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ABSTRACT

Human teamwork can be supported by agent technology
by providing each human team member with an agent that
monitors, supports and advices the human. The agent can,
for example, monitor the human’s workload, and share that
information with (agents of) other team members so that
work can be distributed effectively. However, though sharing
information can lead to a higher team performance, it may
violate the individual team members’ privacy. This raises
the question what type of and how often information should
be shared between team members. This paper addresses
this question by studying the trade-off between privacy loss
and team performance in the train traffic control domain.
We provide a conceptual domain analysis, introduce a for-
mal model of train traffic control teams and their dynamics,
and describe an agent-based simulation experiment that in-
vestigates the effects of sharing different types and amounts
of information on privacy loss and team performance. The
results give insight in the extent to which different informa-
tion types cause privacy loss and contribute to team per-
formance. This work enables the design of privacy-sensitive
support agents for teamwork.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence— Multiagent Systems

Keywords

Agent-Based Modeling, Information Sharing, Privacy, Team
Performance, Teamwork.

1. INTRODUCTION

As teams have become essential in many organizations,
the development of high performance teams has been an
important research goal [24, 5, 15]. One of the problems
faced by human teams is that workload is not always dis-
tributed evenly over the team members, in particular in com-
plex and dynamic task environments [23]. Agent technology
can offer a solution to this problem by providing each hu-
man team member with a personal assistant agent [27]. The
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agent can monitor the human’s workload (see e.g. [18, 3]),
and share this information with (the assistant agents of)
other team members. Team members with a low or aver-
age workload can then decide to take over tasks of team
members with high levels of workload, and thus, workload
is distributed more effectively. Multiple studies showed that
sharing information in teams has a positive effect on team
performance [17].

A potential problem with sharing workload information,
however, is that it may violate the team members’ privacy [22,
21]. Workload information contains personal information
including someone’s interaction with the system or physi-
ological measures such as heart rate and galvanic skin re-
sponse [19]. Sharing this information with other team mem-
bers may lead to privacy loss. For example, people with a
mediate workload may dislike admitting that they have dif-
ficulty coping, and someone’s stress level may be influenced,
besides work, by personal factors.

The above findings imply a trade-off with regard to shar-
ing personal information in teams. On the one hand, knowl-
edge of personal information can have a positive effect on
team performance, but on the other hand, it may cause a
loss in privacy for the team members. Therefore, to develop
personal assistant agents that enhance team performance,
but yet, are sensitive to their user’s privacy, insight is needed
in the effects of sharing different types and amounts of in-
formation on privacy loss and team performance.

Earlier work has also stressed that developers need to con-
sider possible privacy implications when developing agent-
based applications [2]. In a recent overview on privacy and
multi-agent systems, however, Such et al. [26] claim that, to
their knowledge, privacy is seldom considered in the multi-
agent systems research field. A number of researchers have
proposed algorithms to protect the privacy of users that
interact with other entities by representing the situation
as a distributed constraint optimization problem (DCSP),
or a distributed constraint satisfaction problem (DisCSP),
e.g. [25, 10]. Furthermore, measures to quantify privacy loss
have been proposed, e.g. [14]. The key issue in these ap-
proaches is to preserve the anonymity of the user as much
as possible. In the context of human teamwork, however,
preserving anonymity is not the main aim, and team mem-
bers may want to sacrifice small amounts of privacy if that
yields large benefits for team performance. To find appro-
priate solutions for such situations, the specifics of the team
at hand need to be analyzed and taken into account [21].

In this paper we study the trade-off between privacy loss
and team performance by analyzing a real world case in the



domain of train traffic control. The analyzed train traffic
control team does currently not share workload information,
and has to deal with uneven workload distributions. Domain
experts in this field acknowledge this problem, but are also
concerned about the negative effects of sharing workload in-
formation on the team members’ privacy. We make use of
agent-based modeling to study this trade-off [7]. We devel-
oped an agent-based model that represents the train traffic
control team and its dynamics, and performed simulation ex-
periments to determine the effects of sharing different types
and amounts of information on privacy loss and team perfor-
mance. This enables the development of personal assistant
agents that enhance team performance while minimizing pri-
vacy loss. Furthermore, it may support the specification of
working agreements for situated team operations on sharing
of sensitive information, i.e., an adaptive information shar-
ing mechanism [4].

