
Agent-based Simulation Testbed for
On-demand Transport Services

(Demonstration)
Michal Čertický, Michal Jakob, Radek Píbil, Zbyněk Moler

Agent Technology Center, Faculty of Electrical Engineering,
Czech Technical University, Prague, Czech Republic

{certicky, jakob, pibil, moler}@agents.fel.cvut.cz

ABSTRACT
We present an open-source simulation testbed for the deve-
lopment, comparison and analysis of on-demand transport
services. The testbed is designed to evaluate the perfor-
mance of agent-based, on-demand transport vehicle alloca-
tion and routing mechanisms; accounting for different ve-
hicle fleets, road network topologies and transport demand
structures. A wide range of metrics, including passenger
waiting times, vehicle occupancy, or distance travelled, can
be used for measuring system performance. In order to en-
courage the comparison of different allocation and routing
mechanisms under standard conditions, the testbed comes
with a predefined set of ready-to-use benchmarking scena-
rios.

Categories and Subject Descriptors
I.6 [Simulation and Modelling]: Applications

General Terms
Experimentation, Algorithms

Keywords
agent-based simulation, modelling, transport, testbed

1. INTRODUCTION
On-demand transport systems promise significant impro-

vements in personal mobility due to more efficient and re-
sponsive utilization of available transport vehicles. In on-
demand transport systems, vehicle routes and schedules are
not fixed a priori. Instead, they are dynamically adapted to
best serve continuously incoming transport requests. While
in the past on-demand transport was used mainly for pro-
viding small-scale specialized paratransit services, it is now
increasingly utilised as the basis of various general-purpose
real-time ridesharing, taxi or bus-on-demand services. Since
on-demand transport systems are inherently multi-agent,
agent-based allocation and coordination techniques have been
increasingly and successfully employed to solve them [1].

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

AgentPolis Transport Simulator

B
en

ch
m

ar
k

Im
p

o
rt

er

V
is

u
al

iz
at

io
n

 a
n

d
 R

e
p

o
rt

in
g

Ex
p

er
im

e
n

t
M

an
ag

em
en

t

Mobility Testbed Core

Testbed API

Driver
agent logic

Passenger
agent logic

Dispatcher
agent logic

Matchmaking mechanism implementation

Figure 1: Overview of testbed architecture.

The performance of an on-demand transport service de-
pends crucially on two factors: (1) the matchmaking me-
chanism used to allocate the vehicles to passengers and to
determine vehicle routes; and (2) parameters of the deploy-
ment scenario, in particular the topology of the underly-
ing road network and spatio-temporal structure of transport
demand. Understanding how these factors affect the on-
demand transport performance is essential for principled de-
velopment and deployment of on-demand transport services.
Due to the complex nature of on-demand transport service
systems, gaining such understanding is difficult without ap-
propriate simulation modelling and benchmarking tools.

So far the availability of such tools has been very lim-
ited. Within the broad family of pickup and delivery prob-
lems, benchmarking suites only exist for static versions of
freight transport vehicle routing problems1. To the best
of our knowledge, no benchmarking tools exist for dynamic,
passenger-oriented variants of pickup and delivery problems.

To fill this gap, we have developed an open-source simu-
lation testbed2 that leverages the fully agent-based trans-
port modelling approach [2] implemented by the AgentPolis
transport-oriented simulation framework [3].

2. TESTBED ARCHITECTURE
The components of the testbed can be broadly divided

into three layers (see Figure 1):
AgentPolis Transport Simulator: The simulator pro-

vides core simulation engine, based on the discrete-event
simulation approach, and a basic transport domain model.
The transport domain model implements the model of the
individual elements of the transport system, such as road
networks and vehicles, and the behaviour logic associated
with them. It also provides routing algorithms and commu-
nication interfaces designed to simplify the implementation
of higher-level agent control logic.

1
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html

2
http://github.com/agents4its/mobilitytestbed

1671

http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
http://github.com/agents4its/mobilitytestbed

Testbed Core: The core specializes general AgentPolis
simulator for the specific purpose of modelling on-demand
transport services. It implements the model of the Passen-
ger, Vehicle and Dispatcher agents and provides extensible
abstractions for defining their behaviour (see Section 3).

Matchmaking Mechanism: User-supplied implemen-
tation of a specific matchmaking mechanism the user wants
to experimentally evaluate.

In addition to the above, the testbed provides a suite of
tools that facilitate creation, execution and evaluation of
simulation experiments.

