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ABSTRACT
An important issue in multi-agent systems is the exploita-
tion of synergies via coalition formation. We initiate the
formal study of fractional hedonic games. In fractional he-
donic games, the utility of a player in a coalition structure
is the average value he ascribes to the members of his coali-
tion. Among other settings, this covers situations in which
there are several types of agents and each agent desires to be
in a coalition in which the fraction of agents of his own type
is minimal. Fractional hedonic games not only constitute a
natural class of succinctly representable coalition formation
games, but also provide an interesting framework for net-
work clustering. We propose a number of conditions under
which the core of fractional hedonic games is non-empty and
provide algorithms for computing a core stable outcome.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory and Algorithms

Keywords
Game theory (cooperative and non-cooperative), teamwork,
coalition formation, and coordination

1. INTRODUCTION
Hedonic games—as introduced by Drèze and Greenberg

[15] and further explored by, e.g., Banerjee et al. [5], Bogo-
molnaia and Jackson [7], Elkind and Wooldridge [16], Gair-
ing and Savani [19], Branzei and Larson [10], Aziz et al.
[3, 4]—present a natural versatile formal framework to study
the formal aspects of coalition formation. In hedonic games,
coalition formation is approached from a game-theoretic an-
gle. The outcomes are coalition structures—partitions of
the players—over which the players have preferences. More-
over, the players have different individual or joint strate-
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gies at their disposal to affect the coalition structure to be
formed. Various solution concepts—such as the core, the
strict core, and various kinds of individual stability—have
been proposed to analyze these games.

The characteristic feature of hedonic games is a non-
externalities condition, which incorporates the useful but
arguably simplifying assumption that each player’s prefer-
ences over the coalition structures are fully determined by
his preferences over the coalition he belongs to and do not
depend on how the remaining players are grouped. Never-
theless, the number of coalitions a player can be a member
of is exponential in the total number of players and the de-
velopment and analysis of concise representations as well
as interesting subclasses of hedonic game are an ongoing
concern in computer science and game theory. Particularly
prominent in this respect are representations in which the
players are assumed to entertain preferences over the other
players, which are then systematically lifted to preferences
over coalitions [see e.g., 12, 3].

The work presented in this paper pertains to what we will
call fractional hedonic games, a subclass of hedonic games
in which each player is assumed to have cardinal utilities or
values over the other players. These induce preferences over
coalitions by considering the average value of the members
in each coalition. The higher this value, the more preferred
the respective coalition is. Fractional hedonic games belong
to the succinct classes of hedonic games in which preferences
over other agents are extended to preferences over coalitions
in a natural way. Previously the min, max, and sum opera-
tors have been used respectively for hedonic games based on
worst players [12], hedonic games based on best players [11],
and additively separable hedonic games [see e.g., 4]. In this
paper we use the average operator. Despite the natural ap-
peal of fractional hedonic games, they have, to our knowl-
edge, enjoyed surprisingly little attention.1 Fractional hedo-
nic games can be represented by a weighted directed graph
where the weight of edge (i, j) denotes the value agent i has
for agent j. Since the games have a natural graphical repre-
sentation, we will show how desirable outcomes for fractional
hedonic games also provide interesting and desirable ways to
perform network clustering.

Natural economic scenarios can be modeled as fractional
hedonic games. A particular economic setting that we will
consider is what we refer to as Bakers and Millers. We as-
sume there to be two types of players, for expositional rea-

1Hajduková [20] first mentioned the possibility of using the
average value of coalition members in hedonic games but did
not further analyze this concept.
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sons called bakers and millers, where individuals of the same
type are competitors and those of different types can be seen
as suppliers and purveyors in a situation of free movement of
labor. Both types of players can freely choose the neighbor-
hood, where to set up their enterprises. Millers want to be
situated in a neighborhood with as many purchasing bakers
relative to competing millers as possible, so as to keep prices
high for the wheat they produce. On the other hand, bakers
seek as high a ratio of the number of millers to the number
of bakers as possible, so as to keep the price of wheat down
and that of bread up. We find that these settings (which be-
long to the class of fractional hedonic games) always admit a
core stable partition. This result is generalized to situations
in which there are more than two types and agents want to
keep the fraction of agents of their own type as low as possi-
ble. Our study of the Baker and Millers setting was inspired
by Schelling’s famous dynamic model of segregation [30, 31].

