
Coalition Structure Generation
with the Graphics Processing Unit

Krzysztof Pawłowski
∗

University of Warsaw
kpidpg@gmail.com

Karol Kurach
†

University of Warsaw
kkidpg@gmail.com

Kim Svensson
University of Southampton
ks6g10@ecs.soton.ac.uk

Sarvapali Ramchurn
University of Southampton

sdr@ecs.soton.ac.uk

Tomasz P. Michalak
University of Oxford

University of Warsaw
tomasz.michalak@cs.ox.ac.uk

Talal Rahwan
Masdar Institute

trahwan@gmail.com

ABSTRACT

Coalition Structure Generation—the problem of finding the opti-

mal division of agents into coalitions—has received considerable

attention in recent AI literature. The fastest exact algorithm to solve

this problem is IDP-IP∗ [17], which is a hybrid of two previous al-

gorithms, namely IDP and IP. Given this, it is desirable to speed

up IDP as this will, in turn, improve upon the state-of-the-art. In

this paper, we present IDPG—the first coalition structure genera-

tion algorithm based on the Graphics Processing Unit (GPU). This

follows a promising, new algorithm design paradigm that can pro-

vide significant speedups. We show that IDPG is faster than IDP by

two orders of magnitude.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General

General Terms

Theory, Design, Performance

Keywords

Coalition Structure Generation, Dynamic Programming, GPU

1. INTRODUCTION
Coalitional games have been studied in various areas of artificial

intelligence and multi-agent systems [4, 14, 18]. By cooperating,

agents are often able to enhance their performance and achieve

tasks otherwise unachievable. The formation of coalitions is rele-

vant both in cases where agents are cooperative (i.e., they maximize

the social welfare) as well as cases where they are selfish (i.e., each

agent maximizes its own reward, regardless of the consequences on

others). Coalition formation techniques can be used, for example, to

improve the surveillance of an area using autonomous sensors [9],

or reduce the uncertainty that green-energy generators have about

∗First author together with Karol Kurach.
†First author together with Krzysztof Pawłowski.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

their own production [5], or allow buyers to obtain cheaper prices

through bulk purchasing [10].

In general, the effectiveness of a coalition can be influenced by

other co-existing coalitions. Such settings are known as partition

function games [11]. On the other hand, in characteristic function

games (CFGs), a coalition’s effectiveness depends solely on the

identities of its members. This assumption simplifies the research

questions significantly, and holds in many realistic settings [5, 9,

24, 22]. Thus, as common practice in the literature, we focus in this

paper on characteristic function games (CFGs).

Generally speaking, there are settings where merging any two

coalitions is always beneficial. In such settings, all the agents should

work together in one big coalition. There are other settings, how-

ever, where there are coordination and/or communication costs that

often increase with the size of the coalition. In such settings, the

agents may find it more profitable to partition themselves into mul-

tiple, disjoint coalitions. Such a partition is called a coalition struc-

ture, and the problem of identifying the best such partition is known

as the coalition structure generation problem. Many algorithms

have recently been developed to solve this problem, some of which

use the classical representation of CFGs, e.g., [1, 13, 19], while

others are tailored for certain classes or alternative representations

of CFGs, e.g., [4, 25, 18, 3, 26]. We focus on the former type of

algorithms and, in particular, those that are exact. In this context,

the state-of-the-art algorithm is IDP-IP∗ [17]. As the name sug-

gests, this algorithm is a hybrid of two previous algorithms, namely

IDP [16] and IP [20]. While IP, given n agents, runs in O(nn) time,

combining it with IDP reduces the complexity to O(3n). Further-

more, the hybrid has been tested against several problem instances,

and has been shown to be faster in practice than both its constituent

parts. Based on all the above, any improvements to IDP will natu-

rally result in improvements to the state-of-the-art.

Against this background, in this paper we set to develop a faster

version of IDP following a promising, new algorithm design para-

digm that builds upon Graphics Processing Units (GPUs). In more

detail, a GPU is a piece of hardware (consisting of multiple com-

putational entities, or “cores”, just like a standard CPU) designed

mainly for rendering 3D computer graphics. It differs from a stan-

dard CPU, though, in that the number of “cores” is larger, while the

speed per core is lower. Importantly, however, the total computa-

tional power on a GPU (when taking all cores into consideration) is

much greater than that of a CPU. This, many have realized, meant

that almost any algorithm can run faster on a GPU than a CPU,

provided that this algorithm can be efficiently parallelized. Such

capabilities gave rise to a new line of research known as GPGPU

293

(General Purpose computing on the GPU), which studies the sci-

ence of overcoming the challenges imposed by the transition from

traditional CPUs to GPUs. To date, this remains a green field, with

many areas yet to be explored, and many widely-used algorithms

waiting to be redesigned for GPUs. This line of research spreads

over different fields such as artificial intelligence [6, 15], compu-

tational biology [8], linear algebra [23], signal processing [28],

among others. Speedups of one or even two orders of magnitude are

widely reported. Another appealing feature for using GPUs is that

its advantage (in terms of total computational power) over CPUs

has been growing in recent years [2]. While high-performance al-

ternatives to GPU exist, such as super-computing clusters and field-

programmable gate arrays (FPGAs), these are much more expen-

sive at similar performance levels compared to GPUs.

