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ABSTRACT
Hedonic games model agents that decide which other agents
they will join, given some preferences on other agents. We
study Sybil attacks on such games, by a malicious agent
which introduces multiple false identities, so that the out-
come of the game is more interesting for itself. First taking
Nash stability as the solution concept, we consider two sim-
ple manipulations, and show that they are essentially the
only possible Sybil manipulations. Moreover, small experi-
ments show that they are seldom possible in random games.
We exhibit another simple manipulation on the concepts of
(contractual) individual stability afterwards. Then we show
that such hedonic games are very sensitive to Sybil manip-
ulations, which contrasts sharply with the Nash case.

Categories and Subject Descriptors
Computing Methodologies [Artificial Intelligence]: Dis-
tributed artificial intelligence

Keywords
Coalition Formation; Game Theory; Strategic Reasoning

1. INTRODUCTION
In decentralized multi-agent systems, a recurrent ques-

tion is how, at a given instant, the agents decide together
who they will join (for instance, for playing a game). Coali-
tion formation models such problems. Canonical coalitional
games are based on transferable utility, whereas in hedonic
games utility is not transferable. In the latter, each agent
expresses a preference relation telling whom it accepts to
join. Then the problem consists in finding a partition in
which all agents are satisfied. A Nash stable coalition struc-
ture is a partition in which no agent wants to change coali-
tion individually. However, such partitions are not always
the optimal outcome for all agents: a malicious agent may
report another preference relation in order to affect the equi-
libria and get a better outcome. In this work, we consider
a particular manipulation, called Sybil attack. It consists of
an agent joining the system under multiple false identities,
with honest agents believing them all to be distinct, un-
known agents, to which they are assumed to be indifferent.
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The malicious agent reports preferences defined on purposed
for itself and its false identities. This quite general attack
encompasses false reports of preferences, as widely studied,
for instance, in voting systems. To the best of our knowl-
edge, Sybil attacks on hedonic games have not been studied
so far. After presenting related work (Section 2), we describe
our model for games and attacks (Section 3). Considering
simple attacks (Section 4) for Nash stability as the solution
concept, we show under which conditions they are success-
ful, and that it is computationally hard to carry them out.
Then we show that they are essentially the only possible at-
tacks (Section 5), and we report on small experiments which
suggest that hedonic games are robust to them on average.
Finally, we extend our study to the concepts of (contractual)
individual stability (Section 6). We exhibit another simple
attack, and we show that such hedonic games are very sen-
sitive to Sybil manipulations. This is in sharp contrast with
the robustness of Nash stability.

2. RELATED WORK
The problem of partitioning a group of agents so that all

of them are satisfied with their own coalition is widely stud-
ied in the literature. Several models propose how each agent
decides which coalitions it wants to form [5, 9, 11, 13]. They
consider diverse properties on the partition that guarantee
an equilibrium, for instance, Pareto optimality or Nash sta-
bility. However, even deciding whether there is a Nash sta-
ble coalition structure at all is an NP-complete problem [3].
Since stability depends on the preferences of each agent,
what happens if a malicious agent lies about its own prefer-
ences so as to manipulate the system? Manipulations have
been studied on a large panel of systems, including P2P
networks [17], voting systems [4], weighted voting games [2],
combinatorial auctions [8], matching problems [18], social
networks [7], and reputation systems [14]. For instance, in
voting systems, constructive manipulations try to make a
candidate win, and destructive ones try to make a candi-
date lose. Walsh [19] shows empirically than even if it is
NP-hard to manipulate a vote in the worst case, it is easy
in practice for the STV and veto voting rules. A Sybil at-
tack [10], or false-name manipulation [20], consists of intro-
ducing false identities in the system. A system can be made
robust to such attacks by using a central certified author-
ity [10] or searching for suspect clusters in the graph that
structures the system [6], but these proposals consider repu-
tation systems or combinatorial auctions and, to the best of
our knowledge, Sybil attacks on hedonic systems have not
been studied so far. Indeed [16] investigated the strategy-
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h1 12 � 13m � 13 ∼ 12m � 123m ∼ 1 � 1m ∼ 123
h2 12 ∼ 23m � 123 ∼ 2m � 12m � 23 � 123m ∼ 2
h3 13 ∼ 23m � 3m � 123 � 23 � 123m ∼ 3 � 13m
m 1m � 2m � 3m � m � 12m � 13m ∼ 23m � 123m

NSG Π1 = {12, 3m},Π2 = {13, 2m}
URG Π3 = {1, 23m},Π4 = {12m, 3},Π5 = {123m}

Figure 1: Running example with four agents 1, 2, 3,m.

proofness of coalitions formations rules on hedonics games
but they studied the case of malicious agents which lie on
their own preferences only. Observe that the related problem
of strategic cloning of candidates has been studied for voting
systems [12]. Hedonic games can be seen as a voting system
insofar the agents express preferences over partitions, and
one partition is elected, but with the important difference
that the set of candidates (partitions) depends on the set of
voters (agents).

3. MODEL

3.1 Hedonic Games
Consider an online game platform, as the League of Leg-

ends1 matchmaking platform, where players can join a game
instance with several other players. Some players do not
want to play with certain players but prefer to play with
some others, depending on game skills, previous experiences,
or social affinities. At a given instant, several game instances
can be launched each with a subset of players, possibly all of
them. Notice that each game instance is then independant
from the others. How to decide who will join which game
instance, given that once an instance has been launched,
no new player can join it? Observe that a player can al-
ways play alone, but this is typically not satisfying for her.
Such problems can be modelled by hedonic games. These are
coalitional games where each agent (player) expresses prefer-
ences about the possible coalitions (online game instances),
where a coalition is a subset of the players involved.

