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ABSTRACT
In this paper, we propose to use hierarchical action decomposition
to make Bayesian model-based reinforcement learning more effi-
cient and feasible in practice. We formulate Bayesian hierarchical
reinforcement learning as a partially observable semi-Markov de-
cision process (POSMDP). The main POSMDP task is partitioned
into a hierarchy of POSMDP subtasks; lower-level subtasks get
solved first, then higher-level ones. We sample from a prior be-
lief to build an approximate model for each POSMDP, then solve
using Monte Carlo Value Iteration with Macro-Actions solver. Ex-
perimental results show that our algorithm performs significantly
better than that of flat BRL in terms of both reward, and especially
solving time, in at least one order of magnitude.
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1. INTRODUCTION
Bayesian Reinforcement Learning (BRL) can be reformulated

as a partially observable Markov decision process (POMDP) prob-
lem [3]. The solution of POMDP, which is known to optimally
disambiguating uncertainty, gives an optimal trade-off between ex-
ploration and exploitation in RL setting. Unfortunately, computing
such Bayes-optimal behavior is intractable, severely limiting the
applicability of the method. This paper aims to develop an alter-
native formulation which not only exploits the hierarchical struc-
ture of the problem, but also preserves the Bayesian optimality of
the exploration/exploitation trade-off. We formulate Bayesian hi-
erarchical RL (BHRL) as a partially observable semi-MDP (POS-
MDP). The main POSMDP task is partitioned into a hierarchy of
smaller subtasks. Each subtask is again formulated as one POS-
MDP. We develop a Monte Carlo sampling-based algorithm to solve
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the POSMDP-formulated BHRL, called MC-BHRL, which first
solves lower-level subtasks, then higher-level ones.

2. POSMDP FORMULATION FOR BHRL
As shown in [5], a POMDP with macro actions could be refor-

mulated as a POSMDP. Here, we formulate BHRL as a hierarchy
of multiple sub-POSMDPs, where a higher-level POSMDP con-
sists of macro actions which are policies of lower-level POSMDP.

A POSMDP P is defined as a tuple 〈SP ,AP ,OP ,TP ,RP 〉.
The state space SP = {S,Θ} consists of the MDP state space S
and the unknown dynamics’ parameter space Θ. Action space AP
consists of either primitive or macro actions. Observation space
OP = S. TP is a joint distribution function of the state transi-
tion, the number of time steps k taken, and the observation, i.e.,
TP (s, θ, a, θ′, s′, o, k) = p(θ′, s′, k, o|s, θ, a). The reward func-
tion is RP (s, θ, a, s′, θ′) = R(s, a, s′). The belief update, b′ =
τ(b, a, o), given an abstract action a and an observation o (i.e., s′)
is

b′(θ′) = Zc

∞∑
k=1

γk−1

∫
p(θ′, s′, k, o|s, θ, a)b(θ)dθ

where Zc is a normalization constant. The Bellman’s equations
recursively updating V π are

V πs (b) = r(b, s, a) + γ
∑
o∈OP

p(o|π(b), b)V πs′ (b
′).

The optimal policy π∗ is defined to have the best value V ∗s (b) ≥
V πs (b), ∀π, b, s, and can be found under the backup operator H:

HVs(b) = max
a

{
r(b, s, a) + γ

∑
o∈OP

p(o|a, b)Vs′(b′)
}
.

We proved contraction and fixed-point properties of the new POS-
MDP formulation. These are followed by the piecewise linear and
convex property.

LEMMA 1. The backup operator is a contraction mapping,

‖HU −HV ‖∞ ≤ γ‖U − V ‖∞
where U and V are two value functions.

THEOREM 2.1. The optimal value function V ∗ is a single fixed
point of the backup operator H: V ∗ = HV ∗.

THEOREM 2.2. The t-step optimal value function is convex and
piecewise linear, which is represented as

Vt(b) = sup
αi
t∈Γt

〈αit, b〉
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Table 1: Taxi domain. We report the average rewards, success
rates, and the offline and online running time in seconds.

Algorithm Rew. Suc. Offline Online
MC-BHRL (M = 1K) −14.42 74% 2000 4
MC-BHRL (M = 2K) −10.29 85% 4000 4
MC-BRL (M = 1K) −19.76 11% 2000 4

−19.20 12% 10000 5
MC-BRL (M = 2K) −15.01 15% 4000 4

−14.39 17% 10000 5

where Γt is a continuous set of α-functions αit : SP → <.

