
Cost Optimal Planning with LP-Based Multi-valued
Landmark Heuristic

Lei Zhang, Chong-Jun Wang
∗

, Jun-Yuan Xie
State Key Laboratory for Novel Software Technology
Department of Computer Science and Technology

Nanjing University, Nanjing 210046, China
zhanglei.com@gmail.com,{chjwang,jyxie}@nju.edu.cn

ABSTRACT
Landmark based heuristics are among the most accurate current
known admissible heuristics for cost optimal planning. Disjunc-
tive action landmarks can be considered as at-least-one constraints
on the actions they contains. In many planning domains, there are
many critical propositions which have to be established for a num-
ber of times. Previous landmarks fail to express this kind of gen-
eral cardinality constraints. In this paper, we propose to generalize
landmarks to multi-valued landmarks to model general cardinality
constraints in cost optimal planning. We show existence of com-
plete multi-valued landmark sets by explicitly constructing com-
plete multi-valued action landmark sets for general planning tasks.
However, it’s computationally intractable to extract and exploit ex-
act lower bounds of general multi-valued action landmarks. We
devise a linear programming based multi-valued landmark heuris-
tic hl pml which extracts and exploits multi-valued landmarks using
a linear programming solver. The heuristic hl pml is guaranteed to be
admissible and can be computed in polynomial time. Experimental
evaluation on benchmark domains shows hl pml beats state-of-the-
art admissible heuristic in terms of heuristic accuracy and achieves
better overall coverage performance at the cost of using more CPU
time.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Heuristic methods

General Terms
Algorithms, Experimentation

Keywords
Heuristic search planning; Landmark heuristics; Cost optimal plan-
ning

1. INTRODUCTION
The task of cost optimal planning is to find a solution plan with

minimum cost. It is a challenging problem that involves not only
finding a satisficing plan, but also proving there is no plan with
lower cost. Currently, the dominating approach to cost optimal

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

∗Corresponding author email: chjwang@nju.edu.cn

planning is heuristic search based planners [2] which are guided
with admissible heuristics [8, 15]. Admissible heuristics are usu-
ally obtained from various relaxations of original problems. Cur-
rently, there are four main classes of relaxations commonly used
in classical planning: delete relaxations, critical paths, landmarks
and abstractions. Landmark based heuristics are among the most
accurate admissible heuristics.

Landmarks are sub-goals which must be achieved in all valid
solution plans. They were first used to decompose planning tasks
into smaller sub-tasks and guide search [9]. Landmarks are later
on exploited for heuristic functions. The first successful landmark
heuristic, landmark-count, counts the number of fact landmarks
that still need to be achieved [15]. The planner LAMA based on
this inadmissible heuristic showed the best performance in the se-
quential satisficing track of the sixth International Planning Com-
petition (IPC-6). The first admissible heuristic based on landmarks
exploits disjunctive action landmarks which are induced by propo-
sitional fact landmarks [10]. Helmert and Domshlak [8] proposed
an efficient disjunction action landmark extraction procedure that
iteratively cuts between reached and unreached parts of planning
tasks, the resulting heuristic LM-cut is currently one of the most
successful admissible heuristics in practice. In an experiment mea-
suring the accuracy of different heuristics, LM-cut computes exact
h+(the optimal delete relaxation heuristic) for more than 70% of
all problem instances [3]. Meanwhile, previous work try to encode
delete free planning tasks(Π+) as MaxSAT problems and extract
action landmarks as unsatisfiable cores using MaxSAT solvers [16,
4].

However, previous disjunctive action landmarks can all be seen
as at-least-one constraints: at least one action of a disjunctive action
landmark must be included in all valid solution plans. This kind
of at-least-one constraints is too weak for domains where proposi-
tions need to be established for many times. In these domains, we
need more general constraints like cardinality constraints to express
non-binary lower bounds. In this paper, we introduce multi-valued
landmarks to model cardinality constraints in cost optimal plan-
ning. Since we can reduce multi-valued landmarks to landmarks,
it’s easy to see that general multi-valued landmarks are at least as
intractable to extract as general landmarks. However, we observe
that for a certain class of propositions there is a strong relation-
ship between the number of times they are added and the number
of times they are deleted. We refer to this class of propositions as
regular transition propositions. Based on this property of regular
transition propositions, we devise a multi-valued landmark heuris-
tic hl pml which use linear programming solvers to extract and ex-
ploit multi-valued landmarks, the heuristic is proved to be admis-
sible and can be computed in polynomial time. Experiment results
on benchmark domains from recent IPC show that hl pml is more

509

accurate than state-of-the-art landmark based admissible heuristic
and achieves better overall coverage performance.