The rest of this paper is organized as follows. Section 2
provides a conceptual analysis of teamwork in the train traf-
fic control domain. Section 3 introduces a formal model of
train traffic control teams and their dynamics. Section 4 de-
scribes the simulation experiments in which we investigated
the effects of sharing personal information on privacy loss
and team performance. Section 5 provides the discussion
and conclusion.

2. DOMAIN ANALYSIS

For the research presented in this paper, we studied train
traffic control teams and their dynamics in the Dutch rail-
way system. In this section, we introduce the domain, and
describe the development of a personal assistant agent for
that domain.

2.1 Train traffic control teams

The Dutch railway network is used by multiple passenger
and cargo transporters, and ProRail is the organization that
is responsible for controlling this train traffic. ProRail has
thirteen regional control centers and one national control
center from where it controls train traffic in the Netherlands.
Each regional control center is occupied by a group of people
with different roles. In this research, we focus on the team
of operators (treindienstleiders) that control the signals and
switches on the rails of a limited area, e.g. a station, and
communicate with train personal in case of disruptions. In
the remainder of this paper we will use the term operator to
refer to this role.

Under normal circumstances, train traffic is automatically
regulated according to fixed schedules that describe the train
traffic flow. The operators mainly monitor the situation,
and their workload is low. In case of a disruption, the oper-
ators actively have to regulate the train traffic by manually
entering changes to the controls and switches on the rails,
and informing train drivers about the changes. In case of a
simple disruption, e.g. a train that is delayed, there exist
procedures that prescribe how the problems can be resolved.
For the operators this is routine work, and it usually yields
an intermediate level of workload. In case of a larger or
multiple simultaneous disruptions, there usually is no single
procedure to solve the problem, and adhoc solutions have to
be created. This falls out of the operators’ routine and can
cause high levels of workload.

Each operator is responsible for a particular section of
the railway network, and the division of work over opera-
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tors is purely based on who is responsible for which railway
section. The assignment of railway sections to operators is
determined beforehand and does normally not change dur-
ing a shift. It is possible for operators to take over tasks
of others, but in practice, this does not happen a lot be-
cause operators tend to try to solve disruptions themselves
as much as possible. Therefore, when there is a disruption
that only affects certain areas of the railway network, it may
happen that some of the operators in a control center expe-
rience a rather high and others a relatively low workload.
This disparity is undesired when the workload of some of
the operators becomes so high that it leads to a decrease in
their performance.

2.2 Introducing a personal assistant agent

In a research project in collaboration with ProRail, we are
currently developing a personal assistant agent that can sup-
port operators in (re)distributing workload effectively over
the team members. The aim is to minimize the individual
operator’s decrease in performance due to a high workload,
and thus maximize performance of the team.

To redistribute workload effectively, it is necessary to have
insight in the operators’ workload. In the context of our
project, we developed a component of the personal assis-
tant agent that can predict an operator’s performance by
assessing his cognitive and affective load. This monitor com-
ponent is based on Neerincx’s model about cognitive task
load [18, 20], which describes the effects of task allocations
on performance of operators working in dynamic, critical
and high-demand task environments. To measure affective
load, the monitor component implements an adaptation of
Mehrabian’s pleasure-arousal-dominance model [16, 19]. In
this paper it is not possible to provide a detailed descrip-
tion of the working of the monitor component due to space
limitations, but it is not necessary for following the ideas
presented in this paper.

In a demonstration session at ProRail, the monitor com-
ponent of the personal assistant agent was demonstrated to
a group of four domain experts employed by ProRail. The
experts acknowledged the value of a personal assistant agent
with regard to the distribution of workload among operators.
The participants, however, also raised the concern that op-
erators may be unwilling to share information about their
cognitive and affective state with colleagues because it vio-
lates their privacy. In the demonstration session, the domain
experts were not able to provide exact indications about the
extent to which the personal assistant agent would benefit
team performance and harm privacy.