We bring to the attention of the Computational Coalition Forma-

tion community some of the desiderata that can significantly en-

hance the performance when developing GPU algorithms:1

• Minimize the number of synchronization points, i.e., the

points in the algorithm to which all cores must arrive before

the algorithm can proceed. The problem with synchroniza-

tion points is that they cause delays. This happens when some

cores arrive to a synchronization point before others, which

means they have to remain idle while waiting for the others.

This is inevitable in practice even when the cores have iden-

tical computational power, especially if the number of cores

is in the hundreds as is the case with GPU (since one core

can cause all others to wait).

• Minimize the number of global memory accesses. In a

nutshell, a GPU contains a centralized global memory that

can be shared by different threads. It is by far the largest

on a GPU, meaning it is the only option when storing large

amounts of data (e.g., the characteristic function table with

2n values). However, global memory is slow. Thus, when

designing GPU algorithms, one should try and keep global

memory accesses to a minimum.

• Maximize the number of threads that are scheduled at the

same time. At first glance, when breaking the optimization

problem into smaller subproblems that are each solved by a

separate thread, it may seem ideal to have as many threads

as there are cores on the GPU. However, this could lead to

inefficiency due to memory latency. In particular, whenever

a thread needs to access global memory, the core that is exe-

cuting that thread would remain idle until memory access is

granted. This is precisely why it is more efficient to have as

many threads on a single core as possible; it allows the core

to switch to a thread while another is waiting to be granted

memory access. This optimization is known as latency hid-

ing.

• Minimize the number of instructions per “branch”. This

is due to the way GPUs operate. Basically, cores on a GPU

are divided into groups; one group on every “streaming mul-

tiprocessor”. Whenever cores in the same groups happen to

be executing the same line of code simultaneously, the GPU

can take advantage of this and speed up the execution.2 Based

1We will be using some standard terms commonly used in research
on GPU, and in the documentations of NVIDIA—the world’s lead-
ing GPU developer: http://docs.nvidia.com
2This is due to hardware specifications of GPUs. Additional infor-
mation can be found in NVIDIA’s “CUDA C Best Practice Guide”,
http://docs.nvidia.com

on this, when designing GPU-based algorithms, one should

try and have as few instructions as possible in “branches”,

which in the GPU context mean blocks of code, execution

of which depends on conditional instruction such as the “if”

instruction. This optimization is known as reducing warp di-

vergence.

Against this background, our contributions in this paper can be

summarized as follows:

• We develop IDPG—the reformulation of IDP for GPUs. This

is the first GPU-based algorithm for coalition structure gen-

eration.

• We prove that the number of synchronization points in IDPG

is optimal, i.e., it is not possible to parallelize IDP with a

fewer number of such points. We then prove a certain prop-

erty of IDP, and exploit it when reducing global memory ac-

cess in IDPG.

• We evaluate our algorithm experimentally, and show that it

outperforms IDP by two orders of magnitude.

The remainder of the paper is organized as follows. Section 2

provides the necessary background. Section 3 presents IDPG. Sec-

tion 4 presents empirical evaluations. Section 5 reviews the related

work. Finally, Section 6 concludes the paper and outlines future

directions.

2. BACKGROUND
In this section we formally state the coalition structure genera-

tion problem, and then describe IDP—which stands for Improved

Dynamic Programming—since we will build on it later on in the

paper.

Let A = {a1, . . . , an} denote the set of n agents. We focus on

characteristic function games, where the efficiency of any coalition,

C ⊆ A, is represented by a real number, known as the value of C,

and denoted by v(C). Formally, v : 2A → R. Now, let ΠA be

the set of possible coalition structures (i.e., partitions over A) and,

for any coalition structure CS , let V (CS) denote the value of CS ,

where: V (CS) =
P

C∈CS
v(C). Furthermore, let CS

∗ denote an

optimal coalition structure. That is, CS
∗ ∈ arg max

CS∈ΠA V (CS).

The coalition structure generation problem is then the problem of

finding one such CS
∗.

Now, we turn our attention to IDP. To help the reader under-

stand how it works, we need to first explain a preliminary version

of this algorithm, called DP [27]—which stands for Dynamic Pro-

gramming; this is basically the first dynamic programming algo-

rithm proposed to solve the coalition structure generation problem.

Before we can explain how the DP algorithm works, we need to

introduce some additional definitions. More specifically, we will

refer to any set of disjoint coalitions as a “partition”, denoted P .

Only when such a partition contains all agents will we use the

term “coalition structure”. Now, for any coalition C ⊆ A, let

ΠC be the set of possible partitions of C, where a partition P =
{P1, · · · , P|P |} ∈ ΠC is a set of disjoint coalitions of which the

union equals C. In the same way that we defined the value of a

coalition structure, we now define the value of a partition. For-

mally, let V (P) =
P

Pi∈P v(Pi) be the value of partition P .

Now, let f(C) be the value of the optimal partition of C, i.e.,

f(C) = maxP∈ΠC V (P). Then, DP is based on the following

294

Figure 1: IDP vs. DP, given A = {a1, a2, a3, a4} and function v
as shown in Example 1. Highlighted in green is the path leading

to the optimal result. Locally optimal results are highlighted in

red. Gray indicates splits that are considered by DP, but not

IDP.

recursive formula:

f(C)=

8

>

<

>

:

v(C) if |C| = 1

max
˘

v(C) , max{C′,C′′}∈ΠC

`

f(C′) + f(C′′)
´¯

otherwise.