The reminder of this paper is structured as follows: we first pro-
vide a brief background on classical planning and heuristic search
planners in Section 1. In Section 2, we present main notions of
landmark based planning and current admissible heuristics that are
based on landmarks. In Section 3 and Section 4, we introduce
multi-valued actions landmarks and multi-valued proposition land-
marks, we discuss their properties and how multi-valued actions
landmarks can be induced from multi-valued proposition landmarks.
We then present the linear programming based multi-valued land-
mark heuristic hl pml in Section 5. Section 6 provides experiment
evaluation of hl pml on benchmark domains. Conclusions are given
in Section 7.

2. NOTATION AND BACKGROUND

Planning and Delete Relaxation. A planning problem Π =
〈P, I,G,A,cost〉 consists of a set of facts P, an initial state I ⊆ P,
a goal state G ⊆ P, and a set of actions A. Each action a ∈ A is
specified by the sets 〈pre(a),add(a),del(a)〉, where pre(a) are the
preconditions of a, add(a) are the add (positive) effects of a, and
del(a) are the delete (negative) effects of a. Each of these sets is
a subset of P. cost is a cost function that assigns each action in
A a positive real valued cost bounded away from zero. The delete
relaxation Π+ of Π is the same problem but for every a ∈ A we set
del(a) = /0. States are subsets of P.

An action a is applicable in state s if pre(a)⊆s. The result of ap-
plying action a to state s is result(s,a)=(s∪add(a))\ del(a). The
result of applying an action sequence to state s is defined recur-
sively as: result(s,〈a1, · · · ,an〉)= result(result(s,〈a1. · · · ,an−1〉),an).
The sequence is said to be executable if each ai is applicable, i.e.,
pre(ai) ⊆ result(s,〈a1, . . . ,ai−1〉). A fact φ is true at time i iff
φ ∈ result(I,〈a1, · · · ,ai〉). A valid plan π for a state s ⊆ P is an
executable sequence of actions such that G⊂ result(s,π). The cost
of π, cost(π), is the sum of the cost of its actions. The cost of a
minimum cost of plan for the initial state I in the relaxed planning
problem Π+ is denoted by h+(Π+). The cost of an optimal plan,
cost(π∗), is denoted by h∗.

Heuristic-Search Planning. Heuristic search planners solve
planning tasks using exact search algorithms like A*. The ex-
act search algorithms are usually guided with heuristics which are
derived automatically from problem definitions. The success of
heuristic search planners depends mainly on how informative the
heuristics are. Heuristics are functions h : S 7→ R+

0 that estimate
cost of path to goal states. In order to find optimal plans, the heuris-
tic function h needs to be admissible: it does not overestimate the
cost of reaching the goal states, that is, for all state s, we have
h(s)≤ h∗(s), where h∗ stands for the optimal heuristic which is de-
fined as the cost of the lowest-cost path from initial state to goal
states. With optimal heuristics, we can then use best first search to
compute optimal plans in linear time. However, the optimal heuris-
tics h∗ are intractable to compute in general, in fact, even com-
puting h+ is NP-hard. Our objective is to get as close to optimal
heuristics as possible with efficient algorithms.

3. PREVIOUS ADMISSIBLE LANDMARK
HEURISTICS

Landmarks are subgoals that must be achieved at some time
point in every solution plan. There are two main kinds of land-
marks, fact landmarks and action landmarks, which are formally

defined as follows:

DEFINITION 1. A fact φ is a fact landmark of planning task Π

iff φ is true at some time in every solution plan of Π.

DEFINITION 2. An action landmark of planning task Π is a
single action that must be executed at some time in every solution
plan of Π.

Moreover, a disjunction f of facts is a disjunction fact landmark
if f must be true at some time in every solution plan of Π. A
set O of actions is a disjunction action landmark if O has non-
empty intersection with every solution plan of Π. It is intractable
(PSPACE-complete in general) to decide whether a disjunction of
facts or a disjunction of actions is a landmark for Π or not [14].

Landmarks were first used as subgoals to decompose planning
tasks, but most current planners exploit landmarks for heuristics. A
disjunction action landmark l = {a1, · · · ,ak} for Π can be seen as
a heuristic function hl = mina∈lcost(a), and hl is referred to as l’s
cost. Given a set of disjunction action landmarks L = {l1, · · · , lm} ,
we can exploit L by taking the maximum cost: hL =maxl∈Lhl . This
exploitation approach is very weak and loses information contained
in landmarks. If we take the sum of landmark costs, the resulting
heuristic would not be admissible in general because some actions
might be counted more than once. Current admissible landmark
based heuristics use more sophisticated landmark exploitation ap-
proaches like cost partitioning and hitting set.