To further develop the personal assistant agent, we need
to develop a mechanism and an interface for sharing the
information collected by the monitor component to the op-
erators in the team. The information sharing mechanism
determines what types of information are shared, and how
often and under what conditions it is shared. The interface
design determines how the information is presented to the
operators. A possibility is to provide operators with a dis-
play that continuously shows the cognitive and/or affective
load of their team members. This way of providing infor-
mation resembles information provision through awareness
panels [1], a common solution in operational environments.
An alternative to continuous information provision is to let
the assistant agents send updates to the operators every now
and then. An advantage of this solution is that personal



information is shared less often, and may thus cause less
privacy loss.

To conclude, the results of the demonstration session at
ProRail are in line with other findings in literature on tech-
nology, information sharing and privacy [22, 21]. Thus, in
order to design an information sharing mechanism and in-
terface for the personal assistant agent for train traffic oper-
ators, more insight is needed in the effects of different types
and amounts of information sharing on privacy loss and team
performance.

3. FORMAL MODEL OF THE TRAIN

TRAFFIC CONTROL TEAM

In this section we provide a formal model of the train
traffic control team and its dynamics described in the pre-
vious section. As mentioned earlier, the railway network is
divided into sections, and each operator is responsible for
the train traffic on a particular section. Therefore, tasks are
initially always assigned the operator responsible for that
railway section. We formalize this as follows.

e O is a team of operators, where o € O is an operator
that belongs to team O

e K is a set of tasks, where k = (t,d,l,s) € K is a task
generated at time ¢, with duration d, a level of informa-
tion processing ! required to perform the task (where
l € [low, medium, high]), and a severity level s of the
disruption due to which the task was generated (where
s € [low, medium, high))

o K,(t, f) is the set of tasks that an operator o per-
formed in time frame f at a certain time t, where f
lasts from ¢-f to ¢

e A is aset of task assignments, where a, € A (a, € 2K)
denotes the set of tasks assigned to operator o

e M is a set of messages, where m = (s,r,i,t) € M is
a message m sent by sender s, to receiver r, with in-
formation type ¢ (where ¢ € [cognitive load, affective
load, total load, offer, accept]), at time ¢

In the model, we assume that an operator can only per-
form one task at a time and that tasks are always achieved
when executed. The duration of task performance is fixed,
but operators can complete tasks with varying degrees of
quality. Quality of task performance is determined by the
operator’s cognitive and affective load during task perfor-
mance, i.e. the higher the loads, the lower the quality of task
performance. Once a task has been achieved it is removed
from the respective operator’s set of task assignments. In
our model, the levels low, medium and high for information
processing and severity correspond to the values 1, 2 and 3,
respectively.

3.1 Cognitive load

The notion of cognitive load in our formal model is based
on Neerincx’s model of cognitive load [18]. According to this
model, an operator’s cognitive load (CL) in a specific time
frame f is determined by three factors: level of information
processing, time occupied, and task set switching. We will
explain each of these factors, and show how we adapted the
definitions from Colin et al. [3] for this study.
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The first factor, level of information processing (LIP),
gives an estimation of the complexity of the mental activity
operator o performed in time frame f, and is calculated by
the following formula.

o lid;
LIP(K,(t, [)) = &=L

The n is the number of tasks in set K,. This formula dif-
fers from Colin et al. in the sense that they divide by time
frame f, whereas we also divide by maz(l), the maximum
value of ! (3 in our model). Dividing by maz(l) normalizes
the outcome of the formula to a value between 0 and 1. Fur-
thermore, we added a time ¢ to this (and the following two)
formula to indicate the time at which LIP is determined, i.e.
the ending of time frame f.

The second factor, time occupied (TO), indicates the pro-
portion of time during which an operator is performing tasks.

TO(K,(t, f)) = =5

Again, n is the total number of tasks. We took this formula
directly taken from Colin et al. since it already returns a
value between 0 and 1.

The third factor, task set switching (TSS), considers the
workload associated to switching attention from one task to
another.