The contributions of the paper are as follows. First we
formally define fractional hedonic games and show that frac-
tional hedonic games bear negative existence and computa-
tional results. To be precise, the core of fractional hedonic
games can be empty and even if the core is not empty, com-
puting and verifying a core stable partition is NP-hard and
coNP-complete, respectively. In light of such negative re-
sults, we then turn our attention to natural sub-classes of
games that are based on unweighted and undirected graphs.
We identify a number of classes of graphs for which the core
of the corresponding hedonic game is non-empty. These
include graphs with degree at most two, forests, multi-
partite complete graphs, bipartite graphs which admit per-
fect matchings, regular bipartite graphs, and graphs with
girth at least five. For each of these classes we present al-
gorithms to compute core stable partitions. We argue that
the Bakers and Millers setting can be appropriately modeled
as a fractional hedonic game based on complete bi-partite
graphs. Generalizing this setting to complete multi-partite
graphs, we find that the partition consisting of the grand
coalition is generally core stable. Finally, we formulate a
number of open problems and directions for future research
and elaborate on how computing desirable outcomes in frac-
tional hedonic games provides an interesting game-theoretic
perspective to community detection [see e.g., 26, 18] and
network clustering.2

2. PRELIMINARIES
Let N be a set {1, . . . , n} of agents or players. For

each i ∈ N , we let Ni denote the set {S ⊆ N : i ∈ S} of
coalitions i is a member of. With a slight abuse of terminol-
ogy we refer to both the set N of all players and the coalition
partition {N} as the grand coalition. A hedonic game is a
pair (N,%), where %= (%1, . . . ,%n) is a profile of complete
and transitive relations %i, modeling the preferences of the
players. We use �i and ∼i to refer to the strict and indif-
ferent parts of %i, respectively. If %i is also anti-symmetric
we say that i’s preferences are strict. A coalition S ∈ Ni is
acceptable to a player i if i prefers S to being alone, that is,
S %i {i} and unacceptable, otherwise.

By a value function for a player i we understand a func-
tion vi : N → R assigning a real value to each of the players.

2Clauset et al. [13] discuss how social network analysis can
be used to identify clusters of like-minded buyers and sellers
in amazon’s purchasing network.

Unless stated otherwise we will assume vi(i) = 0. A value
function vi can be extended to a value function over coali-
tions such that for all S ∈ Ni,

vi(S) =

∑
j∈S vi(j)

|S| .

A hedonic game (N,%) is now said to be a fractional hedonic
game if for each player i in N there is a value function vi
such that for all coalitions S, T ⊆ N ,

S %i T if and only if vi(S) ≥ vi(T ).

A fractional hedonic game is said to be symmetric if vi(j) =
vj(i) and simple if vi(j) ∈ {0, 1}. Simple fractional hedonic
games have a natural appeal. Politicians may want to be in
a party that maximizes the fraction of like-minded members
and, for whatever reasons, people may want to be with as
large a fraction of people of the same ethnic or social group.
These situations can be fruitfully modeled as simple frac-
tional hedonic games by having the agents assign value 1 to
like-minded or otherwise similar people, and 0 to others.

A simple fractional hedonic game (N,%i) can be repre-
sented by a directed graph (V,E) in which V = N and
(i, j) ∈ E if and only if vi(j) = 1. In a much similar fashion,
if (N,%i) is both symmetric and simple, it can be repre-
sented by an undirected graph (V,E) such that V = N and
{i, j} ∈ E if and only if vi(j) = vj(i) = 1. The complete
undirected graph on n vertices is denoted by Kn whereas
an undirected cycle on n vertices is denoted by Cn. A
graph (V,E) is said to be k-partite if V can be partitioned
into k independent sets V1, . . . , Vk, that is, v, w ∈ Vi implies
{v, w} /∈ E. A k-partite graph is complete if for all v ∈ Vi
and w ∈ Vj we have {v, w} ∈ E if and only if i 6= j.

The outcomes of hedonic game are partitions of the
players, or coalition structures. Given a partition π =
{π1, . . . , πm} of the players, π(i) denotes the coalition in π of
which player i is a member. We also write vi(π) for vi(π(i)),
which reflects the hedonic nature of the games we consider.

Hedonic games are analyzed using solution concepts,
which formalize desirable or optimal ways in which the play-
ers can be partitioned (as based on the players’ preferences
over the coalitions). Among the most prominent solution
concepts rank the core and the strict core, both of which
formalize a concept of stability of partitions. We say that
a coalition S ⊆ N (strongly) blocks a partition π, if each
player i ∈ S strictly prefers S to his current coalition π(i)
in the partition π, that is, if S �i π(i) for all i ∈ S. A
partition that does not admit a strongly blocking coalition
is said to be in the core. In a similar vein, we say that a
coalition S ⊆ N weakly blocks a partition π, if each player
i ∈ S weakly prefers S to π(i) and there exists at least
one player j ∈ S who strictly prefers S to his current coali-
tion π(j), that is, S %i π(i) for all i ∈ N and S �i π(j) for
some j ∈ S. A partition does not admit a weakly blocking
coalition is in the strict core.