Cost partitioning. A cost partitioning for landmark set L is a
set C = {c1, · · · ,cm} of cost functions that satisfy the constraint
∑

m
i=1 ci(a)≤ cost(a) for each action a. The cost partition C defines

a new heuristic ∑
m
i=1 mina∈li ci(a). Through a cost partitioning, each

action’s cost is distributed across m new planning tasks defined by
c1, · · · ,cm. Each cost function ci defines a new planning task. The
constraints ensure that the sum of costs is admissible. Given the
same set of landmarks, different cost partitions will lead to dif-
ferent heuristics. Optimal cost partitionings can be obtained by
solving linear programs, the resulting heuristics are usually more
informative [10]. LM-cut can also be seen as a cost partitioning
based heuristic [8], it obtains disjunction action landmarks by iter-
atively cutting justification graphs, and the cost partitioning used in
LM-cut can be computed very efficiently.

Hitting set. Hitting set is another way of exploiting disjunctive
action landmarks, it is computationally more expensive than LM-
cut and optimal cost partitioning, however it can produce more in-
formative heuristics . Assume A = {a1, · · · ,an} is an action set and
L = {l1, · · · , lm} is a family of subset of A. A subset S⊆ A is called
as the hitting set of L if and only if S has non-empty intersection(
’hits’) with every subset in L. A hitting set is called minimum cost
hitting set if its cost is less or equal to all hitting sets. A landmark
set L = {l1, · · · , lm} of planning task Π can be seen as a instance of
hitting set problems. The cost of L’s minimum-cost hitting set is
an admissible heuristic. Hitting set based heuristics dominate both
LM-cut and optimal cost partitioning heuristics if given the same
set of landmarks [3], but finding a minimum-cost hitting set is a
NP-complete problem.

Note that most previous admissible landmark heuristics are based
on landmarks of delete relaxation Π+. They are admissible approx-
imations of h+ and ignore delete information. Some recent land-
mark techniques take into account delete effects by compiling gen-
eral planning tasks into delete free tasks [12, 5, 11, 6]. However,
very few work has been done on the topic of repeated or multi-
valued landmarks except [13]. In this paper, we try to further ex-
plore this notion of multi-valued landmarks in the context of cost
optimal planning.

510

4. MULTI-VALUED ACTION LANDMARKS
In many planning domains, some propositions have to be estab-

lished more than once. For example, in the blocks world domain,
if the length of an optimal plan π∗ for Π is n, proposition HAN-
DEMPTY will have to be established for at least bn/2c times. Since
only PUTDOWN actions and STACK actions have HANDEMPTY
as an add effect, the action landmark that contains all PUTDOWN
actions and STACK actions has a lower bound of bn/2c. Previous
disjunctive action landmarks can be seen as a form of at-least-one
constraints on the actions it contains, which makes them unsuitable
for expressing these non-binary lower bounds. In these cases, it
will be convenient to have multi-valued action landmarks to model
these cardinality constraints.

DEFINITION 3. A multi-valued action landmark 1 l = 〈Al , lbl〉
of planning task Π contains a set of actions Al = {a1, · · · ,ak} and
a lower bound lbl such that the number of occurrences of actions
in Al is greater than or equal to lbl in every solution plan π,

∀π, ∑
ai∈Al ,ai∈π

ai ≥ lbl .

Landmarks in previous work can be seen as a special case of
multi-valued landmarks with lower bounds set to 1. Note that every
set of action can be seen as a trivial multi-valued landmark with
lower bound equals 0. Another example of multi-valued landmarks
is the global multi-valued landmark set L whose action set consists
of all actions in A: L = 〈{a|a ∈ A},0〉.

From known multi-valued action landmarks, new multi-valued
landmarks can be derived. For instance, let l1 = 〈A1, lb1〉 and l2 =
〈A2, lb2〉 be two multi-valued action landmarks, then we have: 1)
l3 = 〈A1∪A2,max(lb1, lb2)〉 is a valid landmark; 2) If A1∩A2 = /0,
l4 = 〈A1∪A2, lb1 + lb2〉 is a valid landmark.

A collection C of landmarks is complete for planning task Π if
the cost of a minimum-cost hitting set of C equals h∗(Π+). The
minimal cost hitting set is an optimal plan for Π+ [1]. The minimal
cost hitting set model , however, can not be used to exploit multi-
valued landmarks, because general multi-valued landmarks have
non-binary lower bounds and need to be “hit” multiple times. So a
model more general than the minimal cost hitting set is needed. We
use covering integer programs here since multi-valued landmarks
can be naturally modeled as at-least-k constraints. For a multi-
valued landmark set L, we define C(L) as the cost of multi-valued
landmark set L.