B vyl (V)]

TSS(Ko(t, f)) -

The n is the number of tasks. The TSS formula is a simpli-
fication of Colin et al.’s proposal. The original formula in-
volves the concept of an information domain, through which
it is taken into account that switching between similar tasks
is considered less demanding than switching between differ-
ent tasks. In our formula, in contrast, any task switch has
the same effect on TSS. Another adaptation we made to the
TSS formula is that we divide by f to normalize the outcome
of the formula.

With these three factors, LIP, TO and TSS, someone’s
cognitive load (CL) can be calculated. For that, the three
factors are plotted along three axes in a 3-dimensional space.
Then, the cognitive load of an operator o in time frame f
ending at time ¢ is calculated as follows.

_ dorigin 7ddiagonal

CL(K,(t, f) %

In this formula, dorigin is the Euclidean distance of the point
(LIP, TO, TSS) to the origin, and dgiagona: is the shortest
distance from the point (LIP, TO, TSS) to the line where
LIP=TO=TSS. Cognitive load is always a value between 0
and 1. We refer to the paper of Colin et al. for more details
about these metrics.

3.2 Affective load

Affective load is usually assessed by physiological mea-
sures such as heart rate, skin conductance, and facial ex-
pressions [19]. The current model, however, does not in-
clude the physiological states of agents, and we therefore
use an alternative measure for assessing an operator’s emo-
tional response. In our model, affective load is determined
by two factors: expected cognitive load and severity level of
the current task.

The first factor, expected cognitive load (ECL), is deter-



mined by the set of tasks that are currently assigned to an
operator. In other words, ECL depends on the operator’s
upcoming work, and the assumption is that more upcoming
work yields more stress.

ECL(t) = CL(KO(t7fECL)), if Z?:I di < 9gcrL
ECL(t) = 1, otherwise

The first part of the formula (n is the number of tasks) states
that the expected cognitive load of operator o at time t is
the cognitive load of the set of all tasks K, that are cur-
rently assigned to operator o. Cognitive load is calculated
for a time frame between t-f and the current time . Ex-
pected cognitive load, in contrast, is calculated over all tasks
assigned to the operator, denoted by frcr. If the total du-
ration of tasks, however, is larger than the threshold dgcr,
expected cognitive load is 1. This models the phenomenon
that a lot of upcoming work increases stress, but that after a
certain point, more upcoming tasks does no longer increase
stress. Note that for the calculation of expected cognitive
load, the cognitive load of the task the operator is currently
working on is included.

The second factor, severity level of current task (SLT),
captures someone’s affective response to disruptions and is
determined by the nature of the disruption due to which
the operator has to perform that task. Tasks caused by mi-
nor disruptions, such as a delayed train, have a low severity
level, and tasks caused by severe disruptions, e.g. a collision,
yield a high severity level. SLT is determined by dividing
the severity level of a task with the highest severity level
possible (3 in our model).

Scurrenttask
maz(s)

SLT(t) =
This formula implements the idea that a task, e.g. changing
a switch, yields more affective load when it is related to a
severe disruption than when it is related to a minor disrup-
tion. Yet, all tasks are considered as routine tasks of the
operator.

With the above two formulas, affective load can be calcu-
lated as follows.

AL(t) = aECL(t) 4+ (1 — ) SLT(t)

The a determines the weight of both factors contributing to
affective load. In the simulation experiments described in
this paper, we used a = 0.5.

3.3 Sharing information and task distribution

Sharing information about workload helps operators to
predict each other’s performance, and based on that, to de-
cide when to take over other’s tasks. In our model, infor-
mation is shared by sending messages of type m=(s,r,i,t)
such as defined above. There are three types of information
i that contain information about workload: cognitive load,
affective load, and total load. Total load (TL) is a combina-
tion of cognitive and affective load and can be determined
as follows.

TL(t, f) = BCL(t, f) + (1 = B)AL(t)

The value of 8 determines the respective weights of cognitive
and affective load on total load. For the simulation exper-
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iments, we used 8 = 0.5 to model an equal impact of both
factors.