Example 1. Consider the simple and symmetric frac-
tional hedonic game based on the graph depicted in Figure 1.
In the grand coalition, the utility of each player is 1

2
. There

is only one core stable partition: {{1, 2, 3}, {4, 5, 6}}, which
yields utility 2

3
for each player. Observe that, when inter-

preted as an additively separable hedonic game, this is not a
stable partition, as the grand coalition would yield a higher
utility—namely, 3 instead of 2—to all and thus be a strongly
blocking coalition.
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Figure 1: Example of a simple and symmetric frac-
tional hedonic game. The only core stable partition
is {{1, 2, 3}, {4, 5, 6}}. In contrast, if the graph rep-
resents an additively separable hedonic game, then
the partition consisting of the grand coalition is the
only core stable partition.

3. RELATED WORK
Fractional hedonic games are related to additively separa-

ble hedonic games [see e.g., 4]. In both fractional hedonic
games and additively separable hedonic games, each agent
has a cardinal value for every other player. In additively
separable hedonic games, utility in a coalition is derived by
adding the values for the other players. By contrast, in
fractional hedonic games, utility in a coalition is derived by
adding the values for the other players and then dividing
the sum by the total number of players in the coalition.
Although conceptually additively separable and fractional
hedonic games are similar, their formal properties are quite
different. As neither of the two models is obviously supe-
rior, this shows how slight modeling decisions may affect the
formal analysis. For example, in unweighted and undirected
graphs, the grand coalition is trivially core stable for addi-
tively separable hedonic games. On the other hand, this is
not the case for fractional hedonic games.

A fractional hedonic game approach to social networks
with only non-negative weights may help detect like-minded
and densely connected communities. In comparison, when
the network only has non-negative weights for the edges, any
reasonable solution for the corresponding additively separa-
ble hedonic game returns the grand coalition, which is not
very discerning.

Recently, Olsen [27] has examined a variant of symmetric
simple fractional hedonic games and investigated the compu-
tation and existence of Nash stable outcomes. In the games
he considered, however, every maximal matching is core sta-
ble and every perfect matching is a best possible outcome
even if there are large cliques present in the graph. By con-
trast, in our setting agents have an incentive to form large
cliques.

Fractional hedonic games are different from but related to
another class of hedonic games called social distance games
introduced by Branzei and Larson [10]. In social distance
games, an agent not only derives utility from agents he
likes directly but also some utility from agents which are
at smaller distances from him. In many situations, one does
not derive an additional benefit from friends of friends and
may in fact prefer to minimize the fraction of people one
does not agree with or have direct connections with. In
such scenarios, fractional hedonic games are more suitable
than social distance games.

Fractional hedonic games also exhibit some similarity with
the segregation and status-seeking models considered by

1
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Figure 2: Fractional hedonic game used in the proof
of Theorem 1. For all missing edges {i, j} we have
vi(j) = −10.

Milchtaich and Winter [25] and Lazarova and Dimitrov [23].
Group formation models based on types were first consid-
ered by Schelling [30]. In Section 6, we argue why fractional
hedonic games are helpful for network clustering.

Identifying sufficient and necessary conditions for the ex-
istence of stability in coalition formation has also been an
active area of research [see e.g., 5, 7, 1, 2]. In this paper,
we identify a number of conditions under which a core sta-
ble partition is guaranteed to exist in a particularly natural
model of coalition formation.

Recently, and independently from our work, Feldman
et al. [17] have also considered the hedonic games framework
as an approach to graph clustering. However, their research
does not relate to core and strict core stability. Moreover,
they study different classes of hedonic games.

4. NEGATIVE RESULTS
In this section, we outline some negative results con-

cerning the existence and computation of stable partitions.
Firstly, we note that fractional hedonic games based on
graphs that are both directed and weighted may have an
empty core.

Theorem 1. For fractional hedonic games, the core can
be empty.

Proof. There exists a five-player fractional hedonic game
for which the core can be empty. Let N = {0, . . . , 4} and,
assuming arithmetic modulo 5, the preferences over N of
each player i be given by: vi(i + 1) = 2, vi(i − 1) = 1 and
vi(j) = −10 for j ∈ {i+ 2, i+ 3}. The game is illustrated in
Figure 2. Then, each individually rational coalition consists
of at most two players. It can be shown that no individually
rational partition is core stable.

Computing a core stable partition turns out to be NP-
hard, even if the core is guaranteed to be non-empty. The
key idea in the proof below is that a subclass of fractional
hedonic game is essentially equivalent to a subclass of ad-
ditively separable hedonic games called aversion-to-enemies
games.

Theorem 2. Computing a core stable partition for frac-
tional hedonic games with symmetric preferences is NP-
hard. Moreover, even checking whether a partition is core
stable is coNP-complete.

Proof. Consider an undirected graph (V,E). This graph
can represent an additively separable hedonic game or a frac-
tional hedonic game in which the set of players N is equal
to V and the valuations of players are defined as follows:

7



vi(j) = vj(i) = 1 if {i, j} ∈ E and vi(j) = vj(i) = −n if
{i, j} /∈ E. Let the resulting games be called G and G∗, re-
spectively. We make two claims. Firstly, a coalition S ∈ Ni
is unacceptable to i in G if and only if it is unacceptable
to i in G∗ and this is the case if S contains a player j such
that vi(j) = −n. Secondly, for any two acceptable coalitions
S, T ∈ Ni, S %i T in G if and only if S %i T in G∗. We
already know that S does not contain a player j such that
vi(j) = −n. Therefore S \ {i} consists of players j ∈ N
such that vi(j) = 1. Therefore S %i T in G iff |S| ≥ |T | iff
(|S| − 1)/|S| ≥ (|T | − 1)/|T | iff S %i T in G∗.