C(L) = min{∑
ai

ai ∗ cost(ai)|∀l ∈ L, ∑
ai∈Al

ai ≥ lbl} (1)

Now we can define a similar notion of completeness for multi-
valued action landmark set.

DEFINITION 4. A multi-valued landmark set L is complete for
planning task Π if the cost of L equals h∗(Π): C(L) = h∗(Π).

In [3], it’s proved that there always exists a collection C of delete
relaxation landmarks that is complete for delete relaxed tasks Π+.
We can obtain similar results for multi-valued landmarks. In the
following, we show the existence of complete multi-valued land-
mark set by explicitly constructing complete multi-valued land-
mark sets for delete relaxed tasks as well as planning tasks with
delete effects.

1Here we don’t differentiate between action landmarks and
disjunction action landmarks in the context of multi-valued land-
marks, as we can consider action landmarks as special disjunction
action landmarks whose action sets have only one action. Both are
referred to as multi-valued action landmarks in the following.

PROPOSITION 1. Existence of complete multi-valued landmark
set:

• The multi-valued landmark set {L = 〈A,h+〉} is complete for
delete relaxed task Π+.

• The multi-valued landmark set {L′ = 〈A′,h∗(Π)〉} is com-
plete for Π, where A′ = {ai,t |t ∈ [1, |π|], i ∈ [1, |A|]} and Π

has a satisficing plan π with bounded plan length.

PROOF. In delete relaxed task Π+, actions don’t have any delete
effect, so every action is required at most once. Therefore, the
optimal delete relaxed plan π+ contains no duplicate actions. For
any optimal relaxed plan π+, we have {a|a ∈ π+} ⊆ A. The cost
of multi-valued landmark set {L} equals h+. Therefore, {L} is
complete for Π+.

In planning tasks with delete effects, actions might be required
for more than once, so action sets of complete multi-valued land-
mark set should contain enough action duplicates. Since for plan-
ning task Π there is a satisficing plan π with bounded plan length
|π|, then the number of occurrences of each action will also have
a upper bound |π|. In the action set of multi-valued landmark L′,
each action ai has |π| duplicates. Therefore, for any optimal solu-
tion plan π∗, we have {a|a ∈ π∗} ⊆ A′. Since the lower bound of L′

is equal to h∗, {L′} is complete for Π.

Given a complete set L of multi-valued landmark set, there is a
solution π of the covering integer program C(L) that is an "optimal
plan". Note that the solution π is a multi-set of actions that are not
sequenced. By appropriate sequencing, we can get an executable
optimal plan out of π. However, since we only use multi-valued
landmarks for generating heuristic functions, we don’t consider the
sequencing issue in this paper.

As the exact lower bounds of L is equal to h+, it’s NP-hard to
extract L’s exact lower bound. Similarly, it’s PSPACE-complete in
general to extract L′’s exact lower bound. In fact, even for multi-
valued landmarks whose action sets consist of only one action, it
can be shown that it’s PSPACE-complete to decide whether their
exact lower bounds are greater than 0. In the following section, we
introduce multi-valued proposition landmarks from which multi-
valued action landmarks can be extracted more efficiently.

5. MULTI-VALUED PROPOSITION LAND-
MARKS

Although general multi-valued action landmarks are hard to ex-
tract, there are sound extraction methods for fact landmarks. For
example, every goal fact that is not present in the initial state is
a fact landmark; if all actions achieving a subgoal have a com-
mon precondition fact which is not in the initial state, the com-
mon precondition fact is also a fact landmark. These methods
are incomplete in that they can only extract a certain class of fact
landmarks. Previous admissible landmark heuristics rely on these
methods to generate fact landmarks and use the induced disjunction
action landmarks [10]. In this section, we introduce multi-valued
proposition landmarks and discuss how can we extract multi-valued
action landmarks by using multi-valued proposition landmarks.

DEFINITION 5. A multi-valued proposition landmark l = 〈p, lb〉
of Π consists of a proposition p and a lower bound lb such that
proposition p will be added at least lb times in any solution plan of
Π.

For proposition p, we define add(p) as the set of actions that
have p as add effect and del(p) as the set actions that have p
as delete effect. Given a multi-valued proposition landmark l =

511

〈p, lb〉, by the definition of multi-valued proposition landmarks, we
can get an induced multi-valued action landmark 〈add(p), lb〉.