Definition 1. A (hedonic) game is a pair G = 〈N,�〉,
with N = (a1, . . . , an) a set of agents and � a preference
profile (�1, . . . ,�n), which gives each agent ai a preference
relation �i on the subsets of N (coalitions) containing ai.

The preference relation of an agent may come out from
some notion of trust or reputation, or from the outcomes of
previous games. As we only focus on the system at a given
instant, we assume that the preference profile is given.

Definition 2. Let N be a set of agents. A preference
relation � on N is a total preorder ( i.e., a reflexive, tran-
sitive and total relation2) on the subsets of N . We write �
(resp. ∼) for the strict (resp. symmetric) part of �. For
C,C′ ⊆ N , C �i C′ (resp. C ∼i C′) means that ai prefers
C to C′ (resp. is indifferent to C,C′).

Example 1. Throughout the paper, we use the example
game of Fig. 1 (top), where for compactness we omit the

1http://euw.leagueoflegends.com/
2Totality is assumed for simplicity, but all results carry over
to partial preorders.

subscripts of preference relations and we write, e.g., 13m
for the coalition {h1, h3,m}. Here, h stands for “honest”,
m for “malicious” and s for “Sybil” (a false identity of m).
According to h1, the coalition 12 is preferred to 13m which
is preferred to both 13 and 12m. It is indifferent to the two
latter. It also prefers the singleton 1 to 1m and to 123.

Solving a hedonic game means finding a set of coalitions
which satisfies the preferences of all agents. As is common,
we consider nonoverlapping coalitions. In our example ap-
plication, this means that each agent participates in only one
game instance. We write Π = {C1, . . . , Cm} for a partition
of N , and CΠ

i for the unique coalition in Π with ai ∈ CΠ
i .

We first consider Nash stability as the solution concept. We
relax this assumption in the final part of the paper (Sec-
tion 6) by considering the concepts of (contractual) individ-
ual stability. The concept of core stability [5] is left for a
future work. A partition is Nash stable if no agent wants to
unilaterally change coalition in it.

Definition 3. Let G = 〈N,�〉 be a hedonic game. A
partition Π of N is said to be Nash stable if the following
holds: ∀ai ∈ N, @C ∈ Π ∪ {∅}, C ∪ {ai} �i CΠ

i .

Example 2. Fig. 1 (“NSG” row) gives the two Nash sta-
ble partitions of the game.

In general, G may have zero, one, or several Nash stable
partitions. This solution concept may seem restrictive, but
unstability captures the case when agents do not reach an
agreement. In our example application, it happens when
some players want to play with some others who do not want
to play with them. In the sequel, we refer to a Nash stable
partition simply as a stable partition, and we write NSG for
the set of all stable partitions in G. There are many ways to
chose the actual outcome of the game in NSG, for instance
by a negotiation protocol or by a random draw. To make
things precise, we assume the following.

Assumption 1. The outcome of G is drawn uniformly at
random from NSG.

The important point is that the goal of a malicious agent is
to increase the proportion of satisfactory outcomes among
all possible outcomes of the game (Section 3.3). Our results
hold whenever the actual outcome is chosen in such a way
that such a goal makes sense. Finally, in a coalitional game,
any agent may decide unilaterally to be in the singleton
coalition, meaning not to join any other agent. Hence the
preference relation of an agent ai over the coalitions to which
the singleton {ai} is preferred is irrelevant to the outcome
of the game. Consequently, for ease of reading, we use a
Representation by Individually Rational Lists of Coalitions
(RIRLC) for �i, where the players give only the coalitions
preferred or indifferent to the singleton [3].
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3.2 Sybil Attacks
An agent performs a Sybil attack [10] if it appears in the

system under multiple false identities. In our example appli-
cation, a malicious player may join the online game platform
using several accounts at the same time. The false accounts
may be used for joining multiple game instances and contin-
uing to play only with the weakest opponents (simulating,
say, an unwanted disconnection from the network for other
instances), or for joining a group which refuses to play with
the malicious player (under its true identity). In this pa-
per, we assume that only one malicious agent m tries to
manipulate the game, by adding false identities.

Definition 4. Let G = 〈N,�〉 be a game, and m ∈ N be
an agent. A Sybil attack of G by m is a set of new agents
{s1, . . . , sk}, called Sybil agents, a preference relation �′

m

for m, and a preference relation �′
si for each Sybil si.

Let us notice that this definition of Sybil attacks is a gen-
eralization of the canonical manipulations where malicious
agents falsely report their own preferences. Indeed, in such
an attack the malicious agent manipulates the game, by re-
porting a false preference relation for itself, and introducing
false identities with preference relations defined on purpose.
This attack is quite general, since no assumption is made
on the number of Sybil agents nor on the knowledge of the
game by m. It may not even know the number of other
agents, or at the other extreme it may know the full prefer-
ence profile. There may be as many Sybil agents as needed
by m, but observe that the case of no Sybil at all encom-
passes attacks which consist in simply lying about its own
preferences. Since new agents are introduced by a manipu-
lation, we need to determine the preference relation (written
�′
i) of each honest agent hi over coalitions involving them.

We introduce two assumptions. Independence to irrelevant
alternatives [1] is a common requirement, e.g., for voting
systems. In our context, it imposes that if an agent prefers
C1 to C2, the arrival of a new agent does not change this
preference. The second assumption models an a priori ac-
ceptance of unknown agents by honest agents.