To mimic the costs of processing a message containing
workload information, the probability that an operator pro-
cesses an incoming message depends on his cognitive and
affective load, where higher load values yield a lower prob-
ability to process a message. The following linear function
indicates the probability that a message with information
about workload will be processed.

P(m processed) =1 — TL(t, f)

If an operator processes a message that contains informa-
tion about cognitive, affective or total load, it compares the
load value to his own respective load. If the other opera-
tor’s load is higher than the threshold Ysendoffer, he will
offer that operator to take over one of his tasks by sending
a message with information type i=offer. This threshold
is introduced to avoid that tasks are reassigned in (almost)
every time step. Messages of information type offer are al-
ways processed. If the operator to which the offer is sent has
not accepted any offers in that time step, it will accept the
offer by sending a message with information type i=accept.
When an offer to take over a task is accepted, the first task
in the accepting operator’s task queue is reassigned to the
operator that sent the offer. A confirmation before reassign-
ing the task is needed to avoid that two operators take over
the same task of a third operator.

3.4 Performance and privacy measures

A scenario consists of a set of tasks K and task assign-
ments A. Given such a scenario, team performance is deter-
mined by two factors: speed of completion of all tasks in the
scenario and quality of task performance. Speed is deter-
mined by the time that is needed to complete all tasks in
the scenario.

To determine quality of task performance of the team,
we first need to determine the quality of task performance
of the individual team members. Quality of individual task
performance (QITP) of an operator o at a certain time is
determined as follows.

QITP(o,t, f) = 1= (yCOL(t, f) + (1 = v)AL(t))

The formula implements the idea that high cognitive and
affective loads have a negative impact on performance. This
formula is a simplification of reality because, though high
cognitive load has a negative impact on performance, ex-
tremely low values of cognitive load can cause boredom and
also have a negative effect on performance. The value v
determines the respective effects of cognitive and affective
load on quality of task performance. In the simulation ex-
periments we took v = 0.5.

Quality of team task performance (QTTP) is an aggrega-
tion of the quality of task performances of the individual
team members. There are multiple ways to aggregate val-
ues, for instance, by taking the average, minimum, maxi-
mum, first, or last of the values. In the domain of train
traffic control, the performances of all operators matter for
team performance, which makes the minimum and average
aggregate functions suitable for this domain. For the simula-
tion experiments described in this paper we use the average,
which can be calculated as follows.



w12l QITPit,f)

In this formula, the set O is used to denote all operators in
the team.

To assess the quality of team performance of a whole sce-
nario, i.e. a finite set of tasks, we introduce a formula to
determine the quality of team task performance of a sce-
nario (QTTPS). Quality of team performance of a scenario
is determined by taking the average quality of team task
performance of all time steps in the scenario, as follows.

_ ylend QrTP(0,if)
= ZisfT 9TTP(O.0])

QTTPS(0) —
In the formula, t¢,q denotes the end time of the scenario.

Sharing information about cognitive, affective or total load
causes privacy loss. The amount of privacy loss depends on
the kind of information that is shared. An operator’s cogni-
tive load is determined by his interaction with the system,
and his affective load by physiological measures. The do-
main experts in our workshop considered the latter more
obtrusive than the former. Therefore, in our model, sharing
information about cognitive (system interaction), affective
(physiological measures) and total (system interaction and
physiological measures) load cause a low, medium and high
privacy loss, respectively. Messages of the type ‘offer’ and
‘accept’ do not involve any loss of privacy. To express the
amount of privacy loss, the information types cognitive load,
affective load, total load, offer and confirm correspond to the
values 1, 2, 3, 0 and 0, respectively. The privacy loss of an
operator o can now be calculated over the set of messages
for which it holds that s = o (the operator is the sender) as
follows.

pPrL(M) =y M

Note that for privacy it does not matter whether a message
is processed or not. The sender of the message, for whom
privacy loss is calculated, only knows that the information
may have been processed.

4. SIMULATION EXPERIMENTS

This section describes the simulation experiments we per-
formed to get insight in the effects of sharing personal infor-
mation on privacy loss and team performance. We adopted
the formal model described in Section 3 and implemented
our simulation tool in Java.