3. MATCHMAKING MECHANISM
The most complicated part of the evaluation of a match-

making mechanism is its implementation and integration
with the simulation. Our testbed greatly simplifies this task
by providing a clearly defined integration interface. Spe-
cifically, the user only needs to implement a few selected
methods of the DriverLogic, PassengerLogic or Dispatch-
ingLogic abstract classes that govern the behaviour of the
Driver, Passenger and Dispatcher agents, respectively.

The DriverLogic’s ProcessNewRequest method is invoked
when a Driver receives a transport request from a Passen-
ger. The PassengerLogic’s ProcessNewProposal method
is called when a Passenger receives a trip proposal from a
Driver or Dispatcher specifying proposed trip arrangements
(in particular time and price). Finally, the processNewAc-

ceptance and processNewRejection methods can be im-
plemented by a Driver or Dispatcher to handle passenger’s
response to earlier trip proposals.

While implementing a matchmaking logic, the user utilizes
the Testbed API to access the state of the simulation (for ex-
ample by calling the getCurrentPosition function to locate
certain vehicles) and to perform the intended behaviour by
executing specific actions (such as driving to a certain pre-
planned location by calling the driveNextPartOfTripPlan

function of the DriverLogic class).
Altogether, the testbed provides sufficiently flexible ab-

stractions to implement and evaluate a wide variety of match-
making mechanisms, from fully centralized, through hybrid,
to fully distributed mechanisms.

4. EXPERIMENT WORKFLOW
The typical workflow for the experimental evaluation of a

matchmaking mechanism consists of three steps:

Scenario

Setup Simulation Execution Result

Analysis &

VisualizationLog the events

A. B. C.

Control

Algorithms

Figure 2: Three-step experiment process.

Step A – Experiment Specification: Besides the im-
plementation of a matchmaking mechanism, the user needs
to provide a benchmark scenario package defining a specific
instance of an on-demand transport system on which the me-
chanism is to be evaluated. The scenario package consists
of an OpenStreetMap (OSM) map file covering the area of
interest and two JSON files containing the specification of

the Driver agents, along with their vehicle parameters and
initial locations, and the transport demand expressed as an
enumeration of all the Passenger agents with their mobility
needs and special requirements.

Step B – Simulation Execution: Once the match-
making mechanism is implemented and the experiment sce-
nario specified, the user runs a simulation or a batch of sim-
ulations using the testbed’s experiment management tools.
The simulator generates detailed event logs that capture the
progress of each simulation run. The user can observe and
control simulation execution through built-in map-based and
event-based graphical visualization interfaces.

Step C – Result Analysis and Visualization: After
the simulation has finished, the testbed’s reporting and vi-
sualization tools process low-level event logs and calculate
higher-level, aggregated performance metrics. The built-
in metrics include distance driven, fuel consumption, CO2

emissions, passenger waiting time statistics, or the runtime
of matchmaking algorithms. The user can also automati-
cally run a number of scenario instances with varying pa-
rameters, in order to discover and visualize the influence
of various situation properties on performance metrics (e.g.
vehicle fleet size vs. total distance driven). Finally, the
testbed converts the recorded event logs into a collection of
KML files that can be visualized in an interactive geobrowser
Google Earth to inspect the simulation runs in a fine spatial
and temporal detail. The geospatial visualizations can also
be used to show how the performance metrics vary across
different parts of the experiment area (see Figure 3).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 50 100 150 200 250 300

To
ta

l
d

is
ta

n
ce

 d
ri

v
e
n

Requests per day

Request frequency vs. Distance driven

10 vehicles
30 vehicles
50 vehicles

Figure 3: Outputs: Dependency of a perfomance metric on
scenario paramteres (left) and on geospatial location (right).

5. ACKNOWLEDGEMENTS
This work was funded by the Ministry of Education, Youth

and Sports of Czech Republic (grants no. TE01020155 and
7E12065) and by the European Union Seventh Framework
Programme FP7/2007-2013 (grant agreement no. 289067).

6. REFERENCES
[1] A. Glaschenko, A. Ivaschenko, G. Rzevski, and

P. Skobelev. Multi-agent real time scheduling system for
taxi companies. In Proceedings of AAMAS 2009, 2009.

[2] M. Jakob and Z. Moler. Modular framework for
simulation modelling of interaction-rich transport
systems. In Proceedings of IEEE ITSC 2013, 2013.

[3] M. Jakob, Z. Moler, A. Komenda, Z. Yin, A. X. Jiang,
M. P. Johnson, M. Pěchouček, and M. Tambe.
AgentPolis: towards a platform for fully agent-based
modeling of multi-modal transportation. In Proceedings
of AAMAS 2012-Volume 3, 2012.

1672

	Introduction
	Testbed Architecture
	Matchmaking Mechanism
	Experiment Workflow
	Acknowledgements
	References