Based on these two claims, it follows that a partition is
core stable in G∗ if and only if it is core stable in G. There-
fore any computational hardness results we have concerning
core stability for symmetric aversion-to-enemies games also
carry over to symmetric fractional hedonic games. It has
previously been shown that the core of aversion-to-enemies
games is non-empty, but computing a core stable partition
is NP-hard even if vi(j) = vj(i) for all i, j ∈ N [14]. Further-
more, checking whether a partition is core stable is coNP-
complete [32] for this class of games.

It is worth observing that the grand coalition is not nec-
essarily core stable, even in simple symmetric fractional he-
donic games (see Example 1). Next, we point out that strict
core can be empty.

Theorem 3. In simple symmetric fractional hedonic
games, the strict core can be empty.

Proof. Consider the fractional hedonic game repre-
sented by a cycle of size five (C5). For C5, any coalition
of size three or more admits a blocking coalition of size two.
Even the partition consisting of one singleton and two coali-
tions of size two admits a weakly blocking coalition.

5. POSITIVE RESULTS
In this section, we present a number of subclasses of sim-

ple symmetric fractional hedonic games for which the core
is non-empty. Since these games can be represented by un-
weighted and undirected graphs, we will focus on different
graph classes. In particular we show existence results for
the following classes of graphs: graphs with degree at most
two, forests, multi-partite complete graphs, bipartite graphs
which admit perfect matchings, regular bipartite graphs,
and graphs with girth at least five. All our proofs are con-
structive in the sense that we show that a core stable par-
tition exists by outlining a way to construct a core stable
partition.

5.1 Graphs with bounded degree

Theorem 4. For simple symmetric fractional hedonic
games represented by graphs of degree at most 2, the core
is non-empty.

Proof. We present a polynomial-time algorithm to com-
pute a partition which is core stable. The partition is com-
puted as follows. First keep finding K3s until no more can
be found. This takes time

(
n
3

)
. Let us call the set of ver-

tices matched into K3s as V1. We remove V1 from the graph
along with E1—the edges between vertices in V1. We then
repeat the procedure by deleting K2s instead of K3s. Let
us call the set of vertices matched into pairs by V2. In that

case, V \(V1∪V2) are the unmatched vertices. The partition
obtained is π.

In order to prove that π is core stable, consider the po-
tential blocking coalitions. We know that vertices in V1 can-
not be in a blocking coalition because each vertex in V1 is
in one of its most favored coalitions. Also there does not
exist a blocking coalition consisting solely of vertices from
V \ (V1 ∪ V2). If this were the case, then we had not com-
puted a maximal matching of (V \ V1, E \ E1). Now let
us assume that there exists a v2 ∈ V2 which is in a block-
ing coalition. Then the coalition is of the form {v2, v′2, v3}
where v3 ∈ V \ (V1 ∪ V2) and v2, v

′
2 ∈ V2. If the utility

of v2 is greater than 1/2, then the utility of v′2 is less than
half. Since v′2 obtained utility 1/2 in π, {v2, v′2, v3} is not a
blocking coalition.

5.2 Forests

Theorem 5. For simple symmetric fractional hedonic
games represented by undirected forests, the core is non-
empty.

Proof. We present an algorithm to compute a core stable
partition for an undirected tree. We can assume that the
graph is connected—and therefore a tree—because if it were
not, then the same algorithm for a tree could be applied
to each connected component separately. Denote the graph
representing the game by G = (V,E). Pick an arbitrary
vertex v0 ∈ V and run breadth first search on it. Let L0

consist of v0, L1 of all the vertices at a distance of 1 from v0,
and Lk of all vertices at a distance of k from v0. Let L`
be the last layer of the tree. We construct a partition π,
which we will later claim is core stable. Initialize π to the
empty set. For each vertex v in the second last layer L`−1

which has a child in the last layer L`, add the set {v} ∪
{w : w ∈ L` and {v, w} ∈ E} to π. Remove the sets of
this form {v} ∪ {w : w ∈ L` and {v, w} ∈ E} from the tree
and repeat the process until no more layers are left. The
partition returned is π. The procedure terminates properly.
In each iteration, the last layer of the tree is removed along
with some or all the vertices of the second last layer. If a
vertex is left alone, send it to a smallest coalition that one
of its neighbors is a member of.

