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ABSTRACT
We propose an analytic framework for multi-agent learning
that, unlike standard approaches, is not connected to con-
vergence to an equilibrium concept nor to payoff guarantees
for the agents. We view multi-agent systems as reservoirs
that allow for the long term survival of rich spatiotemporal
correlations (i.e., patterns) amongst the agents’ behaviors.
Our aim is to develop abstractions that allow us to capture
details about the possible limit behaviors of such systems.

Our approach is based on the contrast between weakly
and strongly persistent properties. Informally, a property is
weakly persistent if for each starting point there exist limit
points that satisfy it. A property is strongly persistent if it
is satisfied by all limit points. In the case of non-converging
dynamics the set of weakly persistent properties can be sig-
nificantly richer than that of the strongly persistent proper-
ties reflecting topological properties of the system limit sets
in a concise and algorithmically tractable manner.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms]; J.4 [Social and Behavior
Sciences]

General Terms
Algorithms, Economics, Theory

Keywords
Multi-Agent Systems, Game Theory, Replicator Dynamics,
Information Theory, Topology, Dynamical Systems

1. INTRODUCTION
If multi-agent learning is the answer then what is the

question? This inquiry was famously posed in [23], where
Shoham, Powers and Grenager initiated a lively discussion
joined by AI researchers, game theorists and engineers alike
in regards to clarifying the agenda of MAL research [27].

With few notable exceptions [15, 24], this discussion in
regards to the scope, goals, and evaluation criteria in multi-
agent learning is framed in purely game theoretic terms.
Specifically, despite the diverse backgrounds of the authors
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one would be pressured to identify evaluation criteria of
a multi-agent system that do not translate either to some
equilibrium notion or to utility guarantees for the agents.
Stone [24] voices explicitly such concerns against an overly
narrow focus on the game-theoretic framework. Focusing
on the example of robotic soccer, he argues that in the case
of complex multi-agent environments and domains this pre-
dominant game-theoretic perspective does not seem to suf-
fice and one needs a broader perspective. However, no ex-
plicit proposal for a novel agenda is put forward. To the
contrary, the paper concludes with posing this question as a
future challenge to be addressed.

In attempting to provide some insights in this direction, it
is useful to remind ourselves that this, undeniably fruitful,
relationship between game theory and multi-agent learning
has been one-sided from its onset. The motivating goal of
the work of Brown and Robinson [6, 19] on fictitious play
was to provide validation and computational handles for
game theoretic concepts and specifically responding to von
Neumann’s seminal work on mixed Nash equilibria in zero-
sum games [28, 29]. This point of view, with MAL analysis
trailing game-theoretic considerations, is based on such solid
foundations that it becomes a non-trivial mental exercise to
think and argue theoretically about multi-agent systems in
a language that is devoid of the notions of equilibrium and
utility. How could one accomplish that and why should one
care to in the first place?

In order to understand this question let’s try to ponder
the following: Are the notions of Nash equilibrium and util-
ity in some sense atomic concepts in multi-agent systems,
or do they provide a palpable handle on something even
more basic? Arguably, the main desirable characteristic of
any system is that it is susceptible to our understanding.
Namely, we aim to identify persistent patterns of actionable
data that would allow us to make accurate predictions about
future states of the system. Equilibria and utility naturally
reside in this framework. The notion of equilibrium, encod-
ing stability, allows for the persistence of static patterns.
Utility is the most prevalent signal in economic systems.
However, as we will argue, the notion of persistent patterns
is significantly richer and allows for important distinctions
that would have otherwise been impossible.

Our goal in this work is exactly to explore the notions of
patterns and persistence and examine to what extent these
ideas can be applied towards a more structured study of
dynamics (and especially disequilibrium behavior) in multi-
agent systems.
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2. FEATURE, PROPERTY AND PATTERN
Generally, let Σ denote a system with a state space S

whose temporal evolution is captured by a flow Φ : S ×J →
S, where J is a timeset, that may correspond either to a
continuum or a discrete set of time units (e.g., J = �,Z+).
We define an (observable) feature of Σ as a map F : S → O
from S to (a possibly different) observation space O1.

In the case of evolutionary dynamics applied to normal
form games, where S corresponds to the product of mixed
strategies of the agents, typical examples of observable fea-
tures are the (mixed) strategy or the (expected) utility of an
agent as well as measures of social welfare such as the sum
of utilities. However, one can easily come up with other in-
teresting features, such as the median utility, the max-min
utility, or diversity indices such as the Herfindahl-Hirschman
index. In the case of an ecosystem, where S captures the
densities of each subspecies, an interesting property might
project the density of the species that is closest to extinction.

So far we have only considered features that depend on
the current state of the system. One can design more in-
volved features that depend on higher order statistics of the
system history. An example of such a feature could be the
time-average social welfare of a system trajectory. We can
capture such features that depend on higher order statistics
of the system as standard features of an extended system Σ∗,
whose state S∗ keeps track of those statistics as well. Hence,
in order to create a comprehensive theory of system feature
regularities it suffices to examine properties that depend on
the current system state.