In other words, for any coalition C, if we know the optimal partition

of every strict subset of C, then we can easily (relatively speaking)

find an optimal partition of C: Instead of examining all partitions

in P C , it suffices to examine only those containing exactly two

coalitions (i.e., examine every {C′, C′′} ∈ ΠC as in the equation

above) and then find one that maximizes V (C′)+V (C′′), denoted

{C∗, C∗∗}. Once we have identified {C∗, C∗∗}, the optimal parti-

tion of C can be found straight away; it is the union of the optimal

partitions of C∗ and C∗∗, unless v(C) > f(C∗) + f(C∗∗), in

which case it is {C}.
Based on the above idea, the DP algorithm iterates over all the

coalitions of size 1, and then over all those of size 2, and then size

3, and so on until size n. For every such coalition C, it computes

f(C) using the above equation. So, to summarize, let us call ev-

ery partition containing exactly two coalitions a “split”. Then, DP

works by evaluating every possible split of every possible coalition,

starting with the coalitions of size 2, then moving to those of size

3, and so on until size n.

Example 1. Let A = {a1, a2, a3, a4} and v({a1}) = 25, v({a2}) =
35, v({a3}) = 20, v({a4}) = 40, v({a1, a2}) = 40, v({a1, a3}) =
50, v({a1, a4}) = 70, v({a2, a3}) = 45, v({a2, a4}) = 60,

v({a3, a4}) = 70, v({a1, a2, a3}) = 75. v({a1, a2, a4}) = 105,

v({a1, a3, a4}) = 85, v({a2, a3, a4}) = 100, v({a1, a2, a3, a4}) =
120. The splits computed by DP to generate f are shown in Fig-

ure 1.

Let us now move back to IDP, the improved version of DP [16].

In particular, the authors showed that certain splits can safely be

skipped without losing the guarantee of finding an optimal coali-

tion structure. In particular, they showed that it is sufficient to eval-

uate the splits that involve partitioning a coalition of size c into two

coalitions of sizes c′ and c′′, where (c′, c′′) is in:

dep(c) =
n

(c′, c′′) ∈ N
2 : (c′ ≥ c′′) ∧ (c′ + c′′ = c)

∧ [(c′ ≤ n− c′ − c′′) ∨ (c = n)]
o

.

Based on this, for any given coalition C such that |C| = c, IDP

only evaluates the splits in ΠC that involve partitioning C into two

coalitions of sizes c′ and c′′, where (c′, c′′) ∈ dep(c). We chose

the notation dep as it indicates the dependencies between different

coalition sizes. Rahwan and Jennings proved that dep(c) = ∅ for

all c ∈
˘¨

2n
3

˝

+ 1, . . . , n− 1
¯

. However, the link between the

value of c and the elements in dep(c) was not formalized for cases

where c ≤
¨

2n
3

˝

.

Example 2. Coming back to the example in Figure 1, IDP evalu-

ates no splits of coalitions of size 3. In other words, it evaluates 12

splits less compared to DP.

3. IDPG

In this section, we present IDPG—a parallelized version of IDP,

designed to meet the desiderata outlined in the introduction. The

open-source implementation of IDPG is made publicly available 3.

To simplify notation, we will denote by c, c′, c′′ the cardinalities

(i.e., sizes) of coalitions C, C′, C′′, respectively. Furthermore, the

problem of evaluating every {C′, C′′} ∈ ΠC : (c′, c′′) ∈ dep(c)
for a given C will be called the “subproblem of C”, or simply a

“subproblem” when there is no risk of confusion. The section is

divided as follows.

• Section 3.1 focuses on minimizing the number of synchro-

nization points. In particular, we show how IDP’s operations

can be parallelized with ⌈n/2⌉ − 1 synchronization points.

We then prove the correctness of the proposed synchroniza-

tion scheme, and prove it is optimal, that is, it is not possible

to parallelize the operation of IDP with a number of synchro-

nization points smaller than ⌈n/2⌉ − 1.

• Section 3.2 explains an efficient way for enumerating the

subsets of size k out of a set of size n. This operation is used

to assign a different subproblem to each GPU thread.

• Section 3.3 describes the pseudo codes of IDPG.

• Section 3.4 focuses on the other desired properties that we

set earlier in the introduction.

3.1 Handling Synchronization Points
In order to parallelize IDP, we need to analyze the dependen-

cies between the different subproblems. Here, our aim is to group

the subproblems into “stages” that are solved sequentially (i.e., all

subproblems in stage 1 are solved first, then all of those in stage 2,

then stage 3 and so on). We aim to do this in such a way that guar-

antees every subproblem is solved before any of its dependents,

i.e., guarantees that every subproblem depends solely on subprob-

lems belonging to earlier stages. This way, the dependencies be-

tween subproblems are reduced to dependencies between stages.

With this, subproblems within the same stage can be computed in

parallel without any need for synchronization. To be more precise,

synchronization would be needed between stages, but not within a

stage.

3For the IDPG implementation developed part of this research, see:
https://github.com/idpg/idpg

295

c l(c) dep(c) ld(c)

1 0 ∅ ∅
2 1 {(1, 1)} {0}
3 2 {(2, 1)} {0, 1}
4 3 {(2, 2), (3, 1)} {0, 1, 2}
5 4 {(3, 2), (4, 1)} {0, 1, 2, 3}
6 4 {(3, 3), (4, 2)} {1, 2, 3}
7 0 ∅ ∅
8 0 ∅ ∅
9 0 ∅ ∅

10 5 {(5, 5), (6, 4), (7, 3),

(8, 2), (9, 1)}

{0, 1, 2, 3, 4}

Table 1: Stage assignments and dependencies for 10 agents

To this end, observe that the definition of dep(c) implies the fol-

lowing:

(c′, c′′) ∈ dep(c) iff

8

>

>

>

<

>

>

>

:

1 ≤ c′ ≤ n− 1 and

c′ + c′′ = c and

(c ≤
¨

2n
3

˝

or c = n) and

(
˚

c
2

ˇ

≤ c′ ≤ n− c or c = n).