We now prove that π is core stable. For the base case,
we show that no vertex from a coalition π consisting only
the lowermost two layers, that is, L` and L`−1, can be in
a blocking coalition. If the vertex u in question is from the
second last layer, then it will only be in a blocking coalition S
if S contains u, all the children of u as well as the parent
of u. But then S is not a blocking coalition for the children
of u. For a leaf node v to be in a blocking coalition, it
will need to be with its parent u but in a smaller coalition.
But this means that u is not in a blocking coalition. We
remove all vertices from coalitions only containing vertices
from the last and second last layer and repeat the argument
inductively.

5.3 Complete k-partite graphs
In the introduction, we mentioned the Bakers and Millers

setting, in which the players are of two different types. Each
player likes the fraction of players of the other type as high
as possible. The underlying intuition is that players of the
same type are competitors whereas those of the other type
purveyors. This idea is easily be extended to multiple types.
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Let Θ = {θ1, . . . , θt} be a set of types that partitions the
set N of players, where t = |Θ|. Let, furthermore, θ(i)
denote the type player i belongs to. A hedonic game (N,%)
is called a Bakers and Millers game if the preferences of each
player i are such that for all coalitions S, T ∈ Ni,

S %i T if and only if
|S ∩ θ(i)|
|S| ≤ |T ∩ θ(i)||T | .

Thus, each generalized Bakers and Millers setting with k
types can be seen as a symmetric fractional hedonic games
in which the players’ preferences are given by a complete
k-partite graph with the independent sets representing the
types. More formally, it can easily be appreciated that a
Bakers and Millers game can be modeled as a fractional
hedonic game based on a graph (V,E), with V = N and

E = {{i, j} : θ(i) 6= θ(j)}.

Within this setting it can easily be appreciated that the
grand coalition is always strict core stable. Observe that for
every coalition S we have∑

1≤t′≤t

|S ∩ θt′ |
|S| = 1.

Now assume for contradiction that the grand coalition N
is not core stable. Then, there is a coalition S such that
|S∩θ(i)|
|S| < |N∩θ(i)|

|N| for some i ∈ S and |S∩θ(j)||S| ≤ |N∩θ(j)||N| for

all j ∈ S. But then∑
1≤t′≤t

|S ∩ θt′ |
|S| <

∑
1≤t′≤t

|N ∩ θt′ |
|N | ,

that is, 1 < 1, a contradiction. Generalizing this idea we
obtain the following theorem.

Theorem 6. Let (N,%) be a Bakers and Millers game
with type space Θ = {θ1, . . . , θt} and π = {S1, . . . , Sm} a
partition. Then, π is strict core stable if and only if for all
types θ ∈ Θ and all coalitions S, S′ ∈ π,

|S ∩ θ|
|S| =

|S′ ∩ θ|
|S′| .

Proof. First assume that for all types θ ∈ Θ and all

coalitions S and S′ in π we have |S∩θ|
|S| = |S′∩θ|

|S′| , but

that a weakly blocking coalition T for π exists. Then,
|T∩θ(j)|
|T | ≤ |π(j)∩θ(j)||π(j)| for all j ∈ T , while there is some i ∈ T

with |T∩θ(i)||T | < |π(i)∩θ(i)|
|π(i)| . Consider this i. Without loss of

generality assume that θ1, . . . , θk are the types represented
in T , that is, those types θ with j ∈ θ for some j ∈ T . By

assumption |π(j)∩θ(j)||π(j)| = |π(i)∩θ(j)|
|π(i)| for all j ∈ T . Hence,∑

1≤k′≤k

|T ∩ θk′ |
|T | <

∑
1≤k′≤k

|π(i) ∩ θk′ |
|π(i)| .

A contradiction follows as both∑
1≤k′≤k

|T ∩ θk′ |
|T | = 1 and

∑
1≤k′≤k

|π(i) ∩ θk′ |
|π(i)| ≤ 1.

For the other direction, consider arbitrary S, T ∈ π and

assume for some type θ ∈ Θ that |S∩θ||S| > |T∩θ|
|T | . Then,

S ∩ θ 6= ∅. Let i ∈ S ∩ θ. As∑
1≤t′≤t

|S ∩ θt′ |
|S| =

∑
1≤t′≤t

|T ∩ θt′ |
|T | ,

there is some θ′ ∈ Θ with |S∩θ
′|

|S| < |T∩θ′|
|T | . Thus, T ∩ θ′ 6= ∅.

First consider the case in which both S ∩ θ′ = ∅ and
T ∩ θ = ∅. Without loss of generality, we may assume that
|S| ≤ |T |. Observe that |S| < |T ∪{i}|. The coalition T ∪{i}
is weakly blocking, as

|(T ∪ {i}) ∩ θ|
|T ∪ {i}| =

|{i}|
|T ∪ {i}| <

|{i}|
|S| ≤

|S ∩ θ|
|S|

and, for every type θ′′ distinct from θ,

|(T ∪ {i}) ∩ θ′′|
|T ∪ {i}| =

|T ∩ θ′′|
|T ∪ {i}| ≤

|T ∩ θ′′|
|T | .

