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1. INTRODUCTION
For simulations to be meaningful, it is necessary to imple-
ment realistic models for both virtual agents and environ-
ment. A lot of attention has been given to the definition
of accurate models for agents. Unfortunately not much has
been done for the definition of virtual environments that
mimic the complexity of real-world environments. The rea-
son is twofold: 1) The construction of realistic virtual envi-
ronments (also called open environments) is not a trivial task
[3]. Such environments are inaccessible, non-deterministic,
dynamic and continuous. 2) Realistic simulations involve
the execution of a large-number of sensor-based perception
agents in an open environment. Unfortunately, limited com-
putational resources make this goal untenable on a single
machine.

A few MABS have proposed models for open virtual envi-
ronments. Most of these models represent the environment
as a single massive component that is managed by one con-
trol unit. Other models decompose the environment into
regions that are also managed by a single control unit [4].
In both cases, centralized control creates a bottleneck and
limits the scalability of the simulation. On the other hand, a
very limited number of MABS have proposed a partitioned
structure of the environment with control units managing
specific spatial areas [2]. Unfortunately, these systems do
not leverage several of the benefits enabled by decentralized
control.

In this paper we propose a model for the execution of
large-scale MABS with open environments on a single host.
In our approach, agents execute their behaviors and are not
subjected to any resource management constraints (e.g., ag-
gregation). The open environment has a decentralized struc-
ture that is supported by an underlying self-organizing sys-
tem. During the execution of the simulation, virtual agents
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are unaware of the partitioned structure of their environ-
ment and the self-organization activities occurring at the
supporting system layer.

2. A SELF-ORGANIZING MODEL FOR VIR-
TUAL ENVIRONMENTS

The model presented in this section is based on the reference
architecture for agent-based autonomic software systems de-
fined by the authors. In the proposed model, a virtual en-
vironment is decomposed into partitions called cells. As
shown in Figure 1, the environment is supported by an un-
derlying self-organizing system that consists of micro- and
macro-level entities. At the micro level, specialized agents
called cell controllers manage cells. A cell controller assumes
two critical roles: cell function management and cell perfor-
mance management. Cell function management is related to
the cell controller’s responsibility to: a) autonomously man-
age environmental information about its cell; b) be aware
of the virtual agents located in its defined area; c) inform
its neighboring cell controllers of propagating events; and
d) provide its local virtual agents with an accurate percep-
tion of their surroundings. Cell performance management
is related to the cell controller’s responsibility for keeping
its workload under nominal capacity and meeting perfor-
mance requirements (e.g., CPU usage). If the performance
constraints are not met, the controller has the ability to re-
organize its cell by performing one of two actions: splitting
its cell and spawning a new controller to manage the new
cell; or merging its cell with another cell and releasing its
resource1. Each controller is required to complete its cell
function management at every simulation cycle. Since con-
trollers execute their work concurrently, the cycle time de-
pends on the parallel completion of each controller’s work.
When the functional work among controllers becomes un-
balanced, two problems arise: 1) the simulation cycle time
is delayed and 2) computational resources are wasted.

At the macro-level, specialized agents called coordinators
monitor and guide a collection of cell controllers. A coordi-
nator’s main responsibility is to ensure that the simulation
performance requirements (i.e., duration of the simulation
cycle, resource utilization) for the set of controllers it super-
vises are met. The definition of coordinators is necessary

1In this paper we use the re-organization decisions of split-
ting and merging cells but these can be replaced with other
application-specific reorganization decision.
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Figure 1: Self-organizing environment

since purely decentralized reorganization can lead to unde-
sired behavior and performance. Nevertheless, it is impor-
tant to note that coordinators are centers of knowledge and
advice rather than centers of control. From a behavioral
perspective, since a coordinator can oversee a limited num-
ber of cell controllers, when its load increases or decreases,
it either spawns a new coordinator and passes part of its
load on to it, or merges its load with another coordinator
and destroys itself.

In the self-organizing system, interactions happen in two
ways: horizontal and vertical. Horizontal interactions occur
between agents of the same type and at the same level. Ver-
tical interactions occur between agents of the same or differ-
ent type located at different levels; they are either bottom-up
or top-down. Note that, since our hierarchy is reversed, the
root of the hierarchy is shown at the bottom while the leaves
are at the top (see Figure 1).
Controller Interactions. A horizontal controller-to-contro-
ller interaction occurs when a controller offers a to merge
with its neighboring controller to save resources. Depend-
ing on the neighboring controller load, this may result in
merging the two cells and releasing a controller. A vertical
bottom-up controller-to-coordinator interaction occurs when
a controller is overloaded and requires information about
available resources in order to perform a split. A vertical
top-down coordinator-to-controller interaction occurs when
a coordinator wants to advise one of its subordinate con-
trollers to perform a split task. Splitting involves spawning
a new controller and reassigning a portion of a cell to the
new cell controller.
Coordinator Interactions. Horizontal coordinator-to-coo-
rdinator interactions occur when a coordinator is in need of
additional resources or when it is ready to merge with its
neighboring coordinator. A vertical bottom up coordinator-
to-coordinator interaction occurs when a coordinator wants
to inform its parent coordinator about its inability to get as-
sistance from coordinators at the same level. A vertical top-
down coordinator-to-coordinator interaction occurs when a
parent coordinator provides assistance to a child coordina-
tor.
Proactive behavior interactions A controller’s proactive
behavior may trigger interactions with controllers (e.g., to
advise them to merge in order to satisfy broader system
goals) or with subordinate coordinators (e.g., to advise them

to redistribute their available resources in order to achieve
a better resource distribution).

3. EXPERIMENTAL RESULTS
The proposed self-organizing model has been fully imple-
mented and tested using DIVAs, a JAVA-based framework
for the development of large-scale agent-based simulation
systems [1]. The simulation scenarios were executed on a
multicore PC (Intel Core i7 X980 CPU (3.33GHz), 6.00 GB,
64-bit Windows 7). Controllers run on a thread execution
pool and coordinators were implemented as daemon threads.

All experiments take place in a virtual city environment
consisting of 814 environment objects (e.g., commercial buil-
dings, houses, traffic signals). Situated agents represent-
ing humans perceive their surroundings through advanced
vision, auditory and olfactory sensors. They execute com-
plex path-finding and collision avoidance algorithms to move
within the environment. In addition, agents interact with
other agents, plan and deliberate to achieve their goals (e.g.,
move to location).

The experimental results show the superiority of the pro-
posed self-organizing architecture over non self-organizing
decentralized architectures in MABS. The self-organizing vi-
rtual environment is scalable (600 agents for a single-cell ar-
chitecture versus 4000 agents for the self-organizing architec-
ture), performs better (the CPU utilization is less intensive),
and the emergence of undesired behavior is controlled.

4. CONCLUSION
In this paper we presented a self-organizing model for decen-
tralized virtual environments in MABS. A virtual environ-
ment structure is supported by an underlying software sys-
tem consisting of specialized agents that re-organize them-
selves and the environment structure to ensure that the sim-
ulation functional and performance requirements are met.

In the current model implementation, cells are split evenly
even if agents and objects are not uniformly distributed in
the cell area. It may be interesting to implement an al-
gorithm that performs the split based on the agent/object
distribution.
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