(1)

Based on this, we will show how to group subproblems into

stages so as to minimize the number of synchronization points.

Specifically, in our algorithm, determining the stage of a given sub-

problem depends solely on the size of the coalition whose splits

are evaluated in that subproblem. More formally, the subproblem

of coalition C : |C| = c is assigned to stage l(c), which is defined

as follows:

l(c) =

8

>

>

>

<

>

>

>

:

c− 1 if 1 ≤ c ≤
¨

n+1

2

˝

n− c if
˚

n
2

ˇ

+ 1 ≤ c ≤
¨

2n
3

˝

0 if
˚

2n+1

3

ˇ

≤ c ≤ n− 1
˚

n
2

ˇ

if c = n.

(2)

Example 3. Table 1 illustrates how the assignment of subproblems

to stages works in practice for a problem with 10 agents. The first

column, c, denotes the size of the subproblem. The second column,

l(c), describes the stage that the subproblem has been assigned to,

according to Equation 2. Third column, dep(c), is the set of depen-

dencies as defined by Equation 1. Finally, the last column shows the

value of an expression ld(c) =
S

{{l(x), l(y)} : (x, y) ∈ dep(c)},
which is simply a set of stage numbers that the subproblem of C
depends on, where |C| = c. As can be seen, all ld(c) elements are

smaller than l(c). This basically means we can order the execution

according to l(c) without violating any dependencies.

To prove that the above assignment of subproblems to stages is

correct, we need to prove that whenever a subproblem depends on

another subproblem, the former will always be assigned to an ear-

lier stage compared to the latter. In order to do so, it is sufficient to

prove the following theorem:

THEOREM 1. For every c ∈ {1, . . . , n}, and every (c′, c′′) ∈
dep(c), the following holds:

“

l(c′) < l(c)
”

and
“

l(c′′) < l(c)
”

. (3)

Proof. We will prove that (3) holds for each case presented in (2).

In particular:

Case 1: c = n.

From (2) we know that: l(c) =
˚

n
2

ˇ

, and that l(s) <
˚

n
2

ˇ

for all

s 6= n. Thus, having c′ < c and c′′ < c imply that l(c′) < l(c) and

that l(c′′) < l(c).

Case 2: c ≤
¨

2n
3

˝

and 1 ≤ c ≤
¨

n+1

2

˝

.

From (2) we know that l(c) = c− 1. Now if c = 1, then of course

dep(c) = ∅. On the other hand, if c > 1, then 1 ≤ c′ and c′′ <
c ≤ n+1

2
. Therefore, l(c′) = c′ − 1 and l(c′′) = c′′ − 1. Trivially

then, l(c′) < l(c) and l(c′′) < l(c).

Case 3:
˚

n
2

ˇ

+ 1 ≤ c ≤
¨

2n
3

˝

.

First, let us deal with c′, i.e., let us prove that l(c′) < l(c). To

this end, from (2) we have l(c) = n− c. Moreover, (1) yields

c′ ≤ n− c (since obviously c′ 6= n). Also, since
˚

n
2

ˇ

+ 1 ≤ c, we

have c′ ≤ n− (
˚

n
2

ˇ

+ 1) =
¨

n
2

˝

− 1 =
˚

n−2

2

ˇ

≤
¨

n+1

2

˝

. Based

on this, (2) implies that l(c′) = c′ − 1. Moving on, c′ ≤ n− c
yields l(c′) ≤ n− c− 1 and therefore l(c′) < n− c. In effect, we

have shown that l(c′) < l(c).

Now, let us deal with c′′, i.e., let us prove that l(c′′) < l(c).

To this end, we know from (1) that
˚

c
2

ˇ

≤ c′. Based on this,

−c′ ≤ −
˚

c
2

ˇ

⇒ c− c′ ≤ c−
˚

c
2

ˇ

. Now since c′ + c′′ = c,

we have c′′ ≤
¨

c
2

˝

≤
¨

n
2

˝

≤
¨

n+1

2

˝

. This, as well as (2) im-

ply that l(c′′) = c′′ − 1 ≤
¨

c
2

˝

− 1 < c
2

. From the assumption

that c ≤
¨

2n
3

˝

we get that l(c′′) <
⌊ 2n

3
⌋

2
≤ n

3
. This assumption

also yields the following: −
¨

2n
3

˝

≤ −c⇒ n−
¨

2n
3

˝

≤ n− c⇒
˚

n
3

ˇ

≤ l(c). Thus l(c′′) < n
3

and
˚

n
3

ˇ

≤ l(c), which is what we

wanted to prove.

Our synchronization scheme divides the computation into
˚

n
2

ˇ

+
1 stages. However, the first stage contains subproblems for coali-

tions of size 1. This means the algorithm starts from stage 2. Based

on this, our synchronization scheme requires exactly
˚

n
2

ˇ

− 1 syn-

chronization points. Next, we prove that this synchronization scheme

is optimal, i.e., IDP cannot be parallelized with a number synchro-

nization points smaller than
˚

n
2

ˇ

− 1.