Assumption 2 (irrelevant alternatives).
∀C1, C2 ⊆ N,∀ai ∈ C1 ∩ C2 : C1 �i C2 ⇔ C1 �′

i C2

Assumption 3 (benefit of the doubt).
∀C ⊆ N,∀ai ∈ C, ∀u /∈ N : C ∼′

i C ∪ {u}

Assumption 2 is a commonsense assumption. Assumption 3
may seem beneficial to malicious agents, but precisely, if he-
donic games are robust even under favourable conditions for
the manipulator, they will be even more so under a weaker
assumption. Moreover, Assumption 3 is in some sense nec-
essary for an open system to allow new agents to cooper-
ate with existing agents. Indeed, in the context of repu-
tation systems, [15] state the following desirable property:
the new entrants should not be penalised by initially having
low reputation values attributed to them. In our example
application, players are indifferent to one newcomer joining
the online game platform, as they have no prior experience
with her. Furthermore, we will relax this assumption in
Section 5. Finally, the benefit of the doubt does not allow
multiple unkown agents to join a single coalition. Indeed,
this assumption is made only for C ⊆ N . As soon as an
unknown agent u joins C, C ∪ {u} ⊆ N does not hold any
more. Hence the benefit of the doubt is only granted to a

single unknown agent (with arbitrary preferences for more
unknown agents joining a coalition).

Example 3. If an unknown agent u enters the game of
Fig. 1, then �′

1 satisfies 12 ∼′
1 12u �′

1 13m ∼′
1 13mu �′

1

13 ∼′
1 13u ∼′

1 12m. . . 123 ∼′
1 123u.

Finally, the new preferences of honest agents may be any
preference profile as long as it satisfies Assumptions 2 and 3.

Definition 5. Let G = 〈N,�〉 be a game, with N =
{h1, . . . , hn,m}. A game G′ results from a Sybil attack
({s1, . . . , sk},�′

m, (�′
s1 , . . . ,�

′
sk )) of G by m, if it is of the

form G′ = 〈N ∪{s1, . . . sk}, (�′
1, . . . ,�′

n,�′
m,�′

s1 , . . . ,�
′
sk )〉

where for i = 1, . . . , n, �′
i satisfies Assumptions 2, 3.

3.3 Rationality of Malicious Agents
We are interested in rational malicious agents, in the sense

that they perform an attack if and only if they prefer the
outcome of the resulting game. We define the goal of a ma-
licious agent in a quite general manner. An effective manip-
ulation increases the proportion of satisfactory partitions,
where satisfactory is defined relative to a threshold coalition
Cθ, meaning the minimally preferred coalition in which m
wants to be. We let Cθ be an input for m that models its
goal. Hence, Cθ is chosen by m depending on its intentions.
As particular cases, setting Cθ to the coalition maximally
preferred by m means m wants to increase its chances to
be precisely in this coalition, and setting it to one immedi-
ately preferred to the singleton {m} means it simply wants
to increase its chances not to be alone.

Definition 6. Let G = 〈N,�〉 be a game. A partition Π
of N is satisfactory for m relative to a threshold coalition
Cθ if Π ∈ NSG and CΠ

m �m Cθ hold. The set of all stable
and satisfactory partitions is written NS θG.

Example 4. On Fig. 1, for Cθ = 1m no partition in the
“NSG” row is satisfactory for m, but for Cθ = 3m both are.

In the game G′ resulting from a manipulation, m is involved
both under its true identity m and false identities s1, . . . , sk.
Intuitively, if m wants to join a coalition C, it will be equally
happy if one of its false identities joins it instead. Hence, we
redefine satisfactory partitions for G′ as follows.

Definition 7. Let G′ = 〈N∪{s1, . . . , sk},�′〉 result from
a manipulation. A partition Π′ is said to be satisfactory

relative to Cθ if Π′ ∈ NSG′ holds and we have either CΠ′
m �m

Cθ or ∃si ∈ {s1, . . . , sk}, CΠ′
si ∪ {m} \ {si} �m Cθ.

We insist that the satisfaction of m in the manipulated game
G′ is defined relative to its initial preferences �m (in G, and
hence over N). In particular, a coalition containing several
identities of m cannot make m satisfied. We formalize in this
manner the fact that in the outcome of the game, m can-
not concretely act under several identities in parallel, hence
all but one of its identities must defect. We assume that
such defections will not affect the rest of the game. Indeed,
in games where coalitions are independent and act in par-
allel, an agent can quit a coalition by disconnecting from
the network, simulating a failure, or simply without doing
any costly action (such as folding in a poker game). For in-
stance, our example application meets this assumption since
a player can always quit a game, but the remaining players
cannot join a game instance that has already started. The
following definition is justified by Assumption 1.
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Definition 8. Let G be a game, m be an agent, and G′

result from some manipulation of G by m. Let moreover Cθ
be a coalition. We define rGθ to be the ratio |NS θG|/|NSG|
(with rGθ = 0 for |NSG| = 0, by convention). The manipu-

lation is effective relative to Cθ if rG
′

θ > rGθ holds.

Observe that if Cθ is the singleton {m}, then all Nash stable
partitions are satisfactory. Also observe that if all stable
partitions in G are satisfactory and there is at least one,
then rGθ is 1 and no manipulation can be (strictly) effective.

4. MANIPULATIONS

4.1 A Constructive Sybil Attack
We show a first attack. This manipulation is constructive:

the malicious agent manipulates the game so that a desirable
unstable partition becomes stable. In any unstable partition
Π for a game G, we can split the agents into two groups:
those which do not want to change coalition, and those which
want to change. The latter are called responsible for the
unstability of Π.

Definition 9. Let G be a game, ai an agent, and Π an
unstable partition. Then ai is said to be responsible for the
unstability of Π if there is a coalition C ∈ Π with C∪{ai} �i
CΠ
i . Such a coalition is said to be attractive (for ai).

