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ABSTRACT
My research is aimed at finding efficient coordination meth-
ods for multi-objective collaborative multi-agent decision
theoretic planning. Key to coordinating efficiently in these
settings is exploiting loose couplings between agents. We
proposed two algorithms for the case in which the agents
need to make a single collective decision: convex multi-
objective variable elimination (CMOVE) and variable elim-
ination linear support (VELS). While CMOVE deals with
the multiple objectives on a single agent level, VELS deals
with the multiple objectives on a joint decision level, leading
to different trade-offs. We also proposed a naive way (ap-
proximate optimistic linear support (AOLS)) to apply the
scheme of VELS to sequential settings, which does not yet
fully exploit loose couplings. The next step in this line of
research is to extend the distributed single-shot methods to
distributed sequential settings, while better exploiting loose
couplings.
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I.2.11 [ Distributed Artificial Intelligence]: multi-agent
systems

General Terms
Algorithms

Keywords
Multiple objectives, Coordination graphs

1. INTRODUCTION
In cooperative multi-agent decision problems, agents work

together to maximize a common utility. Many real-world
problems, such as computer networks [1, 10] and traffic net-
work maintenance planning [4] are naturally expressed as
cooperative multi-agent problems. Key to coordinating in
these domains efficiently, is exploiting loose couplings; each
agent’s behavior directly affects only a subset of the other
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Figure 1: A coordination graph

agents. Graphical models, in multi-agent literature referred
to as coordination graphs, can capture such independence
and can be used by methods such as variable elimination
to exploit the independence [2, 3]. An example coordina-
tion graphs is shown in Figure 1, in which there are three
agents (circles), that connect to other agents via local payoff
functions (squares). Each local payoff function u, takes the
actions of the directly connected agents (via lines) as input.

My research focusses on cooperative loosely coupled multi-
agent settings in which there are multiple objectives. This
is important, because many real-world problems are inher-
ently multi-objective [5]. For example, consider a computer
network in which messages need to be passed on (as in [1]),
where we both care about maximizing a computer network’s
performance and minimizing power consumption (as in [10]).
Or, consider a traffic network in which several contractors
need to perform maintenance, where we care both about
the costs of doing the maintenance and about the hinder for
traffic [4].

Even though a problem may have multiple objectives, spe-
cial solution methods are sometimes not required. If the
problem can be scalarized, i.e. the vector-valued utility func-
tion transformed to a scalar function, the problem may be
solvable with existing single-objective methods. However,
when the weights of the scalarization function cannot be
known in advance or difficult to quantify, this approach does
not apply. For example, consider a company that produces
different metals whose market prices vary. If there is not
enough time to re-plan for each price change, we need ex-
plicit multi-objective methods. Such methods compute a set
of solutions that contain an optimal solution for all possible
scalarizations.

2. THE SINGLE SHOT SETTING
For the setting in which agents need to take a single joint

action, we model the problem as an extension to coordi-
nation graphs, we refer to as multi-objective coordination
graphs (MO-CoGs) [6, 8].1

1We previously used the term multi-objective collaborative
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Figure 2: The runtimes of PMOVE, CMOVE and

VELS, for varying numbers of agents (and 2 objectives)

(left) and objectives (and 25 agents) (right).

Several methods already existed for MO-CoGs. For in-
stance, Rollón and Larrosa [9] introduce an algorithm that
we refer to as Pareto multi-objective variable elimination
(PMOVE), which solves MO-CoGs by iteratively solving lo-
cal subproblems to eliminate agents from the graph. How-
ever, because these existing methods all compute the Pareto
coverage set (PCS) (i.e., the Pareto front), which grows very
rapidly with the number of agents, they do not scale well [6].

Fortunately, computing the PCS is often not required. In
the highly prevalent case where we know a linear scalariza-
tion function (with unknown weights) will be applied, the
convex coverage set (CCS) suffices. Also, when the joint
strategies can be stochastic all optimal value-vectors can be
attained by mixing strategies from the CCS [11]. In the case
of linear scalarization, the scalarized value becomes a piece-
wise linear and convex (PWLC) function in the scalariza-
tion weights. PWLC value functions are well-known from
POMDP literature, which enables us to use insights from
POMDPs on multi-objective decision problems.

We first extended PMOVE, to compute the CCS. The re-
sulting algorithm we call convex MOVE (CMOVE) [6]. We
do this by using POMDP pruners to compute local CCSs
as the solutions to the local subproblems of PMOVE, rather
than local PCSs. We show, both theoretically and empir-
ically, that CMOVE is much more efficient than PMOVE
(Figure 2), accross all numbers of objectives. However, the
CCS can still grow rapidly with the number of agents.

To address this difficulty, we proposed variable elimina-
tion linear support (VELS) [8], again using POMDP in-
sights, in order to build the CCS incrementally. We show
that for moderate numbers of objectives, its complexity is
better than that of previous methods (including CMOVE),
and also that VELS is empircally much faster than exist-
ing methods (Figure 2 (left)). However, that is not the only
advantage of VELS: because VELS builds up the CCS incre-
mentally, the intermediate solutions computed by VELS can
serve as approximations to the CCS, and we can compute an
upper bound on the maximum error ε in scalarized payoff.
We show emprically (Figure 2) that VELS can compute an
ε-CCS much faster than the full CCS, even for small ε.

3. THE SEQUENTIAL SETTING
A broader, more expressive setting is when we consider

sequential decision making. In this setting, we have to deal
with a state that can change on the basis of the actions of
the agents, which then affects the next state. Such multi-
objective (loosely coupled) multi-agent markov decision pro-

graphical game for this setting [7].

cesses (MOMMDPs) are difficult, because even though the
reward functions might be loosely coupled and expressable
with a MO-CoG, agents that are far away from each other
might still influence each over time via the state. For exam-
ple, in a traffic network, agents that work on local intersec-
tions may still influence far away agents via their effects on
the cars that pass through the entire network.

We applied a naive approach in [4], by centralizing the de-
cisions, resulting in a large MOMDP [5]. For this method we
extended the outer loop of VELS, to be able to use approxi-
mate planning methods, yielding approximate optimistic lin-
ear support (AOLS), and applied existing MDP planning
methods as a subroutine. However, this approach does not
scale, because the centralized joint actions grow exponen-
tially in the number of agents.

In future research, we will try to develop an efficient plan-
ning method by better exploiting the loosely couplings. First,
we will attempt to develop an ε-approximate planning ver-
sion of sparse-cooperative Q-learning [3]. In general, this
may not possible, as the effects of an agent on other agents
via the state is unboundable in general. Therefore, we hope
to identify a broadly applicable subclass of MOMMDPs for
which an ε-approximate planning method yields substantial
speed-ups with respect to exact planning methods.

Then we will attempt to extend the ε-approximate plan-
ning method to the multi-objective setting. One option is
to use this method as a subroutine in AOLS. Alternatively,
we can see an MOMMDP as a series of MO-CoGs, and use
either CMOVE or VELS to replace the max operator in the
Bellman equation.
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