However, we can not reach similar conclusions about the lower
bound of del(p): given a multi-valued proposition landmark 〈p, lb〉,
it’s not always the case that exact lower bounds of add(p) and
del(p) are both equal to lb. It’s possible that the lower bounds
of add(p) and del(p) are independent. For instance, p can be
added several times before it is deleted for the first time, or it can
be deleted many times and never be added. In these cases, not all
actions that have p in their add list or delete list will induce a truth
transition of p. For propositions that do satisfy this constraint, we
will refer to them as regular transition propositions, and we will
show that the exact lower bounds of add(p) and del(p) for regular
transition proposition p are very strongly correlated.

DEFINITION 6. A proposition p is a regular transition propo-
sition for Π if the following conditions hold:
1) ∀a ∈ add(p),∀s ∈ SI , pre(a)⊆ s→¬p ∈ s
2) ∀a ∈ del(p),∀s ∈ SI , pre(a)⊆ s→ p ∈ s
where SI is the set of states reachable from initial state I.

For regular transition proposition p, all actions having p as add ef-
fect will induce a false to true transition of p when applied, and
all actions having p as delete effect will induce a true to false tran-
sition of p when applied. By the definition, to determine whether
a proposition is a regular transition one or not, we have to know
the set of reachable states from I, which is not feasible in prac-
tice. However, we can conclude that p is not a regular transition
proposition if it can be added in a state where p is already true.
For example, in the visitall domain, location x can be visited many
times, which means that actions adding visited(x) , for example
move(y,x), are applicable in states where visited(x) is already true,
therefore, move(y,x) does not necessarily change the truth value of
visited(x), and visited(x) is not a regular transition proposition.

On the other hand, we can conclude that p is a regular transition
proposition if we are certain that p can not be added in states where
p is already true, and at the same time p can not be removed in
states where p is already false. This is a sufficient condition for
p to be a regular transition proposition and it can be checked as
follows,

PROPOSITION 2. Proposition p is a regular transition proposi-
tion if both the following conditions hold:

• ∀a ∈ add(p), ¬p ∈ pre(a) or ∃q ∈ pre(a) such that q and p
are inconsistent.

• ∀a ∈ del(p), p ∈ pre(a)

The proof is omitted. Using this proposition, we can determine
whether p is a regular transition proposition in O(|add(p)|+|del(p)|)
time. For example, consider the put-down(x) action in the blocks-
world domain, its preconditions and effects are as follows,

• precondition: holding(x)

• add effect: clear(x), handempty, ontable(x)

• delete effect: ¬holding(x)

We can see from above that handempty is an add effect of put-down,
but ¬handempty is not present in put-down’s precondition. Since
holding(x) and handempty is mutex, handempty must be false in
all states where put-down(x) is applicable. Therefore put-down(x)
will induce truth transitions of handempty whenever they are ap-
plied. By this kind of analysis, all four classes of actions pick-up,

put-down, stack, unstack in the blocksworld domain will induce
truth transitions of handempty when applied, therefore handempty
is a regular transition proposition. This kind of analysis can be done
for planning domains statically requiring no search.

If p is a regular transition proposition, then there is a strong cor-
relation between lower bounds of add(p) and del(p). For example,
if p is present in initial state and all goal states, p ∈ I and p ∈ G,
then the lower bound of add(p) should be equal to the lower bound
of del(p). The result is stated formally below.

PROPOSITION 3. If p is a regular transition proposition, then
the following equation holds for all state S ∈ SG:

I(p)+ ∑
ai∈add(p)

ai = S(p)+ ∑
a j∈del(p)

a j

where SG is the set of all goal states that are reachable from initial
state I.

PROOF. Note that S(p) is a well defined goal state(i.e., not a set
of goal states). Assume I(p) and S(p) have the same truth value.
Because p is a regular transition proposition, all actions in add(p)
and del(p) will change the truth value of p when they are applied,
so the number of times p is added must be equal to the number of
times it is deleted. The exact lower bounds of add(p) and del(p)
are equal and the above equation holds. When p is in i but not in
S, p must be deleted one more time than it is deleted. The proof is
similar when I(p) and S(p) have different truth values.

Proposition 3 can be used to extract multi-valued landmarks. For
instance, if p ∈ G and add(p) has a lower bound of n, then del(p)
will also be a multi-valued action landmark with a lower bound
of n+ I(p)− 1. If p is not a regular transition proposition, then
the above equation does not hold in general. However, in many
domains, it’s often the case that goal facts are not regular transi-
tion propositions For example, in the visitall domain, goal facts
like visited(x) are not regular transition propositions. In this case,
the above equation will not give any non-trivial lower bounds for
these goal facts. We can eliminate the gap by using the following
constraints for non-regular transition propositions.