THEOREM 2. There exists no parallelization scheme that re-

quires less than
˚

n
2

ˇ

− 1 synchronization points.

Proof. Let S = 2A be the set of coalitions (subsets) of a set of

agents A. Let Dep : S −→ 2S×S be a function that maps a

subproblem (coalition) into a set of its dependants. That is, let:

(C′, C′′) ∈ Dep(C) iff IDP evaluates a split of C into (C′, C′′).

Furthermore, let ❀ be a binary relation on P (A) such that: C ❀

D iff (C, D \ C) ∈ Dep(D) .

To prove that at least k synchronization points are necessary, it is

sufficient to construct a (k + 1)-element sequence C0, C1, ..., Ck

such that

∀i={1,...,k}Ci−1 ❀ Ci and computation for Ci−1 is needed.

(4)

We construct such a sequence with
˚

n
2

ˇ

elements:

{a1, a2}❀ {a1, a2, a3}❀ ... ❀ {a1, ..., a⌈n

2
⌉}❀ A .

Condition (4) is met because we have:

∀i={1,...,k}(Ci−1, Ci \ Ci−1) ∈ Dep(Ci) ,

which follows directly from the definition of dep in (1). This con-

cludes the proof that there exists a (k + 1)-element sequence of

coalitions that satisfies (4). Every element of the sequence requires

a computation and, since it depends on the previous element in the

296

Algorithm 1: HOST CODE THAT MANAGES THE GPU

Input: f , n
Output: f

1 Copy f from host to the device ;

2 for s← 2 to n do

3 if s > ⌈n/2⌉ and s 6= n then

4 continue;

5 // Call the GPU code, see Algorithm 2

6 spawn
`

n

s

´

threads on GPU with parameters (f , n, s)

7 s′ ← n− s + 1 ;

8 if ¬(2n < 3s′ and s′ < n) and s 6= n then

9 // Solve subproblems of size s′ in parallel.

10 spawn
`

n

s′

´

extra threads with parameters (f , n, s′)

11 wait for all threads to finish

12 Copy f from the device to host;

sequence, it needs to be in a separate stage. Because of that it is not

possible to design an algorithm with fewer than
˚

n
2

ˇ

− 1 synchro-

nization points. Thus, IDPG is optimal in the number of synchro-

nization points.

3.2 Computing the ith subset of size k

In order to support parallel execution, we need to adopt an order-

ing of the subsets of a given size k out of the set of n agents. As

we will show later on, such an ordering allows us to distribute all

coalitions of a certain size among the different threads. We propose

an ordering that we formally define as follows:

Definition 1. Our ordering of k-element subsets, out of a set of n
elements, is:

X ≺ Y iff ∃i∀j>iai /∈ X and ai ∈ Y and (aj ∈ X iff aj ∈ Y).

Now, for any given size k ∈ {1, . . . , n}, we need an efficient

method to compute the ith subset according to our ordering. For

this purpose, we define the following function (which will be eval-

uated by every thread to find a subset for which the thread is re-

sponsible):

g(n, k, i) =

(

∅ n < 0 ∨ k = 0

{an} ∪ g(n − 1, k − 1, i −
`

n−1

k

´

) k > 0 ∧ i ≥
`

n−1

k

´

g(n − 1, k, i) k > 0 ∧ i <
`

n−1

k

´

Example 4. All 2-element subsets of 4 agents in order ≺ are:

{a1, a2} ≺ {a1, a3} ≺ {a2, a3} ≺ {a1, a4} ≺ {a2, a4} ≺
{a3, a4}. The first subset calculated by function g (i.e., the one at

position i = 0) is: g(4, 2, 0) = g(3, 2, 0) = g(2, 2, 0) = {a2} ∪
g(1, 1, 0) = {a1, a2}∪g(0, 0, 0) = {a1, a2}. Similarly, the fourth

subset in relation ≺ (i.e., the one at position i = 3) is calculated

as follows: g(4, 2, 3) = {a4} ∪ g(3, 1, 0) = {a4} ∪ g(2, 1, 0) =
{a4} ∪ g(1, 1, 0) = {a1, a4} ∪ g(0, 0, 0) = {a1, a4}.

THEOREM 3. The function g(n, k, i), defined for k ≤ n and

0 ≤ i <
`

n

k

´

, returns the i-th k-element subset (with relation ≺,

0-based) from a set of n agents.

Proof. We use structural induction.

Basis: g(0, 0, 0) = ∅, since there is only one 0-element subset of 0
elements, which is the empty set.

Inductive step: Let us assume that ∀
l≤n−1,j<(n−1

l)g(n − 1, l, j)

meets Theorem 3 , which can be written as ∀j′>jg(n − 1, l, j) ≺
g(n− 1, l, j′). We will show that ∀

k≤n,i<(n

k)
g(n, k, i) also meets

Theorem 3 .

Algorithm 2: CODE THAT IS RUN ON THE GPU

Input: f , n, s
Output: f

1 // Every thread has unique index ∈ {1, . . . ,
`

n

s

´

}

2 id← compute index of current thread;

3 if id ≤
`

n

s

´

then

4 C ← g(n, k, id);

5 // For CheckSplit definition, see Algorithms 3 and 4

6 C = {C′|C′ ⊂ C and CheckSplit(n, C′, C)}
7 x←max{f [C′] + f [C \ C′] : C′ ∈ C} ;

8 f [C]←max(f [C], x);

Let us consider the result of g(n, k, i). If k = 0, then we know

that no more agents can be added, so the only possible result is ∅,
which is returned by g. When k > 0 we can either add an (the last

agent) or not.