The temporal evolution of system Σ induces trajectories
on the observation space Ψ = F ◦Φ : S×J → O that encode
all possible systematic interactions between the system and
the F-observer. A systematic analysis of feature F in Σ
implies identifying regularities over all possible trajectories
of Ψ. Given feature F : S → O, we will denote as property
Γ ⊂ O a subset2 thats encodes a “target” parameter range
for that specific feature.

Examples of properties for different features have as fol-
lows: If the feature F is the identity function (i.e., the fea-
ture space is the set of all mixed strategy profiles) then a
usual property is the set of Nash equilibria of the game, or
if the feature is the social welfare (i.e., sum of utilities) then
an interesting property is the set of outcomes whose social
welfare is within a multiplicative constant of the optimum.

We can also define time-space properties, e.g., subsets of
J×O. We call such special properties that capture the arrow
of time, patterns. Patterns allow us to capture involved
temporal phenomena (e.g., periodic phenomena).

3. PERSISTENCE
The notions of (weak, strong) persistence that we explore

here are inspired by more restricted notions of population
persistence developed within the field of mathematical ecol-
ogy ([10, 11] and references therein). The notion of strong
persistence, which is analogous to the notion of safety [14, 2]
in distributed systems, has recently been used in analyzing
optimization questions in dynamical systems [17]. We ex-
tend and contrast those techniques with those used to detect
and analyze weakly persistent properties, which are analo-

1We only consider features that are continuous functions of
the (current) state of the system.
2For simplicity we assume that O is a compact metric space.

gous to liveness3. This combined perspective allows us to
capture detailed properties of the topology of multi-agent
learning dynamics.

A good starting point for an intuitive understanding of
these notions are the ecological inquiries that inspired them.
Suppose that we are monitoring an ecosystem by measuring
the population sizes of each species. Naturally, we are in-
terested in the health of the ecosystem and a high priority
concern is that all species survive in the long run. There
exist at least two distinct ways of encoding such guarantees.
Informally, strong persistence argues that the population of
each species should consistently stay far away from its ex-
tinction threshold. Weak persistence allows species to teeter
on the brink of extinction infinitely often as long as they al-
ways bounce back to a healthy population size. We extend
this approach to more general features and properties.

Weak Persistence
Definition 1. Given feature F : S → O then property

ΓWeak ⊂ O is weakly persistent for feature F if for all initial
conditions x ∈ S,

lim sup
t→∞

dist(F
(
Φ(x, t)

)
, O\ΓWeak) > 0.

Furthermore, if ∃ ε > 0 such that ∀x ∈ S,

lim sup
t→∞

dist(F
(
Φ(x, t)

)
, O\ΓWeak) > ε

then property ΓWeak is uniformly weakly persistent.

This notion encodes recurring system regularities that de-
spite possibly experiencing lapses of extinction will persis-
tently be revived. Such properties persist in the long run
without necessarily being satisfied by all limit points. That
is, regardless of the starting state of the system, even if
we start from states that do not satisfy a weakly persistent
property, such properties will eventually become true for the
system and although the system may move away from such
states it will always come back to them (see figure 1). The
definition of uniform weak persistence is even stronger and
essentially requires that this infinitely recurrent property is
preserved even in a noisy environment that does not allow
for measurements of arbitrary small error.

On the other hand, there exist system properties (e.g.,
an adequate level of white blood cells) whose satisfaction
is a functional imperative for the system. In such cases,
we would like to satisfy a significantly stronger persistence
guarantee.

(Strong) Persistence
Definition 2. Given feature F : S → O then property

ΓStrong ⊂ O is (strongly) persistent for feature F if for all
initial conditions x ∈ S,

lim inf
t→∞

dist(F
(
Φ(x, t)

)
, O\ΓStrong) > 0.

Furthermore, if ∃ ε > 0 such that ∀x ∈ S,

lim inf
t→∞

dist(F
(
Φ(x, t)

)
, O\ΓStrong) > ε

then property ΓStrong is uniformly persistent.

3Informally, a safety property stipulates that “bad thing”
do not happen during the execution of a program and a
liveness property stipulates that “good things” do happen
(eventually)[14].
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Figure 1: Examples of persistent properties

This notion encodes self-enforcing system regularities. That
is, regardless of the starting state of the system, even if we
start from states that do not satisfy a persistent property,
such properties will eventually become true for the system
and persist being true for all time. Any (strongly) persistent
property is also weakly persistent.

Why study persistent properties?
Under the assumption of convergence of our system to a
fixed point, the clearly distinct notions of weak persistence
and (strong) persistence collapse. At a first glance, this im-
plication might actually seem as an advantageous aftereffect
of convergence. After all, if a property is desirable enough
to be supported in a weakly persistent manner, a system
that offers it in a (strongly) persistent manner appears even
more desirable. However, in this manner we are restricting
the capabilities of our systems in terms of satisfying other
properties. Specifically, a system is, at least in theory, able
to support in a weakly persistent manner two contradicting
property ranges Γ0,Γ1 ∈ O,Γ0 ∩ Γ1 = ∅ of the same feature
F . On the other hand, if one of the property ranges is sup-
ported in a persistent manner then the other one cannot be
supported, even weakly. So, contrary to the entrenched view
of equilibrium convergence as a universally desirable prop-
erty of systems, perpetual disequilibrium might be a necessary
design specification for some applications. This framework
provides abstractions for capturing tightly the limit behav-
ior of such systems and enables distinctions that would have
been impossible if we focused solely on their equilibria.