PROPOSITION 4. If p is a non-regular transition proposition,
then the following inequality holds for all state S ∈ SG, I(p)−
S(p)+∑ai∈add(p) ai ≥ 0.

PROOF. If p∈ S and I(p) = 1, then the constraint become trivial
∑ai∈add(p) ai ≥ 0. If p ∈ S and I(p) = 0, then p has to be added at
some time, the constraint become ∑ai∈add(p) ai ≥ 1. On the other
hand, if p 6∈ S, then I(p)−S(p) = I(p), the constraint become again
trivial I(p)+∑ai∈add(p) ai ≥ 0.

Example. As an example, consider the planning task Π shown in
figure 1. Initially, we are at position 0 and only position 0 is visited.
The goal is to visit all positions from 0 to 8. By iteratively cutting
the justification graph, LM-cut will give the following landmark set
L:

L = {{Move(0, i)}|i ∈ [1,8]}

The heuristic value given by LM-cut is 8, which is equal to h+(Π).
In fact, π=∪l∈Ll is an optimal relaxed plan for Π. Consider propo-
sition At(0), for each action a in add(At(0)) = {Move(i,0)|i ∈
[1,8]}, we have ¬At(0) ∈ pre(a); for each action a in del(At(0)) =
{Move(0, i)|i∈ [1,8]}, we have At(i)∈ pre(a), which means¬At(0)∈
pre(a). Therefore At(0) is a regular transition proposition. Since

512

1

2

3

4

5

6

7

8

0

Figure 1: A visitall planning task Π: P = {At(i),Visited(i)|i ∈
[0,8]}, I = {At(0),Visited(0)}, G = {Visited(i)|i ∈ [0,8]}, A =
{Move(i, j)|i, j ∈ [0,8]}. For every position i and position j that
are adjacent, action Move(i, j) will delete At(i) and add At(j) and
Visited(j).

all eight actions Move(0,1), · · · ,Move(0,8) are all action landmarks,
we then get the following multi-valued action landmark ldel :

ldel = 〈{Move(0, i)|i ∈ [1,8]},8〉= 〈del(At(0)),8〉

Since At(0) is a regular transition proposition, by proposition 3, we
have add(At(0))’s lower bound lbadd = 8+G(At(0))− I(At(0))≥
7. Then we get the following multi-valued action landmark ladd :

ladd = 〈{Move(i,0)|i ∈ [1,8]},7〉= 〈add(At(0)),7〉

Since the action sets of ladd and ldel are disjoint, we can safely
combine them into a new landmark,

lc = 〈{Move(0, i),Move(i,0)|i ∈ [1,8]},15〉

The lower bound of lc is tight: h∗ = lbc = 15. There are C7
8 dif-

ferent optimal plans, we get the optimal heuristic without finding
out one optimal plan. Meanwhile, note that Visited(0) is a non-
regular transition proposition, we could visit a position many times
even in optimal plans. The exact lower bounds for the following
landmarks are not the same: 〈Visited(0),0〉, 〈add(Visited(0)),7〉,
〈del(Visited(0)),0〉,

Note all multi-valued action landmarks can not be induced from
multi-valued proposition landmarks. There are fact landmarks that
consist of conjunctions of propositions. For example, a fact land-
mark of proposition p and q encodes information about at least how
many times p∧ q is established in any solution plan. How to ex-
tend multi-valued proposition landmark to handle this kind of fact
landmarks is a future research direction.

6. A LP-BASED MULTI-VALUED LAND-
MARK HEURISTIC

As we have seen, multi-valued landmark heuristics can be very
accurate: given a complete multi-valued action landmark set L, we
can extract optimal heuristics by solving the covering integer pro-
gram C(L). With optimal heuristics, we only need linear time to
find an optimal plan. However, it’s not the case that more accurate
heuristics would lead to better overall performance. To compute
optimal heuristics, we need to solve a NP-hard problem at every
search node, which would need exponential time in the worst case.
Therefore, the accuracy of multi-valued heuristics does not always
pay off.