We write URG for the set of all partitions which are unsta-
ble with m as the unique responsible, and URθ

G for those
partitions Π ∈ URG which moreover contain a satisfactory
attractive coalition C for m (i.e., C ∪ {m} �m CΠ

m and
C ∪ {m} �m Cθ).

Example 5. Fig. 1 gives the set URG. For Cθ = 1m or
2m, URθ

G is {Π3}, and for Cθ = 3m, URθ
G is {Π3,Π4}.

The constructive manipulation3 works when the malicious
agent m is the unique responsible for the unstability of a
partition Π, and the attractive coalitions in Π are satisfac-
tory for it. Roughly, m manipulates the game by becoming
disinterested (accepting all coalitions), and introducing one
false identity, which expresses its original preferences while
benefiting from the doubt (Assumption 3). We define the
indifferent profile for m, written �indif

m , in which m is indif-
ferent to all coalitions (C1 ∼indif

m C2 for all C1, C2 3 m). We
also write �m [m/s] for the relation obtained from �m by
replacing m with s in all coalitions.

Definition 10. Let G = 〈{h1, . . . , hn,m},�〉 be a game.
The constructive manipulation of G by m is the manipula-
tion with one Sybil agent s, in which m reports the preference
relation �′

m := �indif
m and s reports �′

s := �m [m/s].

Observe in particular that the Sybil agent reports that it
does not want to join m (since m is replaced with s in �′

s).

Example 6. For the game on Fig. 1, the constructive
manipulation introduces a Sybil s with 1s �′

s 2s �′
s 3s �′

s s.

We now show under what conditions the constructive ma-
nipulation is effective. First, we examine under what condi-
tions an agent wants to change coalition in some partition

3We abuse words by using “the”, as there may be other con-
structive manipulations, and similarly for destructive ma-
nipulations (Section 4.2). However, as we show in Section 5
the manipulations which we exhibit can be seen as canonical.

for the manipulated game. Obviously, m never wants to
do so, since it reports indifference to all coalitions. Now
fix a game G = 〈N,�〉, a malicious agent m ∈ N , and a
partition Π for G. Write G′ for the game resulting from
the constructive manipulation of G by m, C0 ∈ Π ∪ {∅}
for a coalition, and Π′ = Π[s → C0] for the partition for
G′ obtained from Π when the Sybil agent s joins C0, i.e.,
Π′ = Π \ {C0} ∪ {C0 ∪ {s}}.

Lemma 1. An honest agent h wants to change coalition
in Π′ if and only if it wants to change coalition in Π.

Proof. By definition, h wants to change in Π′ if and

only if C′ ∪ {h} �′
h CΠ′

h (1) holds for some C′ ∈ Π′. Now
by Assumption 3 we have C′ ∪ {h} ∼′

h C′ ∪ {h} \ {s} and

CΠ′
h ∼′

h CΠ′
h \{s}. Hence (1) is equivalent to C′∪{h}\{s} �′

h

CΠ′
h \{s}. But CΠ′

h \{s} is precisely CΠ
h and C′ \{s} is in Π,

hence h wants to change to C′ in Π′ if and only if it wants
to change to C′ \ {s} in Π.

Lemma 2. The Sybil agent s wants to change coalition in
Π′ if and only if m ∈ C0 holds, or there is a coalition C ∈ Π
with m /∈ C and C ∪ {m} �m C0 ∪ {m}.

Proof. First assume that s wants to change from C0∪{s}
to C′ ∈ Π′. We assume m /∈ C0 and define C as in the claim.
Indeed, since s wants to change, we have C′∪{s} �′

s C0∪{s}.
Hence, by definition of �′

s we have m /∈ C′ and C′∪{m} �m
C0 ∪ {m}, i.e., C′ is as in the claim. Conversely, if m ∈ C0

holds, then s wants to change in Π′ (at least to {s}). Finally,
if there is C as in the claim, then by definition of �′

s, s wants
to change to C ∪ {s} in Π′.

From these two lemmas we easily obtain the following.

Corollary 1. A partition Π′ is stable in G′ if and only
if, writing Π′ = Π[s → C0], m is not in C0, C0 ∪ {m} is
maximally preferred by m in Π, and either (1) Π is stable,
or (2) m is the unique responsible of the unstability of Π.

Example 7. On Fig. 1, for Cθ = 1m, Π′
3 = Π3[s→ 1] =

{1s, 23m} is satisfactory and Π′
1 = Π1[s→ 12] = {12s, 3m}

is stable but not satisfactory.

We can now give the exact conditions under which the con-
structive manipulation is effective on a game G. We only
give the characterization for the case NS θG = ∅, since oth-
erwise either NS θG = NSG and the agent is already fully
satisfied, or ∅ ( NS θG ( NSG and the destructive ma-
nipulation (Section 4.2) is also applicable, and fully effec-
tive (Proposition 3). However, a characterization can be
given also for the case NS θG 6= ∅; for instance, when �m is
strict, the constructive manipulation is effective if and only
if |URθ

G|/|URG| > |NS θG|/|NSG| holds.

Proposition 1. Assume NS θG = ∅. The constructive
manipulation is effective on G if and only if URθ

G 6= ∅ holds.