(The latter inequality is not strict, as T ∩θ′′ may be empty.)
Finally, assume without loss of generality, that T ∩ θ 6= ∅

and let j ∈ T ∩ θ. Since S and T are distinct and both in π,
also i 6= j. We show that the coalition T ′ = (T \ {j}) ∪ {i}
is weakly blocking. Consider an arbitrary type θ′′ ∈ Θ.
Observe that |T | = |T ′| and |T ∩ θ′′| = |T ′ ∩ θ′′|, whether

θ′′ = θ or not. Therefore, |T∩θ
′′|

|T | = |T ′∩θ′′|
|T ′| . Accordingly,

every player k ∈ T \ {i, j} is indifferent between T and T ′.

To conclude the proof, observe that |T
′∩θ|
|T ′| = |π(j)∩θ|

|T | . Hence,

|π(i) ∩ θ(i)|
|S| =

|S ∩ θ|
|S| >

|T ∩ θ|
|T | =

|π(j) ∩ θ|
|T | =

|T ′ ∩ θ|
|T ′| ,

that is, T ′ �i S, as desired.

Let d denote the greatest common divisor of |θ1|, . . . , |θt|,
which we know can be computed in time linear in t (cf. [8]).
Theorem 6 can now be rephrased as follows: a partition π
for a Bakers and Millers game is strict core stable if and
only if for all coalitions S in π there is a positive integer kS
such that for all types θi we have |S ∩ θi| = kS |θi|/d. Thus,
for the grand coalition N we have kN = d. There is also a
partition π such that kS = 1 for all coalitions S in π. It can
readily be appreciated that this π is strict core stable and
that there is no finer one with the same property. We say
that two partitions π and π′ are identical up to renaming
players of the same type if there is a bijection f : N → N
such that for all players i we have θ(i) = θ(f(i)) and π′ =
{{f(i) : i ∈ S} : S ∈ π}. Hence, we have the following
corollary.

Corollary 1. For every Bakers and Millers game, there
is a unique finest strict core stable partition (up to renaming
players of the same type), which, moreover, can be computed
in linear time.

As strict core stability implies core stability, the “if”-
direction of Theorem 6 also holds for the core. That is,

partition π is core stable whenever |S∩θ||S| = |S′∩θ|
|S′| for all

coalitions S, S′ in π. The inverse of this statement does not
generally hold. Consider three players 1, 2, and 3, with 1
belonging to type θ1, while 2 and 3 belong to type θ2. Then,
the partition {{1, 2}, {3}} is core stable but not strict core
stable: coalition {1, 3} is weakly blocking.

5.4 Bipartite graphs
Bipartite graphs constitute one of the most natural classes

for which it is unknown whether the core is generally non-
empty. Still, for certain subclasses of bipartite graphs, Hall’s
Theorem [21] can be leveraged to obtain positive results re-
garding this issue. First, we have the following lemma.
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Lemma 1. For every fractional hedonic game that is rep-
resented by an undirected bipartite graph admitting a perfect
matching the core is non-empty.

Proof. Let {N ′, N ′′} be the respective bipartition of N .

For every coalition S ⊆ N , either |N
′∩S|
|S| ≤

1
2

or |N
′′∩S|
|S| ≤ 1

2
.

Hence, every coalition S contains at least one player i with
vi(S) ≤ 1

2
. In a perfect matching, considered as a partition,

every player has value 1
2
. Hence, every perfect matching is

core stable and the claim follows.

The following two results are corollaries of Hall’s Theorem.

Corollary 2. For every graph with biparti-
tion {N ′, N ′′} with |N(S)| ≥ |S| for all coalitions S
in N ′, the core of the corresponding fractional hedonic game
is non-empty.

Corollary 3. For all bipartite k-regular graphs the core
of the corresponding fractional hedonic game is non-empty.

5.5 Graphs with large girth
The girth of a graph is the length of the shortest cycle in

the graph. Graphs with a girth of at least five do not admit
triangles or cycles of length four. We say that two vertices v
and w have a neighbor in common in (V,E) if either {v, w} ∈
E or there is some u ∈ V such that {u, v}, {u,w} ∈ E. We
have the following lemma.

Lemma 2. Let (V,E) be a graph with |V | ≥ 3. Then,
(V,E) has girth of at least five if and only if all v, w ∈ V
have at most one neighbor in common.

Proof. For the if direction, assume that (V,E) contains
a cycle of length three or four. In either case, it is easy to find
vertices that have at least two neighbors in common. For the
only-if direction, assume that there are v, w ∈ V that have
more than one neighbor in common. That is, either {v, w} ∈
V and there is some u ∈ V such that {u, v}, {u,w} ∈ V or
there are u, u′ ∈ V such that {u, v}, {u,w}, {u′, v}, {u′, w} ∈
V . If the former, the graph has girth of at most three. If
the latter, the graph’s girth is at most four.