To get reliable insights, we developed an automatic sce-
nario generator that allows us to generate a diverse set of
scenarios in a systematical way. As mentioned before, a
scenario consists of a set of tasks and their assignments to
the operators. The generator firstly generates a given num-
ber of tasks (60 in the experiments), and randomly gener-
ates the values of the task parameters within the following
ranges: generation time (1-100), duration (2-8), and infor-
mation processing level (1-3). Note that though the maxi-
mum generation time of a task is at time step 100, complet-
ing the scenario may take longer than 100 time steps. We
used teams of 3 operators, where each operator works on a
different disruption with a randomly assigned severity level
(1-3). Tasks are randomly assigned to the operators, and get
the severity level of the disruption their operator is working
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on. In the experiments, we studied 16 different conditions,
and for each condition, we considered 1000 randomly gen-
erated scenarios. We used the same set of scenarios for all
conditions. The parameters used in the experiments were
chosen after testing a number of values. In total, we thus
performed 16000 simulation runs.

4.1 Study 1: Information type

The first study investigates the effects of sharing differ-
ent information types on privacy loss and performance. We
distinguish three types of information that can be shared
in a team: cognitive, affective and total load. That results
in the following four experimental conditions: 1) sharing no
personal information, 2) sharing information about cogni-
tive load, 3) sharing information about affective load, and
4) sharing information about total load (a combination of
cognitive and affective load).

In the experiment, all operators share the same type of
information (or no information) at each time step, and their
team members may check the information, depending on
their own load. Sharing information at every time step imi-
tates information sharing through an awareness panel as de-
scribed in Section 2. For each simulation run, we logged pri-
vacy loss, scenario completion time, quality of team task per-
formance, quality of worst performing team member, num-
ber of messages sent containing personal load information,
and number of tasks that were reassigned to another opera-
tor. Table 2 displays the averages and standard deviations.

The results show that, as expected, privacy is not violated
when no information is shared (0), least when only informa-
tion about cognitive load is shared (691), more when infor-
mation about affective load is shared (1294), and most when
information about total load is shared (1965). With regard
to performance, the results show that for completion time
sharing information leads to a faster completion of the sce-
nario, and thus has a positive effect on team performance.
Furthermore, sharing information leads to a higher quality
of team performance and higher quality of lowest individual
performance. Affective and total load have greater impact
on the outcome of these three measures than cognitive load.

None of the information types scores well on both mini-
mizing privacy loss and maximizing team performance. Ac-
cording to these results though, sharing information about
affective load is more favorable than total load because there
is considerable less privacy loss, while performance is equal
or even slightly better. An interesting difference between af-
fective and total load is that in the affective load condition
almost twice as many tasks are reassigned to another opera-
tor. That means that in the simulation, sharing information
about affective load most likely leads to a task reassignment.

The three performance measures we used (completion time,
quality of team task performance, and minimum individual
performance) yielded similar results. A potential disadvan-
tage of the completion time measure is that it may depend
too strongly on the generation time of the last task in the
scenario, in particular when the scenario involves few tasks.
The results of total team performance are more diverse than
the results of minimum individual performance. Therefore,
in our next experiments we will use quality of team task
performance as a measure for team performance.

4.2 Study 2: Information amount

In the previous study, information sharing yielded rather



Information Privacy Completion | Total quality Min quality Nr. of sent Nr. of task
type loss time of performance | of performance messages reassignments
mean | o | mean o mean o mean o mean o mean o
No information 0 0 131 11.7 1.39 0.14 0.55 0.046 0 0 0 0
Cognitive load 691 48 125 8.0 1.47 0.11 0.56 0.046 691 48 15 9
Affective load 1294 | 68 118 5.6 1.57 0.10 0.59 0.038 647 34 55 11
Total load 1965 | 108 | 119 6.0 1.55 0.09 0.59 0.037 655 36 28 11

Table 1: Effects of sharing different types of personal information (n=1000).