4. PRELIMINARIES
We combine ideas from (evolutionary) game theory and

dynamical systems theory. The presentation here follows in
the lines of [17]. Our aim is to provide a concise repository of
some key concepts and tools. Several references are included
for a more thorough treatment of this material.

4.1 Graphical games
A graphical (polymatrix) game is defined via an undi-

rected graph G = (V,E) where V corresponds to the set of
agents of the game and where every edge corresponds to a bi-
matrix game between its two endpoints/agents. We denote

by Si the set of strategies of agent i. We denote the bimatrix
game on edge (i, k) ∈ E via a pair of payoff matrices: Ai,k

of dimension |Si| × |Sk| and Ak,i of dimension |Sk| × |Si|.
Let s ∈ ×iSi be a strategy profile of the game. We denote
by si ∈ Si the strategy of agent i and by s−i ∈ ×j∈V \iSj
the strategies of the other agents. The payoff of agent i ∈ V
in strategy profile s is equal to the sum of the payoffs that
agent i receives from all the bimatrix games she participates
in, i.e., ui(s) =

∑
(i,k)∈E A

i,k
si,sk .

A separable zero-sum multiplayer game (zero-sum graph-
ical game) [7] is a graphical polymatrix game in which the
sum of all agent payoffs is always zero (∀s ∈ ×iSi,

∑
i ui(s) =

0). There exists [7] a (polynomial-time computable) pay-
off preserving transformation from every separable zero-sum
multiplayer game to a pairwise constant-sum polymatrix
game (i.e., a graphical polymatrix game such that for each

i, k ∈ V : Ak,i = c{k,i}1−
(
Ai,k

)T
and 1 the all-one matrix).

We will also consider affine transformations of separable
zero-sum games. If there exists a separable zero-sum multi-
player game GG and constants ai > 0 and bi ∈ � for each
agent i such that uGG(s) = aiu

G
i (s) + bi for each outcome

s ∈ S we call such game as (~a,~b)-zero-sum multiplayer game.
Affine transformations do not affect the structure of equilib-
ria. They affect, however, the shape and properties of multi-
agent learning trajectories. A randomized strategy x for

agent i lies on the simplex ∆(Si) = {p ∈ �|Si|
+ :

∑
i pi = 1}.

Such a strategy x is said to be fully mixed if it lies in the
interior of the simplex, i.e., if xi > 0 for all strategies i ∈ Si.

4.2 Replicator Dynamics
The replicator equation [25, 22] is amongst the most well

studied dynamics in evolutionary game theory [10, 12, 17,
13, 20, 21]. It is defined as follows:

ẋi ,
dxi(t)

dt
= xi[ui(x)− û(x)], û(x) =

n∑
i=1

xiui(x)

where xi is the proportion of type i in the population, x =
(x1, . . . , xm) is the vector of the distribution of types in the
population, ui(x) is the fitness of type i, and û(x) is the
average population fitness. The state vector x can also be
interpreted as a randomized strategy of an adaptive agent
that learns to optimize over its m possible actions given an
online stream of payoff vectors. For this reason, it can be
applied in games. An interior point of the state space is a
fixed point for the replicator if and only if it is a fully mixed
Nash equilibrium of the game. The interior (the boundary)
of the state space ×i∆(Si) are invariants for the replicator.
We typically analyze the replicator from a generic interior
point, since points of the boundary can be captured as inte-
rior points of lower dimensional systems. Summing all this
up, our model is captured by the following system:

ẋiR = xiR
(
ui(R)−

∑
R′∈Si

xiR′u
i(R′)

)
for each i ∈ N , R ∈ Si, where ui(R) = Es−i∼x−iui(R, s−i).

4.3 Topology of dynamical systems
Our treatment follows that of [30], the standard text in

evolutionary game theory, which itself borrows material from
the classic book by Bhatia and Szegö [5]. Since our state
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space is compact and the replicator vector field is Lipschitz-
continuous, we can present the unique solution of our ordi-
nary differential equation as a continuous map Φ : S×�→ S
called flow of the system. Fixing starting point x ∈ S de-
fines a function of time which captures the trajectory (orbit,
solution path) of the system with the given starting point.
This corresponds to the graph of Φ(x, ·) : � → S, i.e., the
set {(t, y) : y = Φ(x, t) for some t ∈ �}.

If the starting point x does not correspond to an equilib-
rium then we wish to capture the asymptotic behavior of
the system (informally the limit of Φ(x, t) when t goes to in-
finity). Typically, however, such functions do not exhibit a
unique limit point so instead we study the set of limits of all
possible convergent subsequences. Formally, given a dynam-
ical system (�,S,Φ) with flow Φ : S×�→ S and a starting
point x ∈ S, we call point y ∈ S an ω-limit point of the
orbit through x if there exists a sequence (tn)n∈N ∈ � such
that limn→∞ tn = ∞, limn→∞ Φ(x, tn) = y. Alternatively

the ω-limit set can be defined as: ωΦ(x) = ∩t∪τ≥tΦ(x, τ).
We denote the boundary of a set S as bd(S) and the in-

terior of S as int(S). In the case of the replicator dynamics
where the state space S corresponds to a product of agent
(mixed) strategies we will denote by Φi(x, t) the projection
of the state on the simplex of mixed strategies of agent i.

