time of each agent - the earliest time in the TMARA that an agent
planned to use its observed resources (the resources it was
observed to be using at time tobs). The reservation time of agent ai
is denoted by rti and the set of agents observed sharing a resource

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and Michael
Huhns (eds.), Proceedings of the 13th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2014), May 5-9,
2014, Paris, France.
Copyright © 2014, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1513

with ai at tobs is denoted by ܰ(ܽ௜). The relation between
reservation times and conflicts is given in Lemma 1 below.

Lemma 1 For any agent ࢏ࢇ, if |(࢏ࢇ)ࡺ| > ૙	ࢊ࢔ࢇ	࢏࢚࢘ (࢏ࢇ)ࡺ∋࢐ࢇܖܑܕ	> {࢏ࢇ} then ,࢐࢚࢘ ∪ .is a conflict (࢏ࢇ)ࡺ

Proof. Given a proper TMARA and an agent ࢏ࢇ that shared
resources in the observation. If ࢏ࢇ was faulty, then {࢏ࢇ} ∪ is (࢏ࢇ)ࡺ
a conflict due to ࢏ࢇ. Assume that ࢏ࢇ is not faulty. This means that ࢏ࢇ assigned its observed resources exactly at time ࢏࢚࢘. Thus, agent ࢏ࢇ shared a resource at time ࢏࢚࢘ with at least one of the agents in (࢏ࢇ)ࡺ. Let ࢐ࢇ denote that agent. Since ࢏࢚࢘ < ∎.was faulty ࢐ࢇ and thus ,࢐࢚࢘ had assigned the resource before its reserved time ࢐ࢇ this means that ,࢐࢚࢘

Simply put, Lemma 1 states that an agent that has the earliest
reservation time among the agents that share resources with it in
the observation (ܰ(ܽ௜)), is a conflict together with those agents.
The conflict detection algorithm traverses all agents, checks if the
lemma conditions hold and if so a conflict is defined. This conflict
detection algorithm is computationally efficient, requiring time
that is square in the number of agents, which is reasonable even
for very large number of agents. While we do not have a proof
that this algorithm returns all minimal conflicts, we use our
conflict detection algorithm in the context of CDA* [6], a
diagnosis algorithm that does not require all minimal conflicts to
find all minimal diagnoses. Instead, CDA* iteratively generating
more conflicts and performs consistency checks to verify
diagnosis soundness. Thus, the resulting algorithm is complete.

3. Evaluation
We evaluated the performance of the SAT-based and conflict-
directed algorithms described above in a synthetic resource
allocation setting and the Automatic Intersection Manager (AIM)
domain [8]. For the synthetic resource allocation setting, we
developed a TMARA simulator. The simulator accepts as input the
time horizon (ܶ), # agents (|ܣ|), and # resources (|ܴ|).

Table 1, Results for the conflict-directed algorithm
#Agents 15 20 25 30 35 40

Runtime(ms) 0 6 62 1,219 33,488 137,925

#Diagnoses 66 219 585 2,138 9,790 21,535

#Conflicts 3.81 4.21 4.52 4.63 4.87 5.11

Given these parameters, the simulator creates a TMARA by
allocating all the resources randomly to the agents in every time
step t. The simulator then injects faults according to a fault rate
(FR) parameter, which sets the probability that an agent is faulty.
During execution, the simulator assumes that agents that are not
faulty follow the TMARA, using only the resources allocated
them. Faulty agents, at each time step, choose randomly one of the
bundled resources allocated to them at some time step. This
simulates early and late allocation faults. If two or more agents
attempt to use the same resource, they halt without releasing the
resources that they are currently using. These agents then remain
stuck in all subsequent time steps.

The output of a simulator is a randomly generated TMARA, and
the observed resources allocation at the end of the time horizon.
This is given to our conflict directed TMARA-Diag solver as
input to start the diagnosis process.

Table 1 shows a subset of the results from our experiments using
the TMARA simulator. For this representative subset of results,

we set FR=0.2, time horizon=30, number of resources = {15,20, . . ,40} and unbounded bundle size. Every point is an
average over 180 random instances. As expected, increasing the
number of agents results in higher runtime. More agents mean
more potential conflicts, and since diagnoses are hitting sets of
conflicts, more diagnoses and longer runtime. This relation
between the number of agents, the number of conflicts, diagnosis
and runtime is seen clearly in Table 1.

We also experimented the proposed SAT-based method using the
SAT4J solver [9]. On average, problems with five agents required
2.5 GB of memory and for eight agents, 10.6 GB. Obviously this
algorithm is not feasible even for small systems.

In addition, we evaluated the algorithms on problems created by
the AIM simulator we modified, by injecting faults that cause
accidents. Similarly to the synthetic simulator, results showed that
the conflict-directed algorithm outperformed the SAT method.

4. CONCLUSION
We study how to diagnose agent failures given a temporal multi
agent resource allocation (TMARA). This problem was
formalized as an MBD problem, where the model of the system is
the TMARA and the observations are the observed resource usage
after the failure. This allowed solving TMARA-Diag using a SAT
compilation or a conflict directed approach. While the SAT
complication does not scale, we propose a novel efficient conflict
detection algorithm that, coupled with a standard conflict directed
MBD algorithm can be used to solve TMARA-Diag Efficiently.

5. Acknowledgments
We thank the Kamin program for partly funding this project.

6. References

[1] N. Roos and C. Witteveen, “Models and methods for plan
diagnosis,” Autonomous Agents and Multi-Agent Systems, vol. 19,
pp. 30-52, 2009.

[2] F. De Jonge, N. Roos and C. Witteveen, “Primary and secondary
diagnosis of multi-agent plan execution,” Autonomous Agents and
Multi-Agent Systems, vol. 18, pp. 267-294, 2009.

[3] M. Kalech, “Diagnosis of coordination failures: a matrix-based
approach,” Autonomous Agents and Multi-Agent Systems, vol. 24,
pp. 69-103, 2012.

[4] A. Smith, A. Veneris, M. F. Ali and A. Viglas, “Fault diagnosis
and logic debugging using Boolean satisfiability,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 24, pp. 1606-1621, 2005.

[5] J. De Kleer and B. C. Williams, “Diagnosing multiple faults,”
Artificial intelligence, vol. 32, pp. 97-130, 1987.

[6] B. C. Williams and R. J. Ragno, “Conflict-directed A* and its role
in model-based embedded systems,” Discrete Applied
Mathematics, vol. 155, pp. 1562-1595, 2007.

[7] J. De Kleer, “An assumption-based TMS,” Artificial intelligence,
vol. 28, pp. 127-162, 1986.

[8] S. Peter, A. Tsz-Chiu and M. Hausknecht, “AIM: Autonomous
Intersection Management,” 2004. [Online]. Available:
http://www.cs.utexas.edu/~aim/.

[9] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2 system
description,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 7, pp. 59-64, 2010.

1514