Case 1: i <
`

n−1

k

´

.

If i <
`

n−1

k

´

, we skip agent an because there are
`

n−1

k

´

subsets

of the remaining n− 1 agents that do not have an. All of them are

smaller (with relation ≺) than any subset that contains an. We re-

turn the result of g(n−1, k, i), which is correct due to the induction

hypothesis.

Case 2: i ≥
`

n−1

k

´

.

Since we skipped all
`

n−1

k

´

subsets that do not contain an, we add

agent an to the result. Instead of looking at the k-element subset

at position i, now we are looking for a (k − 1)-element subset at

position i −
`

n

k

´

with the remaining n − 1 agents. This set is ex-

actly g(n− 1, k− 1, i−
`

n−1

k

´

), which can be calculated using the

induction hypothesis (since i −
`

n−1

k

´

≤
`

n−1

k−1

´

). Thus, the final

result is {an} ∪ g(n− 1, k − 1, i−
`

n−1

k

´

).

Since an is in the result, all subsets returned for i ≥
`

n−1

k

´

are

greater in relation ≺ than subsets from case 1. Also, based on the

induction hypothesis: ∀i′>ig(n−1, k−1, i−
`

n

k

´

) ≺ g(n−1, k−

1, i′ −
`

n

k

´

).

3.3 Pseudo code
The code executed on the host by the CPU is presented in Al-

gorithm 1. First, in line 1, the CPU transfers data from the host

to the device (GPU). Then, lines 2 to 11 involve a loop over all

⌈n/2⌉ stages. Specifically in this loop, line 3 ensures that no more

stages than necessary are considered. In each stage, at least
`

n

s

´

kernel threads spawn4 on the device. This is done in line 6. Option-

ally, lines 7-10 spawn an extra
`

n

s′

´

threads responsible for solving

subproblems of size s′, where s′ ≥ ⌈n/2⌉. All threads execute in

parallel on the GPU, while the CPU remains idle at the synchro-

nization point (line 11) until all threads complete. This concludes

the processing of a single stage. Finally, after all stages have been

processed, the newly-computed f is copied from the device back to

the host (line 12).

Algorithm 2 presents the pseudo code of a single kernel that is

executed on the GPU. First, the index of the thread is computed

(line 2). At this stage, id represents the index of the current thread

in the group of threads responsible for subproblems of size s. Due

to rounding up, this may slightly be greater than
`

n

s

´

(the total num-

ber of subproblems in the stage). If that is the case, line 3 ensures

4The term “spawning” is standard in parallel computing; it simply
means creating and starting a new thread.

297

Algorithm 3: CHECKSPLIT CONDITION (SMALL)

Input: n, C′, C where C′ ⊂ C and |C| ≤ n
2

Output: True iff split (C′, C \ C′) should be evaluated

1 return |C′| ≥ 1/2 ∗ |C|;

that no further code will be executed. However, if a thread’s id is

in the proper range, execution continues from line 4. The algorithm

generates a bitmask that represents the id-th k-element subset of an

n-element set and stores it as C. See Section 3.2 for an explanation

of how the id-th k-element subset is generated. In the next step,

the algorithm finds the best split of C into two complementary sub-

sets (line 7). If the split is worth more than v(C), the entry f [C]
is updated (line 8). Subsets of C are enumerated efficiently using a

constant number of arithmetic operations per split. CheckSplit con-

ditions are tested (Algorithms 3 and 4) to determine if a given split

should be evaluated. Those important procedures are described in

more detail in the following section.

3.4 Handling Other Design Requirements
One of the innovations in IDPG is how splits are evaluated. As

stated in the desiderata, limiting global memory access is of ut-

most importance and translates to significant performance gains. In

contrast, minimizing the number of executed instructions that do

not access global memory is of less importance. To reflect this,

while IDPG calculates every possible split of every subproblem

it analyzes, it only performs an expensive global memory lookup

when absolutely necessary. In other words, coalition values stored

in global memory are retrieved when it cannot be avoided.

To keep an overhead small, subproblems are enumerated by very

fast bitmask operations (as described by [12]). Additionally, for

each potential split, IDPG strives to keep the execution cost as low

as possible.

In general, IDPG checks the logical conditions (similarly to IDP)

to see if a given split should be considered. As it turns out, some of

that checks can be avoided due to the following result.

THEOREM 4. All splits of coalitions of size c, where |c| ≤ n
2

,

need to be evaluated.

Proof. Recall how Equation (1) specifies when a split is needed.

IDPG iterates over all the potential splits that meet the first three

cases in the aforementioned equation. The only thing left to prove is

that the condition c′ ≤ n−c holds, thus making the split necessary.

The assumptions in this case are:

• c ≤ n
2

(Theorem 4 assumption) and

• c′ + c′′ = c (since C = C′ ∪ C′′) and

• 1 ≤ c′ ≤ n− 1 (follows from two conditions above) and

•
˚

c
2

ˇ

≤ c′ (because C′ is never smaller than C′′).

By transforming the above inequalities we get: −n
2
≤ −c and

c′ ≤ c ≤ n
2

= n− n
2

. Then, by substituting −n
2

we get the de-

sired: c′ ≤ n − c . Thus, for coalitions of sizes at most n
2

, the

check can be safely avoided – we just proved that the condition is

always met and therefore cannot lead to a reduced number of global

memory accesses5.