Liouville’s Formula
Liouville’s formula can be applied to any system of au-
tonomous differential equations with a continuously differ-
entiable vector field ξ on an open domain of S ⊂ �k. The
divergence of ξ at x ∈ S is defined as the trace of the corre-
sponding Jacobian at x, i.e., div[ξ(x)] =

∑k
i=1

∂ξi
∂xi

(x). Since

divergence is a continuous function we can compute its in-
tegral over measurable sets A ⊂ S. Given any such set A,
let A(t) = {Φ(x0, t) : x0 ∈ A} be the image of A under map
Φ at time t. A(t) is measurable and is volume is vol[A(t)] =∫
A(t)

dx. Liouville’s formula states that the time derivative

of the volume A(t) exists and is equal to the integral of the
divergence over A(t): d

dt
[A(t)] =

∫
A(t)

div[ξ(x)]dx.

A vector field is called divergence free if its divergence is
zero everywhere. Liouville’s formula trivially implies that
volume is preserved in such flows.

Poincaré’s recurrence theorem
Poincaré [18] proved that in certain systems almost all tra-
jectories return arbitrarily close to their initial position in-
finitely often.

Theorem 1. [18, 3] If a flow preserves volume and has
only bounded orbits then for each open set there exist orbits
that intersect the set infinitely often.

Poincaré-Bendixson theorem
The Poincaré-Bendixson theorem allows us to prove the ex-
istence of limit cycles4 in two dimensional systems. The
main idea is to find a trapping region, i.e., a region from
which trajectories cannot escape. If a trajectory enters and
does not leave such a closed and bounded region of the state
space that contains no equilibria then this trajectory must
approach a periodic orbit as time goes to infinity. Formally,
we have:

4A periodic orbit is called a limit cycle if it is the ω-limit
set of some point not on the periodic orbit.

Theorem 2. [4, 26] Given a differentiable real dynami-
cal system defined on an open subset of the plane, then every
non-empty compact ω-limit set of an orbit, which contains
only finitely many fixed points, is either a fixed point, a peri-
odic orbit, or a connected set composed of a finite number of
fixed points together with homoclinic and heteroclinic orbits
connecting these.

Homeomorphisms and Conjugacy of Flows
A function f between two topological spaces is called a
homeomorphism if it has the following properties: f is a bi-
jection, f is continuous, and f has a continuous inverse. A
function f between two topological spaces is called a diffeo-
morphism if it has the following properties: f is a bijection,
f is continuously differentiable, and f has a continuously dif-
ferentiable inverse. Two flows Φt : A→ A and Ψt : B → B
are conjugate if there exists a homeomorphism g : A → B
such that for each x ∈ A and t ∈ �: g(Φt(x)) = Ψt(g(x)).
Furthermore, two flows Φt : A → A and Ψt : B → B are
diffeomorhpic if there exists a diffeomorphism g : A → B
such that for each x ∈ A and t ∈ � g(Φt(x)) = Ψt(g(x)).
If two flows are diffeomorphic then their vector fields are
related by the derivative of the conjugacy. That is, we get
precisely the same result that we would have obtained if
we simply transformed the coordinates in their differential
equations [16].

4.4 Information Theory
Entropy is a measure of the uncertainty of a random vari-

able and captures the expected information value from a
measurement of the random variable. The entropy H of a
discrete random variable X with possible values {1, . . . , n}
and probability mass function p(X) is defined as H(X) =
−
∑n
i=1 p(i) ln p(i).Given two probability distributions p and

q of a discrete random variable their K-L divergence (rela-

tive entropy) is defined as DKL(p‖q) =
∑
i ln
(
p(i)
q(i)

)
p(i). A

closely related concept is that of the cross entropy between
two distributions, which measures the average number of
bits needed to identify an event from a set of possibilities,
if a coding scheme is used based on a given probability dis-
tribution q, rather than the “true” distribution p. Formally,
the cross entropy for two distributions p and q is equal to
H(p, q) = −

∑n
i=1 p(i) ln q(i) = H(p) + DKL(p‖q). For more

details the reader should refer to the standard text by Cover
and Thomas [8].

5. ANALYSIS
In this section, we will explore the space of persistent

properties for replicator dynamics in graphical polymatrix
games. As a default, Φ will denote the flow of the replicator
dynamic when applied to an (arbitrary) graphical game and
we will focus on the case where the observation function F
is the identity function and S corresponds to the set of fully
mixed strategy profiles.

5.1 Strong Persistence
The analysis of strong persistent properties builds upon

techniques developed in [17] for separable zero-sum multi-
agent games. We start with a general, negative result that
holds for all graphical games.
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Theorem 3. Let Φ denote the flow of the replicator dy-
namic when applied to a graphical game and let the observa-
tion function F be the identity function then flow Φ has no
uniformly (strongly) persistent property Γ ⊂ S.