large amounts of privacy loss. A way to reduce privacy loss is
to share load information less frequently. In the real world,
this could correspond for example to a pop-up message that
appears every now and then. To investigate the effects of
less frequent sharing of information on privacy loss and team
performance, we will compare the following three conditions
to each other: sharing information 1) in every time step,
2) every 5'" time step, and 3) every 10" time step. Fig-
ure 1 and Figure 2 show the effects of different amounts of
information sharing for all three information types (cogni-
tive, affective, and total load) on privacy loss and (quality
of) team performance, respectively.
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Figure 1: Effects of sharing different amounts of in-
formation on privacy loss (n=1000).
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Figure 2: Effects of sharing different amounts of in-
formation on team performance (n=1000).

Figure 1 shows that, as expected, privacy loss considerably
drops when personal information is only shared at every 5"
time step, and even more when it is only shared at every 10"
time step. Figure 2 shows that sharing information about
affective load leads to the highest quality of performance.
When information is shared less frequent, though, quality
of team performance drops more when sharing affective and
total load than when sharing cognitive load. Sharing cog-
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nitive load information thus becomes more attractive when
information is shared relatively infrequent. Combining the
results of the two figures, the trade-off between privacy loss
and team performance is clearly visible, higher team perfor-
mance co-occurs with higher privacy loss and vice versa.

4.3 Study 3: Sharing policy

The information sharing policies in the previous study
were rather simple by only considering time. A more in-
telligent way to limit the amount of shared information is to
only share under certain conditions, e.g. when the sharing
operator has a high cognitive, affective or total load, and
would benefit from the reassignment of one or more of his
tasks. For this third study, we introduce an information
sharing policy in which an operator only shares personal in-
formation when his cognitive, affective or total load is above
a certain threshold. In the experiment, we compare the fol-
lowing conditions to each other: sharing information 1) ev-
ery time step, 2) every 5" time step, and 3) when above the
threshold of 0.5. Table 2 shows the results.

With regard to privacy loss, the threshold sharing pol-
icy scores fall between those of sharing information in every
time step and every 5th time step. Regarding team per-
formance, however, the threshold policy scores are equal to
or higher than those in all other conditions. In particular
when information about affective and total load is shared,
the threshold policy outperforms the other policies.

In all studies together, we collected results for 4 informa-
tion types and 4 sharing policies. These results are com-
bined in Figure 3, displaying a scatter plot of privacy loss
and team performance. Note that the information type ‘no
information’ has equal results for all sharing policies.
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Figure 3: Team performance and privacy loss of all
16 conditions (4 information types x 4 sharing poli-
cies) (n=1000).

In Figure 3 it is clearly visible that sharing information



Information Every time step Every 5 time step Threshold
type Privacy loss | Performance | Privacy loss | Performance | Privacy loss | Performance
mean o mean o mean o mean o mean o mean o
Cognitive load | 691 48 1.47 0.11 141 10.1 1.46 0.11 386 43 1.47 0.11
Affective load 1294 68 1.57 0.10 273 16.5 1.51 0.11 866 108 1.59 0.10
Total load 1966 108 1.55 0.09 411 25.2 1.50 0.10 1324 144 1.56 0.09

Table 2: Effects of sharing information through different sharing policies (n=1000).

about affective load (black, labeled triangles) yields rela-
tively high performances with relatively little loss of privacy.
The most favorable information sharing policy (see labels)
depends on preferences with regard to giving up privacy or
compromising on team performance, but the ‘every 5"’ and
‘threshold’ sharing policies are both good candidates.

4.4 Discussion of the results

Sharing information about affective load was the most fa-
vorable option with regard to optimizing performance and
minimizing privacy loss in most conditions. Interestingly, af-
fective load considers an operator’s current and future tasks
(Section 3.2), and cognitive load considers the tasks the op-
erator just performed (Section 3.1) in our model. This may
be the reason that affective load better predicts the oper-
ators’ performances, and thus better indicates when tasks
should be reassigned. The reason that cognitive load yields
lower performance scores might be due to the scenarios we
used in the simulations. In real scenarios, an operator’s past
tasks may be a better predictor of his performance than the
randomly generated scenarios used in the experiments.