5Compare Algorithms 3 and 4. For larger coalition sizes an extra
check is performed as only in that case it can prevent unnecessary
global memory accesses.

Algorithm 4: CHECKSPLIT CONDITION (LARGE)

Input: n, C′, C where C′ ⊂ C and |C| > n
2

Output: True iff split (C′, C \ C′) should be evaluated

1 return |C′| ≥ 1/2 ∗ |C| and (|C′| ≤ n− |C| or |C| = n);

●
●

●

●

●

●

●

●

21 22 23 24 25 26 27 28
2
0

4
0

6
0

8
0

1
0
0

n −− number of agents

S
p
e
e
d
u
p
 (

C
P

U
 t
im

e
 /
 G

P
U

 t
im

e
)

Figure 2: The speedup of IDPG over IDP, represented as the

ratio between the run time of both algorithms given different

numbers of agents.

4. PERFORMANCE EVALUATION
In this section, we benchmark IDPG against IDP to evaluate the

effectiveness of using GPUs. We perform our experiments on a PC

machine equipped with Intel Pentium G620 (2.60GHz) CPU, 4GB

of RAM and the NVIDIA GeForce GTX 660 GPU with 960 cores

and 2GB of on-board memory. Our implementation of IDP does

not involve any parallelization—it only utilizes a single CPU core.

We randomly generated (based on a uniform distribution) multi-

ple problem instances that vary in the number of agents involved.

While we do report the distribution from which the values where

sampled, replacing this with any other set of values would not affect

the run time. This is because the number of operations performed

by IDPG depends solely on the number of agents involved, i.e., it

is not influenced by the other factors, such as the value distribution

for example.

Given different numbers of agents, Figure 3 shows on a log scale

the total run time of both IDP and IDPG (measured in clock time),

while Figure 2 shows the ratio between the two running times. The

exact numbers are provided in Table 2. As can be seen, IDPG is sig-

nificantly faster than IDP. This speedup increases with the number

of agents, and reaches two orders of magnitude (110 times faster to

be more precise) as soon as the number of agents reaches 28. This is

despite the fact that our implementation of IDP is highly optimized.

In fact, it is more optimized than Rahwan et al.’s own implemen-

tation of IDP. For example, given 27 agents, our implementation

took 7.5 hours, while theirs took 2.5 days on a processor with al-

most identical computational capabilities compared to ours [20].

298

n s. points GPU CPU speedup

21 10 1 12 13

22 11 2 30 15

23 11 5 117 23

24 12 12 491 39

25 12 32 1439 44

26 13 84 6471 77

27 13 267 26647 100

28 14 665 73260 110

Table 2: The number of synchronization points of IDPG, run-

ning times in seconds of IDPG vs IDP and the speedup factor

for different problem sizes.

21 22 23 24 25 26 27 28

1
e
−

0
3

1
e
−

0
1

1
e
+

0
1

1
e
+

0
3

1
e
+

0
5

n −− number of agents

T
im

e
 (

s
e
c
o
n
d
s
,
lo

g
s
c
a
le

)

●

●

●

●

●

●

●

●

●

GPU

CPU

Figure 3: Running time (measured in seconds) of IDP and IDPG

given different numbers of agents. Results are plotted on a log

scale.

5. RELATED WORK
The computational power of GPUs has been utilized with vari-

ous degrees of success. For instance, for certain computations re-

lated to MRI scanners, GPUs provided a speedup factor of 431,

while a problem of generating hashes was solved 11 times faster,

compared to a CPU [21]. More generally, whenever an algorithm

has data-independent sub-routines which may be run concurrently,

a GPU will most likely perform better than a CPU. Combining the

GPU together with dynamic programming has been used before to

solve similar combinatorial optimization problems. Boyer, et al. [7]

successfully implemented and solved the knapsack problem with a

speedup factor of 26.

Now, turning to the CSG problem, in terms of parallel program-

ming approaches, we note the work of Michalak et. al. [13]. In

particular, the authors proposed an algorithm called D-IP—a dis-

tributed version of another coalition structure generation algorithm

called IP [20]. D-IP incorporates a number of techniques, one of

which involves the distribution of the search space among the agents.

The implementation was based on 14 dual-core workstations that

shared the computational burden. An empirical evaluation over dif-

ferent problem instances showed that D-IP takes around 5% to 10%

of the time taken by the centralized IP algorithm. However, the

problem with D-IP (as far as GPUs are concerned) is that it re-

quires data to be shared between computational nodes over poten-

tially slow Ethernet links, and also sharing redundant copies of the

characteristic function table across those nodes. Furthermore, D-

IP inherits the same weaknesses that IP has (compared to IDP and

IDPG); the worst-case runtime is O(nn), while the worst-case run-

time of IDP or IDPG is O(3n).

6. CONCLUSIONS
Graphics Processing Units (GPUs) promise speedups of several

orders of magnitude, but demand re-designing existing algorithms

to meet certain requirements imposed by the GPU framework. We

bring those challenges to the attention of the Computational Coali-

tion Formation community, and develop IDPG—the first GPU-based

coalition structure generation algorithm. Our algorithm is a GPU-

based reformulation of a previous algorithm called IDP. We prove

a certain property of that previous algorithm, and show how this

property can be useful when reducing global memory access. Fur-

thermore, we prove that our algorithm minimizes the number of

synchronization points—a property desired in GPU algorithms. Fi-

nally, we test our GPU version against the original one, and show

that ours is faster by two orders of magnitude. The community can

benefit from the open-source implementation, which is made pub-

licly available6.