Proof. The system defined by applying replicator on the
interior of state space, can be transformed to a divergence
free system on (−∞,+∞)

∑
i(|Si|−1) via the following in-

vertible smooth map ziR = ln(xiR/xi0), where 0 ∈ Si a
specific (but arbitrarily chosen) strategy of agent5 i. This

map g : ×iint(∆(Si))→ �
∑

i(|Si|−1) is clearly a homeomor-
phism6. Hence, we can a establish a conjugacy between the
replicator system (restricted to the interior of state space)

and a system on (−∞,+∞)
∑

i(|Si|−1) where:

d
(
xiR
xi0

)
dt

=
ẋiRxi0 − ẋi0xiR

x2
i0

=
xiR
xi0

(
ui(R)− ui(0)

)
.

This implies that ˙ziR =
d
(

ln
xiR
xi0

)
dt

= ui(R)− ui(0) where

ui(R), ui(0) depend only on the mixed strategies of the rest
of the agents (i.e., other than i). As a result, the flow Ψt =
g ◦ Φt ◦ g−1, which arises from our system via the change
of variables ziR = ln(xiR/xi0), defines a separable vector
field in the sense that the evolution of ziR, depends only
on the state variables of the other agents. The diagonal of
the Jacobian of this vector field is zero and consequently the
divergence (which corresponds to the trace of the Jacobian)
is zero as well. Liouville’s theorem states that such flows are
volume preserving.

If we assume that replicator exhibits a uniformly persis-
tent property Γ ⊂ S (for some ε > 0), we clearly reach
a contradiction. Indeed, consider the set of all (interior)
points whose distance7 from the boundary is at least ε/2.
Their corresponding limit sets will eventually converge to
a smaller set whose distance from the boundary is at least
ε. This is impossible due to conservation of volume of the
conjugate flow.

We will identify necessary conditions for the existence of
persistent properties in any graphical game and we will show
how to decide them efficiently.

Theorem 4. Let Φ denote the flow of the replicator dy-
namic when applied to a graphical game and let the observa-
tion function F be the identity function. If ×iint(∆(Si)) is
a persistent property of the flow then the flow has an interior
fixed point q.

Proof. Let’s pick an arbitrary initial condition x0 ∈
int(×i∆(Si)). If ×iint(∆(Si)) is a persistent property of the
flow then by definition we have that there exists8 εx0 > 0
such that lim inf dist(Φ(x0, t), bd(×i∆(Si))) = εx0 , where
for convenience here we take dist to denote the infinity norm.
We denote as xi = Φi(x0, t) the vector encoding the mixed
strategy of agent i over her available actions at time t. By

5Such techniques were first introduced by Hofbauer [10, 9].
6The reverse map is xi0 = 1

1+
∑

i∈Si\{0}
eziR

, xiR =

eziR

1+
∑

R∈Si\{0}
eziR

for R ∈ Si \ {0}. In fact, g is a diffeo-

morphism.
7Here, we use the infinity norm, however, this is not critical
and we could use some other metric.
8This εx0 is a function of the initial condition x0

assumption of persistence we have that there exists ε > 0
and T0 such that for all t > T0 : xiR(t) > ε for each

agent i and strategy R ∈ Si. We have that
∫ t
T0

[
ui(R) −∑

R∈Si
xiRu

i(R)
]
dτ =

∫ t
T0

ẋiR
xiR

dτ = ln
( xiR(t)
xiR(T0)

)
. Further-

more, limt→∞
1
t

ln
( xi(t)
xi(T0)

)
= 0. For any pair of agent i

and strategy R, the functions 1
t

∫ t
T0
xiRdτ , 1

t

∫ t
T0
ui(R)dτ are

bounded. Since they are finitely many of them we can find a
common converging subsequence tn for all of them9. Com-
bining the last two equations and dividing them with tn we
derive for every agent i, R ∈ Si:

lim
n→∞

1

tn

∫ t

T0

∑
R∈Si

xiRu
i(R)dτ = lim

n→∞

1

tn

∫ t

T0

ui(R)dτ =

= lim
n→∞

1

tn

∫ t

T0

Es−i∼x−i(τ)ui(R, s−i)dτ = ui(R, x̂−i)

where x̂iR = limn→∞
1
tn

∫ t
T0
xiRdτ and the last equation fol-

lows from the separability of payoffs. Since for all agents
i, ∀R,Q ∈ Si : ui(R, x̂−i) = ui(Q, x̂−i), x̂ is a fully mixed
Nash equilibrium.

Next, we will argue that this condition can be checked ef-
ficiently. That is, we will show that we can decide whether
a graphical game has a fully mixed Nash equilibrium effi-
ciently. Actually, we prove the following slightly stronger
statement.

Proposition 5. Given any graphical game and a set of
strategies S′i ⊂ Si for each agent i we can decide whether
it has a Nash equilibrium where each agent’s i support is
exactly S′i.