Proof. By definition of rGθ , if the manipulation is effec-
tive then G′ has at least one satisfactory partition Π′. Write
Π′ = Π[s → C0]. From Corollary 1 it follows Π ∈ NSG or
Π ∈ URG. Since Π′ is satisfactory, either C0 ∪ {m} �m Cθ
or CΠ

m �m Cθ holds. In both cases, from NS θG = ∅ we get
Π /∈ NSG, hence Π ∈ URG and finally, Π ∈ URθ

G. The
converse is shown similarly.

24



Example 8. On Fig. 1, for Cθ = 1m the manipulation is
effective (NS θG = ∅ and URθ

G = {Π3}). However, for Cθ =
2m it results in a strictly worse situation for m. Indeed, as

NS θG = {Π2} and URθ
G = {Π3}, rGθ = 1/2 and rG

′
θ = 2/5.

Proposition 2. The following problem is NP-hard: gi-
ven a game G with an RIRLC representation, a player m,
and a coalition Cθ, decide whether the constructive manipu-
lation is effective on G for m relative to Cθ.

Proof. We reduce from the problem of deciding whether
a game in RIRLC, say G0, has at least one Nash stable
partition. This problem is NP-complete [3]. Given G0, we
build a game G with NS θG = ∅, but with URθ

G 6= ∅ if and only
if G0 has a stable partition. From Proposition 1 it follows
that the constructive manipulation is effective in G if and
only if G0 has a Nash stable partition. Write G0 = 〈N0,�0〉
with N0 = {h1, . . . , hn}. The game G is defined from G0

by adjoining two new agents, h and m, and introducing the
following preference relations: {h,m} �m {m}, {h} �h C
for all coalitions C 6= {h}, and �i as built from (�0)i with
Assumptions 2 and 3. Intuitively, h wants to be alone and
m wants to join h; other agents are indifferent to them, and
otherwise keep their preferences from G0. Clearly, G can
be built in time polynomial in the size of G0. Finally, we
let Cθ be the coalition {h,m}. No partition Π is stable in
G, because if h is not in the singleton coalition {h}, then it
wants to change to it, while if it is in {h}, then m wants to
join it. Now assume that there is a stable partition Π0 in G0,
and consider the partition Π = Π0∪{{h}, {m}} for G. Then
clearly m is the unique responsible for the unstability of Π.
Moreover, in Π the attractive coalition for m is satisfactory
for it. Hence Π ∈ URθ

G holds. Dually, if all partitions Π0

for G0 are unstable, then because h1, . . . , hn are indifferent
to h,m, all partitions involving h,m must also be unstable.
Finally, G has no stable partition, and URθ

G 6= ∅ holds if
and only if G0 has a stable partition, as desired.

Observe that this manipulation is independent of the pref-
erences of honest agents. However, deciding whether it is ef-
fective, beside being computationally hard, requires to know
them. Moreover, such decision is in some sense necessary,
since an ineffective constructive manipulation may (strictly)
worsen the situation of m (Example 8).

4.2 A Destructive Sybil Attack
We now consider a destructive attack, in the sense that

it results in undesirable stable partitions becoming unsta-
ble. With Nash stability, a single “veto” agent can refuse
a coalition, and therefore make a given partition unstable.
The destructive attack builds on this by using a single false
identity, which vetoes any partition where m is not satisfied.

Definition 11. Let G = 〈N,�〉 be a game. The de-
structive manipulation G′ by m uses one Sybil agent s, with
�′
m:=�m, and �′

s defined for all C ⊆ N by C ∪ {s} �′
s {s}

if m ∈ C and C �m Cθ, or {s} �′
s C ∪ {s} otherwise.

In particular, we have {s} �′
s Cθ ∪ {s}, and the relative

preferences between the coalitions in each case can be arbi-
trary. Informally, the Sybil agent wants to join all coalitions
containing m and not prefered to Cθ. As m does not want
to be with s, all unsatisfactory partitions become unstable.

Example 9. On Fig. 1 with Cθ = 2m, the preferences of
s are given by 3ms, ms, 12ms, 13ms, 23ms, 123ms �′

s s.

The destructive manipulation is effective when there is at
least one satisfactory partition in the original game. Fix a
game G, a malicious agent m, and a coalition Cθ. Write G′

for the game resulting from the destructive manipulation.

Lemma 3. There is a satisfactory partition in G′ if and
only if there is one in G. Moreover, all stable partitions in
G′ are satisfactory for m.

Proof. For the first claim (“only if”), assume Π′ is sat-
isfactory in G′, and write Π′ = Π[s → C0]. If m is in
a satisfactory coalition in Π′, then Π is satisfactory in G.
Otherwise only C0 ∪ {s} is satisfactory in Π′, but then the

definition of �′
s implies that s wants to change to CΠ′

m , con-
tradicting the stability of Π′. For the “if” direction, simply
observe that if Π is satisfactory in G, then Π∪ {{s}} is sat-
isfactory in G′. For the second claim, let Π′ be a stable but
nonsatisfactory partition in G′. Then by definition of �′

s, s
is in the same coalition as m. But then m prefers being in
the singleton coalition, contradicting the stability of Π′.

Recall that if all stable partitions are satisfactory in G, no
manipulation can be strictly effective. Interestingly, when
the destructive manipulation is effective, it is fully so: all
stable partitions are satisfactory in the manipulated game.

Proposition 3. The destructive manipulation is effec-
tive on G iff G has at least one satisfactory partition, and
at least one stable but nonsatisfactory partition.

Example 10. On Fig. 1, the manipulation is effective for
Cθ = 2m (Π2 is satisfactory, Π1 is not, so only Π2[s→ ∅] =
{13, 2m, s} remains), but it is not for Cθ = 3m (m is already
fully satisfied in G) nor for Cθ = 1m (rGθ remains 0).

Like for the constructive manipulation, it is hard to de-
cide whether this manipulation is effective, and this requires
some knowledge about G. However, unlike the constructive
case, the attack cannot strictly worsen the situation of m.