The key idea behind the following result is to pack the ver-
tices of the graph representing a fractional game into stars
while maximizing a particular objective function.

Theorem 7. For simple symmetric fractional hedonic
games represented by graphs with girth at least five, the core
is non-empty.

Proof. We first introduce the more general notion of
graph packing. Let F be a set of undirected graphs. An
F-packing of a graph G is a subgraph H of G such that each
component of H is isomorphic to a member of F. The com-
ponents of an F-packing H can be seen as coalitions, and
thus F-packings naturally induce a coalition partition, with
each vertex not contained in a connected component form-
ing a singleton coalition. We will consider star-packings of
graphs, that is, F-packings with F = {S2, S3, S4, . . . , } such
that each Si is a star with i vertices. Each star Si with i > 2
has one center c and i− 1 leaves `1, . . . , `i−1. We assume S2

to have two centers and no leaves.
With each star packing, denoted by π, we associate an

objective vector ~x(π) = (x1, . . . , x|V |) such that xi ≤ xj if

c1

`1 `2

c2

`4`3 `5

c3

`7`6 `8

Figure 3: A graph with girth 5 and a star packing
indicated by the solid edges. This star packing does
not have an optimal objective vector: a better one
would result if `3 and `8 were to form a star. Observe
that {`3, `8} is here also a strongly blocking coalition.

1 ≤ i ≤ j ≤ |V |, and there is a bijection f : V → {1, . . . , |V |}
with uv(π) = xf(v). Thus, in ~x(π) the vertices/players are
ordered according to their value for π in ascending order. We
assume these objective vectors to be ordered lexicographi-
cally by ≥, e.g.,

(
1
2
, 1
2
, 1
2
, 1
2

)
≥
(
0, 1

3
, 1
3
, 2
3

)
but not vice versa.

The goal is to compute a star packing that maximizes its
objective vector. Intuitively, this balances the sizes of the
stars in the star packing without leaving vertices needlessly
on their own. Also see Figure 3 for an illustration.

Obviously, star packings minimizing the objective are
guaranteed to exist and in the remainder of the proof we
argue that such star packings are core stable.

To this end, let π be a star packing of a graph (V,E)
that maximizes the objective vector. Observe that a ver-
tex v has utility 0 under π if and only if v has no neighbors
in (V,E). In that case v has utility 0 in every partition and
in every coalition. For contradiction assume that there is a
coalition S strongly blocking π. Obviously, S contains no
isolated vertices, as these would obtain utility 0 and thus
not be strictly better off joining S. Therefore, S consists
entirely of vertices that are either centers or leaves of π.

Also observe that, for any two leaves `, `′ in π we
have {`, `′} /∈ E. For a contradiction assume the op-
posite. Then, ` and `′ come from different centers, oth-
erwise (V,E) would contain a triangle. Moreover, π′ =
{{`, `′}, π′1 . . . , π′k}, where π′i = πi \ {`, `′}, is a star packing
for which the objective vector is larger than the one for π.

Now three cases can be distinguished: (i) S contains no
centers of π, (ii) S contains exactly one center of π and (iii)
S contains more than one center of π.

If (i), S only contains leaves of π, between which we know
there are no edges. Hence, every member of S has utility 0
and S cannot be blocking.

If (ii), we show that ~x(π) is not optimal. Let S consists
of one center c and m leaves `1, . . . , `m of π. Since no leaves
in π are neighbors, some reflection reveals that S is a star
with c as center and `1, . . . , `m as leaves. Let ` denote one
of the leaves and c′ the center of π such that ` ∈ π(c′).
Consider the partition π′ such that

π′(k) =

{
π(c) ∪ {`} if k ∈ π(c) ∪ {`}, and

π(k) \ {`} otherwise.

We claim that ~x(π′) > ~x(π), contradicting our initial as-
sumption. Observe that it suffices to prove that (a) u`(π

′) >
u`(π) and (b) uk(π′) ≥ u`(π′) for all k with uk(π′) < uk(π).

For (a), observe that if uc(π) < uc(S) and c is a center
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a

0 1

b

2 3

c

54 6

d

87 9

Figure 4: A complete bipartite graph in which no
star packing yields a stable partition. For instance,
the partition indicated by the solid edges is not sta-
ble as {a, b, 4, 5, 6, 7, 8} would deviate.

in both π and S, then |π(c)|−1
|π(c)| < |S|−1

|S| . Moreover, u`(π) <

u`(S), that is, 1
|π(`)| <

1
|S| . Accordingly, |π(c)| < |S| <

|π(`)|. It follows that |π′(`)| = |π(c)∪ {`}| ≤ S < |π(`)| and
thus u`(π

′) > u`(π).
For (b), let k be such that uk(π′) < uk(π). Then either

k = c′ or k ∈ π(c) \ {c}. As c′ is a center and ` a leaf in π,
c′ still is a center in π′. Hence, uc′(π