Proof. For each agent i and strategy si ∈ S′i we solve
the following related LP:

max 1si · xi
1Ti1

∑
(i,k)∈E

Ai,kxk = . . . = 1Ti|S′
i
|

∑
(i,k)∈E

Ai,kxk ∀i

1Ti1

∑
(i,k)∈E

Ai,kxk ≥ 1Tsi

∑
(i,k)∈E

Ai,kxk ∀i, ∀si ∈ Si

xi ∈ ∆(S′i) ∀i

where 1ik is a vector of size |Si| where the ik-th entry is equal
to 1 and all the others are zero. Each such LP chooses from
the set of all possible equilibria with the target supports
one where the probability that agent i assigns to strategy
si ∈ S′i is maximal. Naturally if the value of any of these
LPs is equal to zero then there is no equilibrium with ex-
actly the target support and we are done. If all of the values
are positive then there exists an equilibrium with exactly
the target support. This is because any convex combina-
tion of the solutions above is still a Nash equilibrium of our
game.

Next, we will show that the existence of a fully mixed Nash
equilibrium is also a sufficient condition for persistence in a
large classes of graphical (polymatrix) games.

9Take a convergent subsequence of the first function and
find on this a convergent subsequence of the second and so
on.
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Theorem 6. Let Φ denote the flow of the replicator dy-
namic when applied to an affine transformation of zero-sum
graphical game and let the observation function F be the
identity function. If the flow has an interior fixed point q10

then ×iint(∆(Si)) is a persistent property of the flow. Any
property Γ ⊂ ×i∆(Si) whose complement ×i∆(Si)\Γ con-
tains a ball of radius ε > 0 is not persistent.

We will break down its proof into two lemmas. The first
lemma aims to argue boundedness of the conjugate volume-
preserving flow. The second lemma applies Poincaré recur-
rence theorem to argue the recurrent nature of the flow tra-
jectories. This technique was introduced in [17] for proving
the analogous statement in the case of separable zero-sum
multiplayer games. In our case, we need to suitably update
the two technical lemmas.

The first lemma identifies an information theoretic prop-
erty that is invariant for the replicator. Similar invariants,
without the connections to information theory though, have
been established by Akin and Losert in special cases of zero-
sum games [1].

Lemma 7. Let Φ denote the flow of the replicator dy-

namic when applied to a (~a,~b)-zero-sum multiplayer game
G and let GG be the separable zero-sum game defined by
the utility functions u′i(s) = aiui + bi. If GG (or equiv-
alently G) has an interior (i.e. fully mixed) Nash equilib-
rium q = (q1, q2, . . . , qn) then given any starting point x0 ∈
×iint(∆(Si)),

∑
i aiH(qi,Φi(x0, 0)) =

∑
i aiH(qi,Φi(x0, t))

for all t ≥ 0.

Proof. We will show that the derivative of the quantity∑
i aiH(qi,Φi(x0, t)) = −

∑
i ai
∑
R∈Si

qiR ·ln(xiR) is every-
where zero.∑
i

ai
∑
R∈Si

qiR
d ln(xiR)

dt
=
∑
i

ai
∑
R∈Si

qiR
ẋiR
xiR

=

=
∑
i

ai
( ∑
R∈Si

qiRu
i(R)−

∑
R∈Si

xiRu
i(R)

)
=

=
∑
i

( ∑
R∈Si

qiR(aiu
i(R) + bi)−

∑
R∈Si

xiR(aiu
i(R) + bi)

)
=

=
∑
i

∑
(i,k)∈E

(
qT
i A

i,kxk − xT
i A

i,kxk
)

=

=
∑
i

∑
(i,k)∈E

(
qT
i − xT

i

)
Ai,k(xk − qk) =

= −
∑

(i,k)∈E,i<k

[(
qT
i − xT

i

)
Ai,k(qk − xk) +

+
(
qT
i − xT

i

)(
c{i,k}1−Ai,k

)
(qk − xk)

]
= 0

We have used the fact that for each agent i,
∑

(i,k)∈E
(
qT
i −

xT
i

)
Ai,kqk = uGGi (q) − uGGi (xi, q−i) = 0 since q is a fully

mixed Nash.

Corollary 8. The weighted sum of the Kullback-Leibler
divergences of each agent’s i current strategy from qi is a
constant of the motion for the flow. Equivalently, given any
starting point x0 ∈ ×iint(∆(Si)),

∑
i aiDKL(qi‖Φi(x0, 0)) =∑

i aiDKL(qi‖Φi(x0, t)) for all t ≥ 0.

10This is equivalent to game having fully mixed Nash equi-
librium.

We simplify notation by using Da
KL(q‖x) in the place of∑

i aiDKL(qi‖xi). We have established that the replicator
flow is conjugate to a volume preserving flow from the proof
of theorem 3. On the other hand, the applied transforma-
tion blows up the volume near the boundary to infinity and
as a result does not allow for an immediate application of
Poincaré’s recurrence theorem. We circumvent this issue by
applying corollary 8.

Lemma 9. If the flow Φ has an interior fixed point then
given any open set E that is bounded away from bd(×i∆(Si))
there exist orbits that intersect it infinitely often.