Proposition 4. The following problem is NP-hard: gi-
ven a game G with an RIRLC representation, a player m,
and a coalition Cθ, decide whether the destructive manipu-
lation is effective on G for m relative to Cθ.

Proof. The construction is similar to the one in Propo-
sition 2. Given G0 = 〈N0,�0〉, we build a game G with both
a satisfactory, and a stable but nonsatisfactory partitions, if
and only if G0 has a stable partition. The game G is defined
from G0 by adding three agents, h, h′, and m, with the pref-
erence relations: {h, h′,m} �a {a} for a ∈ {h, h′,m} and,
for all agents hi, �i as built from (�0)i with Assumptions
2 and 3. Intuitively, h, h′ and m want to be all together or
each alone, and other agents are indifferent to them. Finally,
we let Cθ be the coalition {h, h′,m}. Let Π be any partition
in G. Then Π is not stable if at least one of h, h′,m is with
some agent hi, since they prefer to be alone. It is not stable
either if exactly two of them are together. In the two remain-
ing cases, either each of them is in the singleton coalition or
they are all together, and it is easily seen that Π is stable if
and only if the partition Π \ {{h}, {h′}, {m}, {h, h′,m}} is
stable for G0. Moreover, though both are stable, only the
partition containing the coalition {h, h′,m} is satisfactory
for m, as desired.
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5. ROBUSTNESS FOR NASH STABILITY

5.1 Two Canonical Manipulations
We now show that the manipulations exhibited above are

the only possible Sybil attacks on a hedonic game using at
most one false identity, in the sense that games which are
not manipulable (efficiently) by the constructive or the de-
structive attack defined above, are not manipulable by an
attack at all under our assumptions.

Proposition 5. Let G be a hedonic game with the Nash
stable solution concept, m an agent in G, and Cθ a threshold
coalition for m. If neither the constructive nor the destruc-
tive manipulations are effective on G, then no Sybil attack
using at most one false identity is effective on G.

Proof. We assume that there is an effective manipula-
tion M but the destructive manipulation is not effective,
and we show that the constructive one is effective. Since the
destructive manipulation is not effective, by Proposition 3
either all stable partitions in G are satisfactory, or none
is. In the former case M cannot be effective, contradict-
ing the assumption. Hence G has no satisfactory partition.
Write G′ for the game resulting from the manipulation M ,
and s for the Sybil agent used by M . Since M is effective,
in G′ there is a satisfactory Π′. Write Π for the partition
{C′ \ {s} | C′ ∈ Π′}. We show that either Π is satisfactory
in G, yielding a contradiction, or Π ∈ URθ

G holds. First ob-
serve that no honest agent hi wants to change coalition in Π;
otherwise, by the benefit of the doubt (Assumption 3) hi de-
sires the same change in Π′, contradicting the stability of Π′.
As concerns m, we distinguish two cases. Assume that in Π′

no coalition is preferred to that of m, precisely, that for all

coalitions C ∈ Π′ it holds C \{s}∪{m} �m CΠ′
m \{s}. Then

m does not want to change coalition in Π. So Π is stable.
Moreover, because m is in its preferred coalition in Π′ and
Π′ is satisfactory, Π is satisfactory as well, a contradition.

Hence there is C ∈ Π′ with C \{s}∪{m} �m CΠ′
m \{s}, and

m wants to change to such a C in Π. Moreover, since Π′

is satisfactory there must be such a C which is satisfactory,
and it follows Π ∈ URθ

G. Because G has no satisfactory par-
tition (NS θG = ∅), the constructive manipulation is effective
(Proposition 1).

Proposition 5 hence completely characterizes the condi-
tions under which a hedonic game is manipulable by a false
report of preferences and/or the use of one Sybil agent.
Moreover, it holds even for all imaginable manipulations,
possibly with many Sybil agents, provided Assumption 3 is
extended to any set of agents, that is, provided honest agents
are indifferent to any number of unknown agents joining a
coalition. While this may seem an irrealistic assumption (for
instance, honest agents would be indifferent to play a game
with some friends, or with the same friends plus a thou-
sand of unknowns), this extended result is unexpected as
it shows that, under the extended assumption, using many
Sybil agents instead of just one does not help the malicious
agent. Another interesting relaxation of Assumption 3 is the
following form of subaddivity : honest agents prefer unknown
agents not to join a coalition, but otherwise maintain their
preferences when unknown agents are disregarded.

Assumption 4 (weak subadditivity). ∀C1, C2 ⊆ N,
∀ai ∈ N with C1 �i C2, ∀u /∈ N : C1 �′

i C1 ∪ {u} �′
i C2

Figure 2: Ratio of manipulable games

Figure 3: Ratio of stable partitions

Lemma 1 for the constructive manipulation and the char-
acterization of Proposition 5 are based on the fact that an
honest agent h wants to change to C′ in Π′ if and only if
it wants to change to C′ \ {s} in Π. Since this is still true
under the relaxed Assumption 4 and the other results do
not use Assumption 3, all our results for Nash stability hold
under the relaxed assumption. Hence, they also hold under
the dual assumption of weak superadditivity, including the
characterization of Proposition 5, despite the fact that su-
peradditivity may seem more beneficial to malicious agents.