3. MONTE CARLO BHRL
MC-BHRL is a recursive Monte-Carlo sampling-based method

for solving BHRL formulated as POSMDP. We adopt the similar
idea from MC-BRL method [9] to sample from a prior to approxi-
mate the exact continuous POSMDP, then solve the approximated
POSMDP using the Macro-MCVI solver [5, 1]. The subtasks are
solved in bottom-up ordering as in Algorithm 1. To solve each
POSMDP P in the offline stage, we sample M primitive models
from a prior distribution b0(θ), then create a new approximate POS-
MDP P̂ = 〈SP̂ ,AP̂ ,OP̂ ,TP̂ ,RP̂ , γ, b

0
P̂
〉. This approach is easily

extended to apply for RL setting in POMDP environments, similar
to the method in [9].

Algorithm 1 MC-BHRL Planning
1: Require: An action hierarchyH.
2: for each subtask a ∈ H do solve in bottom-up ordering
3: Formulate a POSMDP P with lower-level macro actions.
4: Sample M primitive models {θ̂1, · · · , θ̂M} ∼ b0(θ,P).
5: Form a new approximate POSMDP P̂ .
6: Use Macro-MCVI to solve POSMDP P̂ for a policy π̂∗a.
7: end for
8: return π̂∗a, ∀a ∈ H.

4. EXPERIMENTS
We empirically evaluate the performance of MC-BHRL on three

domains. First, we use a familiar variant of Taxi domain from [2]
which is a fully observable MDP task. The other two are RL tasks
in POMDP: Cheese-Taxi [6] and large Cheese-Taxi [7].

For Taxi domain, the results for comparison are reported in Ta-
ble 1. The online time is for running 500 episodes. The perfor-
mance results of MC-BRL and MC-BHRL are averaged over 10
offline simulations. Each simulation is online evaluated with 500
trials (episodes) to report an average total reward. This is a diffi-
cult task for a BRL algorithm due to a very large continuous state
space (400-dimensional), so MC-BHRL could not find a near opti-
mal policy in limited time. Since MC-BRL could not find a better
policy than a random policy even after quite long time, MC-BHRL
still shows promising results over MC-BRL in terms of running
time, success rate and average reward. The average reward is still
less than zero while the success rate of MC-BHRL is high. This is
partly because we let the macro action run until reaching its max-
imum length if not terminated (a movement takes a cost of -1.0),
and partly because it found a non-shortest path at each success.

For the Cheese-Taxi and large Cheese-Taxi domain, the compari-
son results are reported in Table 2. PolCA [6] and Flat-DDN [7] are
hierarchical POMDP solvers; their performance results are with an
assumption of a known POMDP. The Cheese-Taxi problem is small
enough so that both algorithms could quickly find a near-optimal

Table 2: Cheese-Taxi and Large Cheese-Taxi domains.
Algorithm Rewards Time (seconds)
Cheese-Taxi
MC-BHRL (M = 10) 8.434± 0.16 2
MC-BRL (M = 10) −32.4± 2.24 2

6.257± 0.10 15
8.223± 0.09 450

PolCA v 8.50 N/A
Large Cheese-Taxi
MC-BHRL (M = 1000) −7.56± 1.16 1000
MC-BHRL (M = 2000) 4.23± 0.49 1000
MC-BRL (M = 1000) −22.6± 5.53 1000

−22.0± 5.70 10000
MC-BRL (M = 2000) −20.4± 4.46 1000

−18.6± 5.09 10000
Flat-DDN 8.40 N/A

policy. However, MC-BHRL with a pre-defined action hierarchy is
hundred times faster than MC-BRL, a flat BRL solver.

There is a performance gap between MC-BHRL and an opti-
mal policy of Flat-DDN, though MC-BHRL has 100% completed
the tasks. However it found longer paths due to the use of policy
graph. Each time a NAVIGATE macro action is used, the agent
implementing NAVIGATE’s policy graph starts as if it just starts to
do disambiguation, and ignores all knowledge from previous called
NAVIGATE(s). This problem might be resolved with modifications
of Macro-MCVI solver.

5. DISCUSSION & CONCLUSION
We have proposed an efficient and simple method to solve BRL

problems by exploiting action decomposition. We formulated the
underlying BHRL problem as a POSMDP, which is then approxi-
mated and solved by Macro-MCVI. There are a number of potential
extensions to MC-BHRL. An automatic hierarchy discovery may
also be integrated into MC-BHRL. With POSMDP formulation for
BHRL, online POSMDP solvers can be applied to solve BHRL,
e.g. Monte Carlo Tree Search approaches [8, 4].
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