Proof. Let q be the interior fixed point of the flow. Given
any open set E that is bounded away from the boundary and
let cE = supx∈E D

a
KL(q‖x). Since E is bounded away from

the boundary cE is finite. We focus on the restriction of
conjugate flow Ψ over the closed and bounded set11 g(SE),
where SE = {x ∈ ×i∆(Si) : Da

KL(q‖x) ≤ cE}. The fact
that replicator preserves weighted K-L divergences implies
that replicator maps SE to itself. Due to the homeomor-
phism g, the same applies for flow Ψ and g(SE). The re-
striction of flow Ψ on g(SE) is a volume preserving flow
and has only bounded orbits. We can apply Poincaré’s re-
currence theorem to derive that for each open set of this
system there exist orbits Ψ(z0, ·) that intersect this set in-
finitely often. Given our initial arbitrary (but bounded from
the boundary of ×i∆(Si))) open set E, g(E) is also open12

and hence infinitely recurrent for some Ψ(z0, ·) but now the
g−1(Ψ(z0, ·)) = Φ(g−1(z0), ·) visits E infinitely often, con-
cluding the proof.

We will combine lemmas 7 and 9 to prove theorem 6.

Proof. Since, the weighted K-L divergence between the
state of the system and the fully mixed Nash equilibrium
remains constant we have that for each initial condition x0

the trajectory Φ(x0, t) must stay bounded away from the
boundary since there the weighted K-L divergence becomes
infinite. This implies that for each x0 ∈ ×iint(∆(Si)) there
exists13 ε > 0 such that lim inf dist(Φ(x0, t), bd(×i∆(Si)))
= ε > 0, therefore ×iint(∆(Si)) is a persistent property of
the flow. For any (nontrivial) property Γ ⊂ ×i∆(Si) whose
complement contains a ball of radius ε > 0, by lemma 9,
we have established that there exist initial conditions whose
trajectories revisit these points infinitely often and therefore
Γ is not persistent.

We have already shown that we can check whether any
graphical polymatrix games has a fully mixed equilibrium
efficiently. Another interesting question is whether we can
check efficiently whether a graphical polymatrix games cor-
responds to an (affine) variant of separable multi-agent zero-
sum game. This is an interesting question since the set of all
possible strategy outcomes has exponential size and there-
fore we cannot inspect every single outcome individually.

Lemma 10. Given any graphical polymatrix game G and
a set of affine transformations of utilities, we can check ef-
ficiently whether this pair corresponds to an affine transfor-
mation of a separable zero-sum multi-agent game.

11g(SE) is closed since SE is closed and g is a homeomor-
phism. g(SE) is bounded since E is bounded away from the
boundary of ×i∆(Si).

12Since g is a homeomorphism.
13This ε is a function of the initial condition x0.
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Proof. The proof of the lemma relies on the observation
of [7], where the authors show that given any separable zero-
sum multi-agent game, there exists a poly-time computable
payoff preserving transformation of this game to a graphical
polymatrix game where each edge/game is a constant-sum
game (with possibly different constants on each edge). Our
argument works in two steps, first we apply the reverse affine
transformation to G so as to transform it to a separable
zero-sum game. Next, we apply the payoff preserving trans-
formation to produce it in its network constant-sum form.
Finally, this property is trivially testable in polynomial size,
by verifying that each edge game is indeed constant-sum.

5.2 Weak Persistence
In this section, we wish to contrast the sparsity of (strongly)

persistent properties in graphical polymatrix games (for the
replicator flow) against the abundance of weakly persistent
properties. It suffices to focus on the simplest possible graph-
ical polymatrix games. Indeed, we will show that even the
classic game of Matching Pennies has uncountably infinite
weakly persistent properties under the replicator dynamic.
Furthermore, the intersection of any two such properties can
be arbitrarily small. Since Matching Pennies is a zero-sum
game and has a (unique) fully mixed equilibrium its only (in-
terior) persistent property is the whole interior of the state
space. Such statements would have been impossible under
the assumption of convergence to equilibrium. Nevertheless,
they are useful and meaningful. They encode a system that
act as a reservoir of an infinite collection of distinct infor-
mation theoretic properties.

Theorem 11. Let Φ denote the flow of the replicator dy-
namic when applied to Matching Pennies game and let the
observation function F be the projection of the state space
to the subspace encoding the probabilities that each agent as-
signs to action “Head”. Any open set Γ ⊂ (0, 1)2containing
Sα = {(x1, x2) : x2 = α(x− 1

2
)+1/2, 0 < x1 < 1, 0 < x2 < 1}

for some α ∈ � is weakly persistent.

Proof. We will show that given any such property Γ ⊂
(0, 1)2 for all initial conditions x ∈ int(S) we have that
lim inft→∞ dist(F

(
Φ(x, t)

)
, O\Γ) > 0. It suffices to show

that for all initial conditions x ∈ int(S) each set Sα is in-
finitely recurrent, i.e., sup{t : Φ(x, t) ∈ Sα} = ∞. Sup-
pose that this was not the case. Let S+

α = {(x1, x2) : x2 >
α(x− 1

2
)+1/2, 0 < x1 < 1, 0 < x2 < 1} and S−α = {(x1, x2) :

x2 < α(x− 1
2
)+1/2, 0 < x1 < 1, 0 < x2 < 1}. If the set Sα is

not infinitely recurrent, then there exists a trajectory whose
limit points exclusively in either S+

α or S−α . However, as we
have seen in the proof of theorem 4 the time averages of the
agent strategies have a convergent subsequent whose limit is
the unique Nash. The only way that this would be possible
was if the trajectory converged to the equilibrium, however,
this is impossible due to the KL-divergence invariance.