Future directions include developing GPU versions of other coali-

tion structure generation algorithm, such as, IDP-IP∗.

7. ACKNOWLEDGMENTS
Tomasz Michalak was supported by the European Research Coun-

cil under Advanced Grant 291528 ("RACE").

8. REFERENCES
[1] J. Adams and T. Service. Constant factor approximation

algorithms for coalition structure generation. Autonomous

Agents and Multi-Agent Systems, 23(1), 2011.

[2] M. Arora. The Architecture and Evolution of CPU-GPU

Systems for General Purpose Computing. Research survey,

University of California, San Diego, 2012.

[3] H. Aziz and B. de Keijzer. Complexity of coalition structure

generation. In AAMAS, 2011.

[4] Y. Bachrach and J. S. Rosenschein. Coalitional skill games.

In AAMAS, 2008.

[5] E. Bitar, E. Baeyens, P. Khargonekar, K. Poolla, and

P. Varaiya. Optimal sharing of quantity risk for a coalition of

wind power producers facing nodal prices. In ACC, 2012.

[6] A. Bleiweiss. Gpu accelerated pathfinding. In Proceedings of

the 23rd ACM SIGGRAPH/EUROGRAPHICS, pages 65–74.

Eurographics Association, 2008.

[7] V. Boyer, D. El Baz, and M. Elkihel. Solving knapsack

problems on gpu. OR, 39(1), 2012.

[8] Z. Du, Z. Yin, and D. Bader. A tile-based parallel viterbi

algorithm for biological sequence alignment on gpu with

cuda. In IPDPS - IEEE, pages 1–8. IEEE, 2010.

[9] R. Glinton, P. Scerri, and K. Sycara. Agent-based sensor

coalition formation. In Information Fusion, number

CMU-RI-TR-, 2008.

[10] C. Li, K. Sycara, and A. Scheller-Wolf. Combinatorial

coalition formation for multi-item group-buying with

heterogeneous customers. Decision Support Systems,

49(1):1–13, 2010.

6For the IDPG implementation developed as part of this research,
see: https://github.com/idpg/idpg

299

[11] W. Lucas and R. Thrall. n-person games in partition function

form. Naval Research Logistic Quarterly, pages 281–298,

1963.

[12] F. C. Mencia. Optimizing performance for coalition structure

generation problems in multicore systems. Master’s thesis,

Universitat Autonoma de Barcelona, Spain, 2012.

[13] T. Michalak, J. Sroka, T. Rahwan, M. Wooldridge,

P. McBurney, and N. Jennings. A distributed algorithm for

anytime coalition structure generation. In AAMAS, 2010.

[14] N. Ohta, V. Conitzer, R. Ichimura, Y. Sakurai, A. Iwasaki,

and M. Yokoo. Coalition structure generation utilizing

compact characteristic function representations. In CP, 2009.

[15] J. Pan, C. Lauterbach, and D. Manocha. g-planner: Real-time

motion planning and global navigation using gpus. In AAAI,

pages 1245–1251, 2010.

[16] T. Rahwan and N. R. Jennings. An improved dynamic

programming algorithm for coalition structure generation. In

AAMAS, 2008.

[17] T. Rahwan, T. Michalak, and N. R. Jennings. A hybrid

algorithm for coalition structure generation. In AAAI, 2012.

[18] T. Rahwan, T. P. Michalak, E. Elkind, P. Faliszewski,

J. Sroka, M. Wooldridge, and N. R. Jennings. Constrained

coalition formation. In AAAI, 2011.

[19] T. Rahwan, T. P. Michalak, and N. R. Jennings. Minimum

search to establish worst-case guarantees in coalition

structure generation. In IJCAI, 2011.

[20] T. Rahwan, S. D. Ramchurn, A. Giovannucci, and N. R.

Jennings. An anytime algorithm for optimal coalition

structure generation. JAIR, 34:521–567, 2009.

[21] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.

Kirk, and W.-m. W. Hwu. Optimization principles and

application performance evaluation of a multithreaded gpu

using cuda. In ACM SIGPLAN, 2008.

[22] T. W. Sandholm and V. R. Lesser. Coalitions among

computationally bounded agents. Artifcial Intelligence,

94(1), 1997.

[23] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense

linear algebra for hybrid gpu accelerated manycore systems.

Parallel Computing, 36(5):232–240, 2010.

[24] M. Tsvetovat, K. P. Sycara, Y. Chen, and J. Ying. Customer

coalitions in the electronic marketplace. In AA, 2000.

[25] S. Ueda, A. Iwasaki, M. Yokoo, M. C. Silaghi, K. Hirayama,

and T. Matsui. Coalition structure generation based on

distributed constraint optimization. In AAAI, 2010.

[26] S. Ueda, M. Kitaki, A. Iwasaki, and M. Yokoo. Concise

characteristic function representations in coalitional games

based on agent types. In IJCAI, 2011.

[27] D. Y. Yeh. A dynamic programming approach to the

complete set partitioning problem. BIT Numerical

Mathematics, 26(4):467–474, 1986.

[28] K. Zhang and J. Kang. Real-time 4d signal processing and

visualization using graphics processing unit on a regular

nonlinear-k fourier-domain oct system. Optics express,

18(11):11772–11784, 2010.

300