5.2 Empirical Study
We present here small experiments which suggest that,

even if some games are manipulable, this seldom occurs in
practice. In order to give a rough estimate of the probability
for a game to be manipulable, we ran a set of experiments
with 3 to 10 agents. For each experiment, we ran 10, 000
simulations, each of which consists of generating a hedonic
game G with preference profiles drawn uniformly at random.
Then we measured the proportion of those games which are
manipulable (Fig. 2), and the proportion of games with given
numbers of stable partitions (Fig. 3). Fig. 2 suggests that
as the number of agents increases, a random game has a
decreasing probability to be manipulable. This is quite in-
tuitive since the malicious agent has less and less chances to
be the unique responsible for the unstability of a partition.
For instance, with 6 agents, only 67 of the 10, 000 gener-
ated games were manipulable by the destructive attack, and
beyond 7 agents, less than 10 % of the games were manip-
ulable at all. Similarly, Fig. 3 suggests that as the number
of agents increases, the number of stable partitions in the
original game decreases. Again, this typical observation for
Nash stability can be explained by the fact that more and
more agents are candidate for changing coalition.
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6. OTHERS SOLUTION CONCEPTS
As we saw, the robustness of hedonic games with Nash

stability as a solution concept is due to the fact that the set
of Nash stable partitions is small, and may even be empty.
Consequently, other less restrictive solution concepts were
proposed, such as individual or contractual individual sta-
bility [5]. We now study these solution concepts.

6.1 Contractual individual stability
This solution concept provides a nonempty set of sta-

ble partitions. Informally, contractual individual stability
means that no agent can change its coalition without the
acceptance of both the coalitions which it joins and leaves.

Definition 12. Let G = 〈N,�〉 be a hedonic game. A
partition Π of N is said to be contractually individually
stable (C.I. stable for short) if the following holds: ∀ai ∈
N, @C ∈ Π ∪ {∅} such that (1) C ∪ {ai} �i CΠ

i , (2) ∀aj ∈
C : C ∪ {ai} �j C, and (3) ∀ak ∈ CΠ

i : CΠ
i \ {ai} �k CΠ

i .

In the sequel, we write CISG for the set of C.I. stable par-
titions of a game G. It is known that NSG ⊆ CISG and
CISG 6= ∅ hold for any game G [5]. We now propose a con-
structive manipulation of such games4. For a game G =
〈N,�〉 and a coalition C ⊆ N , we write G \C for the game
〈N \ C,�|N\C〉, where �|N\C is the restriction of � to the
preferences of the agents in N \ C.

Definition 13. Let G = 〈N,�〉 be a game with the so-
lution concept of C.I. stability. The constructive manipula-
tion of G by m uses one Sybil agent s, with �′

m:=�m, and
�′
s:= Cθ \ {m} ∪ {s} �s {s}.

Proposition 6. A partition Π′ is C.I. stable in G′ if and

only if, writing Π′ = Π[s → C0], either (1) CΠ′
s = {s},

Cθ \ {m} /∈ Π′, and Π is C.I. stable in G, or (2) CΠ′
s =

Cθ\{m}∪{s}, and Π′\{CΠ′
s } is C.I. stable in G\(Cθ\{m}).

Proof. For the “only if” direction, let Π′ be a C.I. stable

partition of G′. If CΠ′
s 6= {s} and CΠ′

s 6= Cθ \{m}∪{s} then
{s} wants to change to {s}, and no agent can veto this be-
cause of Assumption 3. Hence Π′ 6∈ CISG′ , a contradiction.

Now for CΠ′
s = {s}, Cθ \{m} /∈ Π′ holds because otherwise s

would want to join it (other agents cannot veto this because
of Assumption 3); moreover, since Π′ is C.I. stable no other
agent can change coalition in it, and because of Assump-
tions 2 and 3, the same holds in Π, which is thus C.I. stable.

Finally, for CΠ′
s = Cθ \{m}∪{s}, the same reasoning shows

that Π′ \ {CG
′

s } is stable in G \ (Cθ \ {m}).
We now show the “if” direction. For CΠ′

s = {s}, s does
not want to change coalition because of the assumption
Cθ \ {m} /∈ Π′, and the other agents cannot change be-
cause otherwise they could perform the same change in Π,
contradicting its C.I. stability. Hence Π′ is stable. Finally,

for CΠ′
s = Cθ \ {m}∪ {s}, clearly s does not want to change

coalition. As for honest agents, none of them can quit or join
Cθ \{m}∪{s} because of the veto of s. Hence possibilities of
changing coalitions can be only among other coalition, but

there cannot be any of them since Π′ \ {CΠ′
s } is C.I. stable

in G \ (Cθ \ {m}). This concludes the proof.

4Due to space constraints, we let the case of the destruc-
tive manipulation in individual and contractual individual
stability solution concepts for future work.

We now show that this manipulation is always effective,
which constrats with the robustness of the Nash case.

Proposition 7. Let G be a hedonic game with the solu-
tion concept of C.I. stability. Then the constructive manip-
ulation is effective on G as soon as the malicious agent is

not fully satisfied in G ( i.e., as soon as rG
′

θ is not 1).

Proof. The manipulation is effective if rG
′

θ > rGθ , by
definition. From Proposition 6, the number of C.I. stable

partitions in G′ is |CISG ∪ CISG\(Cθ\{m})|. As CΠ′
s = Cθ \

{m}∪{s} for Π ∈ CISG\(Cθ\{m}), every C.I. stable partition
built from G \ (Cθ \ {m}) (Case (1) of Proposition 6) is
satisfactory. Moreover, a partition Π′ built from a partition
Π for G (Case (2) of Proposition 6) is satisfactory if and
only if so is Π. Finally, both cases yield distinct partitions

Π′. It follows rG
′

θ =
|CISθG|+|CISG\(Cθ\{m})|
|CISG∪CISG\(Cθ\{m})|

>
|CISθG|
|CISG| = rGθ

(using
|CISθG|
|CISG| = rGθ 6= 1 and CISG\(Cθ\{m}) 6= ∅ [5]).