Of course, this is not the unique (infinite) class of persis-
tent properties. For example, instead of using lines to define
partitions of the state space, we could use other families of
smooth curves that satisfy the unique Nash equilibrium and
essentially the same proof would carry over.

We conclude the analysis by excluding the possibility of
uniformly weakly persistent properties. for Matching Pen-
nies games Γ ⊂ (0, 1)2 when the observation observation
function F is the projection of the state space to the sub-
space encoding the probabilities that each agent assigns to

Figure 2: Replicator orbits in Matching Pennies
(probabilities of each agent playing heads)

action “Head”. The complement of any such property con-
tains the boundary of [0, 1]2, however, as we will argue in
the following section for any ε > 0 there exist periodic orbits
such that each of their points is at a distance less than ε from
the boundary (see figure 2). This excludes the possibility of
uniformly weakly persistent properties in (0, 1)2.

Corollary 12. Let Φ denote the flow of the replicator
dynamic when applied to the Matching Pennies game and
let the feature F be the projection of the state space to the
subspace encoding the probabilities that each agent assigns to
action “Head”. The flow has no uniformly weakly persistent
property Γ ⊂ (0, 1)2 for F .

5.3 Patterns
We close our discussion by establishing some detailed prop-

erties of the replicator flow of a dynamic nature.

Theorem 13. Let Φ denote the flow of the replicator dy-
namic when applied to the Matching Pennies game and let
the observation function F be the projection of the state
space to the subspace encoding the probabilities that each
agent assigns to action “Head”. Every starting point (x0, y0),
other than the equilibrium, lies on a periodic orbit. The
equation of the limit cycle is {(xHead, yHead) : xHead(1 −
xHead)yHead(1−yHead) = xHead0 (1−xHead0 )yHead0 (1−yHead0 ),
0 < xHead, yHead < 1} and its direction is clockwise.

Proof. We know that in zero-sum games with fully mixed
equilibria the KL-divergence between the Nash equilibrium
and the state of the system remains constant as we move
along the trajectories of the replicator. KL-divergence is
a (pseudo)-metric implying the existence of trapping re-
gions in the interior of [0, 1]2. Specifically, as long as we
start from an interior point other than the unique Nash
then the trajectory stays bounded away from the boundary
(KL-divergence becomes infinite) and from the unique equi-
librium (KL-divergence becomes zero). By the Poincaré-
Bendixson theorem we have that starting from any point
(other than the Nash) the resulting limit set is a periodic or-
bit. It is straightforward to check that the KL-divergence in-
variance condition when projected to our subspace translates
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to an invariance of the quantity xHead(1− xHead)yHead(1−
yHead). This defines a closed continuous curve on our sub-
space that is symmetric along the axis xHead = 1/2 and
yHead = 1/2. In each of the four regions defined by xHead =

1/2, yHead = 1/2 the signs of dxHead

dt
, dy

Head

dt
are fixed and

define a clockwise direction. The theorem follows from the
uniqueness of the solution of the replicator flow.

6. DISCUSSION
What is a persistent (and efficient) reservoir of useful

properties/patterns? A (well-designed) multi-agent system.
A multi-agent system is expressed via the collection of per-
sistent spatiotemporal correlations amongst its numerous,
dispersed members. These correlations can be of a static
(equilibria) or a dynamic nature. Regardless of their specifics
it is the pursuit of these long range correlations that neces-
sitates the employment of multi-agent learning.

A solution may additionally exhibit other (generic/context
specific) desirable properties. Examples of generic proper-
ties could be low computational, randomness, or commu-
nication costs on the side of the agents, whereas context-
specific could be high social welfare in the case of socioeco-
nomic systems, or high probability of safe long term opera-
tion for a team of deployed robots.

Persistent pattern implementation, via multi-agent sys-
tem design, arises as a largely unexplored area that holds the
promise of renewing our approach to multi-agent systems.
However, which patterns should we attempt to replicate?
A bottom-up approach, where we start with some simple
parametric family of patterns that can be weaved together
to produce more complicated ones, seems promising.
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Biosciences, 40(1âĂŞ2):145 – 156, 1978.

[26] G. Teschl. Ordinary differential equations and
dynamical systems, volume 140. American
Mathematical Soc., 2012.

[27] R. V. Vohra and M. P. Wellman. Foundations of
multi-agent learning: Introduction to the special issue.
Artificial Intelligence, 171(7):363 – 364, 2007.

[28] J. von Neumann. Zur theorie der gesellschaftsspiele.
Mathematische Annalen, 100:295–300, 1928.

[29] J. von Neumann and O. Morgenstern. Theory of
Games and Economic Behavior. Princeton University
Press, 1944.

[30] J. W. Weibull. Evolutionary Game Theory. MIT Press;
Cambridge, MA: Cambridge University Press., 1995.

188