′) ≥ 1
2
. Moreover, ` is

also a leaf in π and thus u`(π
′) < 1

2
, proving the case. Now

assume that k ∈ π(c) \ {c}. Then, with k and ` being both
leaves in π′(c), uk(π′) = u`(π

′).
If (iii), assume that S contains at least two centers c and c′

in π. Then, uc(π) ≥ 1
2

and uc′(π) ≥ 1
2
. Either |S| = 2k + 2

or |S| = 2k + 3 for some k ≥ 1. As both uc(S) > 1
2

and

uc′(S) > 1
2
, also |{i ∈ S : {c, i} ∈ E}| ≥ k + 2 and |{i ∈

S : {c′, i} ∈ E}| ≥ k + 2. It follows that c and c′ must have
at least two neighbors in common, contradicting Lemma 2.
This completes the proof.

It is worth observing that, even if a core-stable partition
by stars exists, there may still be other stable partitions.
In a 3-star, for instance, letting the center and two leaves
form a coalition is core stable. Furthermore, it is an interest-
ing question whether our constructive method to compute a
core stable partition can be implemented in polynomial time
using known algorithms for packing graphs into stars.

It also be noted that for fractional hedonic games on gen-
eral bipartite graphs it is not always the case that there are
star-packings that also yield core stable partitions. Con-
sider, e.g., the complete bipartite graph with 14 vertices
with bipartition {{a, b, c, d}, {i : 0 ≤ i ≤ 9}}, as depicted
in Figure 4. Still, by virtue of Theorem 6 the correspond-
ing fractional hedonic game allows for stable partitions, e.g.,
the grand coalition. Hence, any method of finding core sta-
ble partitions in games on bipartite graphs based on finding
star-packings is bound to fail.

6. NETWORK CLUSTERING
The analysis of simple fractional hedonic games is also

related to social network analysis, which aim is to identify
viable clustering of vertices [9]. Particularly relevant within
this line of research is the work on identifying and detecting
communities in networks [see e.g., 26, 29]. In network clus-
tering, the main approaches for identifying “good” clusters
is to minimize intra-cluster density measures or to maxi-
mize inter-cluster density measures. Such global parameters,
however, do not take into account the incentives members
of the network may have to from a (blocking) coalition and
deviate from their respective clusters. Papadimitriou [28,
Section 7] identified this as an interesting line of research to
pursue. Hedonic games offer a promising formal framework

to capture the dynamic nature of cluster formation as based
on the members’ incentives.

Apart from core stability, there are also other solution
concepts for hedonic games that may be suitable for network
clustering/community detection, e.g., finding the partitions
that maximize the sum of agent utilities (utilitarian welfare)
or maximize the utility of the worst off agent (egalitarian
welfare). This perspective is not only more fine-grained than
local-density measures such as ‘maximum cliques’, ‘plexes
and their duals’, ‘dense subgraphs’ etc. [Chapter 6, 9], it
also captures the rationale behind bi-criteria optimization
criteria such as maximizing intra-cluster density and mini-
mizing inter-cluster density [29]. It can achieve both objec-
tives simultaneously via a single criterion such as maximiz-
ing social welfare. In a similar way as the Shapley value of
a suitably defined game based on a graph has been used to
propose new centrality indices [see e.g., 24], computing the
maximum welfare partition of the fractional hedonic game
represented by the graph appears to be an attractive and
fundamental way of performing network clustering.

The field of data clustering has some relation with net-
work clustering. In contrast to network clustering, however,
the edge weight/distance between two points that plays such
an important role in data clustering represents a level of dif-
ference rather than one of similarity or affinity. In a seminal
paper on data clustering, Kleinberg [22] emphasized the need
for an axiomatic theory of clustering that is independent
of specific algorithms, objective functions or data models.
He defined three natural axioms—namely, scale invariance,
richness, and consistency—and proved that no clustering
method can simultaneously satisfy all three of them. Later
Ben-David and Ackerman [6] showed that consistency can
be slightly weakened so as to obtain a consistent set of ax-
ioms. One can define analogous axioms that are appropriate
for network clustering. It turns out that, when the network
is modeled as a fractional hedonic game, the analogues of
the axioms of scale invariance, richness, and consistency as
in the paper by Ben-David and Ackerman [6] are satisfied
by both the core and the maximum welfare measure. Note
that, if the graph is unweighted, additively separable hedo-
nic games are not useful for network clustering, because the
partition consisting of the grand coalition is always optimal.

7. CONCLUSIONS
We initiated the study of core stable partitions in frac-

tional hedonic games. The model promises to be of interest
in both network clustering and coalition formation. We fo-
cussed on core stable partitions and identified a number of
classes of graphs for which the core is non-empty. Inter-
estingly, it remains open whether simple fractional hedonic
games always admit core stable partitions. The problem ap-
pears to be quite challenging as we have not even been able
to prove non-emptiness of the core for bipartite graphs.
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