In our simulations, sharing information about total load
causes most privacy loss. These results were expected since
total load has a privacy loss value of 3 in our model (Sec-
tion 3.4), whereas cognitive and affective load have values
1 and 2, respectively. Total load received this high value
because it is based on both cognitive and affective load in-
formation. One could however argue that, because two in-
formation types are combined into one new value, personal
information is lost, and that total load should therefore have
a lower privacy loss value. If so, sharing total load informa-
tion would become a more favorable option.

To conclude, as is always the case in agent-based simu-
lations, the results of the experiments heavily depend on
model design and parameter settings. Though we carefully
made these choices based on literature and expert knowl-
edge, agent-based models always remain an approximation
of the real world. However, as we will explicate in the next
section, we do not view agent-based models and simulations
as an end product, but as a part of the design process. We
believe that even an imperfect model can yield valuable in-
sights for the development of our personal assistant agent.

S. DISCUSSION & CONCLUSION

In this paper we studied the trade-off between privacy
loss and performance in teams, by analyzing a real world
case in the train traffic control domain. We provided a do-
main analysis, introduced a formal model of a train traffic
control teams and its dynamics, and described a series of
agent-based simulation experiments investigating the effects
of sharing different types of information according to dif-
ferent policies on privacy loss and team performance. The
simulation results show that with regard to minimizing pri-
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vacy loss and maximizing team performance, the preferred
information type is ‘affective load” and the preferred sharing
policy is ‘threshold’ or ‘every 5"’ time step.

We started the paper by stating that the development
of high performance teams is an important research goal.
In the field of multi-agent systems, research on optimizing
team performance mostly focuses on the direct effects of in-
troduced teamwork mechanisms on the time and costs spent
on achieving the team’s goals, and the quality of the team’s
output [13]. For teams that only contain software agents
(e.g. [28, 11]) this may be an effective way to develop high
performance teams. For human-agent teams (e.g. [27, 12] or
human teams (e.g. [15, 24]), however, the performance met-
rics of time, cost and quality may not always be adequate
to grasp all team dynamics [24].

In contrast to most software agents, humans esteem values
such as privacy, autonomy, and trust [8]. Violating these
human values is not only undesirable in itself, it can also
have negative effects on team performance in the long run.
For example, violating a team member’s privacy over a long
period of time may lead to a decrease in motivation, which
in turn can lead to lower team performance [5]. It is thus
important to account for human values when creating high
performance teams that contain humans.

The importance of accounting for human values in the
design of technology has received an increasing amount of
attention over the last years [9, 8]. Though a range of tools
and methods for analyzing human values have been pro-
posed, there is less work on how to incorporate these values
in an actual design [6]. Thus, when designing agents for op-
timizing human team performance, literature provides little
guidance on how to take values into account in this process.

The work presented in this paper may be a first step to-
wards a methodology to account for human values in the
development of intelligent agents that interact with humans.
In this paper, we focused on questions around the value of
privacy in order to develop a privacy-sensitive personal as-
sistant agent for teamwork. The process of developing an
agent-based model and performing simulation experiments
helped us to obtain insight into the effects of different op-
tions (which and when to share information) on privacy loss.
This will help us to make better design choices for the per-
sonal assistant agent. Furthermore, the simulation results
may make users and domain experts more aware of their
preferences and priorities with regard to the sharing of per-
sonal information in teams, which may help them to formu-
late clear requirements for the assistant agent.

Besides further developing a methodology for developing
value-sensitive agents, we suggest three other directions for
future work. First, the agent-based model can be extended
to obtain more insight in the trade-off between privacy loss
and performance, e.g. by modeling the effects of social re-
lationships, organizational roles or location. Second, the re-



sults of the simulations can be used to propose a mechanism
and an interface for sharing personal information in teams.
In other words, the second option involves the development
of (parts of) the personal assistant agent. Third, once a pro-
totype of the personal assistant agent has been developed,
user experiments need to be performed that test the value
of privacy-sensitive assistant agents for teamwork.
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