Algorithm 1 LP-based multi-valued landmarks heuristic
Input: Planning task Π , an initial action landmark set L′

Output: LP-based multi-valued landmarks heuristic hl pml

1: function LPML(Π, L′)
2: . cons is the constraint set
3: cons=cons ∪{a≥ 0}
4: for all proposition p do
5: if p ∈ G then
6: cons=cons ∪{G(p) = 1}
7: else if ¬p ∈ G then
8: cons=cons ∪{G(p) = 0}
9: else

10: cons=cons ∪{0≤ G(p)≤ 1}
11: end if
12: . add regular proposition constraints
13: if p is a regular proposition then
14: c= {I(p)+∑p∈add(ai) ai = G(p)+∑p∈del(a j) a j}
15: cons=cons ∪ c
16: else
17: . add constraints for non-regular propositions
18: cons=cons ∪{I(p)+∑p∈add(ai) ai−G(p)≥ 0}
19: end if
20: end for
21: for l ∈ L′ do
22: . constraints implied by initial landmark set L′

23: cons=cons ∪{∑a∈l a≥ 1}
24: end for
25: . resulting linear program l p subject to cons
26: lp = min{∑ai ∗ cost(ai)|cons}
27: return lp_solve(lp)
28: end function

In this section, we present an admissible heuristic hl pml which
uses linear programming solvers to extract and exploit multi-valued
landmarks. Since only heuristic functions are needed, we do not
have to maintain a explicit set L of multi-valued landmarks and then
exploit L by solving the resulting covering integer program C(L).
We only need to minimize total plan costs subject to regular transi-
tion propositions constraints in proposition 3 and non-regular tran-
sition propositions constraints in proposition 4. These constraints
will induce an implicit set of multi-valued landmark. So we can
extract and exploit multi-valued landmarks by using the following
integer program C′,

Minimize ∑i ai ∗ cost(ai)
subject to: ai ∈ N0,∀ai ∈ A

I(p)+∑p∈add(ai) ai = G(p)+∑p∈del(a j) a j,∀p ∈ PR

I(p)+∑p∈add(ai) ai−G(p)≥ 0,∀p ∈ P\PR

G(p) ∈ [0,1],∀p ∈ P
(2)

where PR is the set of regular transition propositions. Since it’s
intractable to solve C′, we relax C′ into a linear program. All in-
teger constraints for action variables ai and fact variables G(p) are
replaced by linear constraints. We also accept an initial set L′ of
landmarks extracted by other methods (LM-cut is used in our im-
plementation), and add those constraints induced by L′ into the lin-
ear program CL′. In our experiments, an initial landmark set will
often speed up the solving process of our LP solver. The resulting

513

linear programming relaxation CL′ is shown below,

Minimize ∑i ai ∗ cost(ai)
subject to: ai ≥ 0,∀ai ∈ A

I(p)+∑p∈add(ai) ai = G(p)+∑p∈del(a j) a j,∀p ∈ PR

I(p)+∑p∈add(ai) ai−G(p)≥ 0,∀p ∈ P\PR

∑a∈Al
a≥ lbl ,∀l = 〈Al , lbl〉 ∈ L

0≤ G(p)≤ 1,∀p ∈ P
(3)

The optimum of the above linear programming relaxation CL′ is
our LP-based multi-valued landmark heuristic, which is denoted
by hl pml . The details of the new multi-valued landmark heuristic
are shown in algorithm 1. The new heuristic hl pml is guaranteed to
be admissible and easy to compute.

THEOREM 1. hl pml = OPT (CL′) is an admissible estimate of
h∗ and it can be computed in polynomial time.

PROOF. By proposition 3 and proposition 4, we have all valid
plans of Π are solutions to integer program C′, so we have that
the optimum of C′, OPT (C′), lower bounds the optimal plan cost
h∗. Meanwhile, since all solutions of C′ are also solutions of CL′,
the optimum of CL′ is a lower bound on OPT (C′): OPT (CL′) ≤
OPT (C′). Therefore both OPT (CL′) and OPT (C′) are admissible
estimates of h∗.

Meanwhile, the number of variables of CL′ is O(|A|+ |P|), and
the number of constraints of CL′ grows linearly with the size of L′

and P, so the resulting linear programming relaxation CL′ can be
solved in polynomial time by linear programming solvers.

7. EXPERIMENTS
In this section, we study the accuracy and performance of the

new multi-valued heuristic on benchmark domains. The platform
used for all experiments is Fast Downward [7]. The linear program-
ming solver used in our planner is GNU Linear Programming Kit
(GLPK).2 Experiments were run on a Intel Core 2 Duo at 2.8Ghz
with 2GB RAM. We use all benchmark domains from the opti-
mal track of the seventh International Planning Competition (IPC-
7) and another example domain blocksworld. For each problem
instance, the timeout is set to 1800 seconds and the memory limit
is 2GB.