6.2 Individual stability
Contractual individual stability may seem to be constrain-

ing, since agents cannot decide alone to leave their coalitions.
Hence we now consider individual stability. This solution
concept means that no agent can change its coalition with-
out the acceptance of the coalition it joins.

Definition 14. Let G = 〈N,�〉 be a hedonic game. A
partition Π of N is said to be individually stable if the fol-
lowing holds: ∀ai ∈ N, @C ∈ Π ∪ {∅} such that (1) C ∪
{ai} �i CΠ

i and (2) ∀aj ∈ C : C ∪ {ai} �j C.

We write ISG for the set of all individually stable parti-
tions of G. It is known that ISG ⊆ CISG always holds, but
ISG may be empty [5]. We now investigate the effectivness
of the constructive manipulation defined for the concept of
contractual individual stability, when used with individual
stability. For simplicity, in this section we assume that Cθ
is the coalition maximally preferred by the malicious agent
(we assume there is only one maximally preferred coalition)
and that Cθ is not the singleton {m}. Nevertheless, the con-
struction and results can easily be extended to the general
case.

Proposition 8. Let Π be an individually stable partition
for G. Then (1) if Cθ \ {m} is not in Π, then Π ∪ {{s}} ∈
ISG′ holds, and (2) if Cθ \ {m} is in Π, then Π[s → Cθ \
{m}] ∈ ISG′ holds. In both cases, no other partition of the
form Π[s→ C0] is individually stable in G.

Proof. The proof is similar to the one for Proposition 6.
In the first case, write Π′ = Π ∪ {{s}}. Clearly s does not
want to change coalition (since Cθ \ {m} is not in Π′), and
no other agent can change coalition since otherwise it could
perform the same change in Π, contradicting its stability.
Now in the second case, write Π′ = Π[s→ Cθ\{m}]. Clearly
again, s does not want to change coalition in Π′, and any
change available to another agent would be available in Π
as well (using Assumption 3), contradicting its stability. We
now prove the last claim. In the first case, if s is not in the
coalition {s}, then it prefers to be alone, and no agent can
veto this by definition of individual stability. In the second
case, if s is not in Cθ \ {m} ∪ {s}, then it wants to join it,
and no agent can veto this by Assumption 3.
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As previously, we can now give the conditions under which
the constructive manipulation is effective on a game G.

Proposition 9. Let G be a hedonic game with individual
stability as the solution concept. Then the constructive ma-
nipulation is effective on G if and only if there is an individ-
ually stable partition Π for G which contains Cθ \ {m} ∈ Π.

Proof. From Proposition 8 it follows that each partition
Π ∈ ISG gives rise to exactly one partition Π′ ∈ ISG′ , so the
number of stable partitions in G′ is the same as in G. Now
consider an individually stable partition Π for G, and the
corresponding partition Π′ for G′ (built as in Proposition
8). If Π does not contain Cθ \ {m}, then we distinguish two
cases. If Π is satisfactory, i.e., contains the unique satisfac-
tory coalition Cθ, then so is Π′ = Π ∪ {{s}}. Dually, if Π is
not satisfactory, i.e., does not contain Cθ, then neither does
Π′. Hence the number of satisfactory partitions is preserved
from G to G′ for the case Cθ \ {m} /∈ Π. Now consider the
case Cθ \ {m} ∈ Π. Then clearly Π is not satisfactory for

m while Π′ = Π[s → Cθ \ {m}] is, hence the ratio rG
′

θ is
greater than rGθ if and only if there is such a partition Π,
which concludes the proof.

7. CONCLUSION AND FUTURE WORK
We studied the robustness of hedonic games to a quite gen-

eral type of manipulations, called Sybil attacks, with Nash
stability as a solution concept. We showed that they are ma-
nipulable only under particular conditions, and we exhibited
two manipulations which cover all these conditions. These
manipulations involve only one false identity and no knowl-
edge of the game (not even the number of honest agents).
We showed that it is computationally hard for a malicious
agent to decide whether one or the other is effective, and that
these conditions are seldom met by random games. From all
these results we conclude that hedonic games with Nash sta-
bility as a solution concept are very robust to Sybil attacks.
Observe that our results do not imply that there are no
more effective constructive manipulations. There may well
be one which increases the satisfaction of the malicious agent
by more than the one which we exhibited, or which cannot
worsen its situation, or whose effectivity can be decided effi-
ciently. However, our results and experiments do show that
it would be seldom effective. Consequently, we investigate
other solution concepts than Nash stability, such as indi-
vidual or contractual individual stability. As these solution
concepts are less restrictive, the conditions for a rational ma-
nipulation to exist are less restrictive as well. In particular,
in sharp contrast with the Nash case, we showed that when
contractual individual stability is the solution concept, then
every game is manipulable (using only one Sybil agent). Our
results rely on two assumptions about the attitude of hon-
est agents in presence of new agents, namely, irrelevance of
independent alternatives and benefit of the doubt. These
assumptions may seem overly beneficial to malicious agents,
but we showed that (slighlty) weakening the benefit of the
doubt still allows manipulations in the Nash case, which
reinforces our conclusions. Nevertheless, it would be in-
teresting to consider relaxing the assumptions on solution
concepts other that Nash stability, as the core stability. In-
tuitively, manipulations should be easier to achieve when
honest agents prefer new agents to join, and harder when
they avoid them. Finally, we defined our setting by intro-
ducing a threshold coalition and an uniform draw to choose

the stable partitions. It would be interesting to do without
such input and assumption by extending the players’ pref-
erences over partitions to preferences over sets of partitions
and using well-known social choice functions.
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