In the first set of experiments, we evaluate the accuracy of multi-
valued landmarks heuristic hl pml . We use planning tasks from two
particular benchmark domains, blocksworld and visitall, which are
used as examples in previous sections. For each planning task,
we compute the heuristics value h(I) for its initial state I. The
heuristics used for comparison are the most success landmark based
heuristic LM-cut and our multi-valued landmark heuristic hl pml .
Both heuristics are implemented in the same planning system to
allow an unbiased comparison. The result of heuristic value com-
parison is shown in figure 2. We can see from the figure that hl pml

outperforms LM-cut in term of heuristic accuracy on all tasks from
both domains. Meanwhile, more detailed performance statistics of
the two planners on these tasks, like node expansion and search
time, are shown in table 1. Due to space limitation, we only show
statistics for most difficult tasks in each domain. From table 1, we
can see hl pml strictly improves the number of node expansions in
all but two tasks, which confirms the fact that hl pml is more accu-
rate than LM-cut on both domains. The search time performance
of the two planners is more interesting, although hl pml is more ac-
curate than LM-cut on both domains, the planner based on hl pml

uses more search time on the blocksworld domain: out of all 13

2http://www.gnu.org/software/glpk/

Table 1: Comparing node expansion and search time of LM-cut and
hl pml on two particular planning domains(visitall and blocksworld),
bold results indicate better performance, and ’-’ indicates time or
memory limit is reached.

node expansion search time(sec)
Instance LM-cut lpml LM-cut lpml
blocksworld
9-0 13430 2627 2.72 4.5
9-1 376 165 0.1 0.3
9-2 610 239 0.12 0.48
10-0 248336 56091 66.32 144.56
10-1 30086 6476 9 18.63
10-2 86009 18620 26.2 52.73
11-0 65767 14243 24.66 46.5
11-1 66742 8591 29.1 35.72
11-2 58261 16606 20.88 58.47
12-0 61800 5977 31.86 27.18
12-1 6560 2718 3.36 11.82
14-0 113539 9475 104.74 70.13
14-1 191948 29505 203.26 262.32
visitall
02-full 4 4 0.1 0.1
02-half 2 2 0.1 0.1
03-full 23 9 0.1 0.1
03-half 15 7 0.1 0.1
04-full 727 16 0.1 0.1
04-half 16 12 0.1 0.1
05-full 69729 25 5.08 0.1
05-half 1029 39 0.1 0.1
06-full - 36 - 0.17
06-half 1045 31 0.1 0.1
07-full - 49 - 0.4
07-half 519064 72 104.72 0.54
08-full - 64 - 0.8
08-half 6080268 8210 1663.94 69.05
09-full - 81 - 1.46
10-full - 100 - 2.76
10-half - 8504 - 168.74
11-full - 121 - 4.46

planning tasks, the planner based on LM-cut achieves better search
time performance in 11 tasks. This suggests that in the blocksworld
domain the increased accuracy of hl pml does not pay off, although
hl pml uses less node expansions, it spends more time on expanding
each search node. In this case, LM-cut achieves a better trade-off.
On the other hand, we can also see that in the visitall domain, hl pml

uses less node expansions and achieves better search time perfor-
mance at the same time. For example, in task 07-half, hl pml uses
half a second to solve the task while LM-cut uses more than 104
seconds, which is due to the fact that hl pml uses only 0.01% of LM-
cut’s node expansions. In fact, out of all 18 planning tasks in the
visitall domain, the planner based on LM-cut failed to 7 tasks while
hl pml based planner manages to solves all tasks.

Next, we provide a more detailed and extensive performance
comparison of LM-cut and hl pml on all benchmark domains from
IPC-7 and the example domain blocksworld. There are in total
315 planning tasks. Table 2 shows the number of planning tasks
solved by each heuristic, which is referred to as coverage in the ta-
ble. Meanwhile, we also show the number of planning tasks solved
exclusively by each heuristic, which is referred to as exclusive cov-
erage. If a planner has a exclusive coverage of n, it means that
the planner solved n planning tasks in this domain while the other
planner did not solve. From the table, we can see that there are 3 do-
mains where hl pml based planner achieves strictly better coverage
performance (parcprinter, visitall and woodworking), and there are
7 domains where LM-cut has better coverage performance. hl pml

514

h(
I)

5

10

15

20

25

5

10

15

20

25

planning tasks
5 10 15 20 25 30

blocksworld
5 10 15 20 25 30

LM-cut
lpml

h(
I)

0

20

40

60

80

100

120

0

20

40

60

80

100

120

planning tasks
0 5 10 15 20

visit-all
0 5 10 15 20

LM-cut
lpml

Figure 2: Comparison of heuristic values of initial states by each heuristic on two domains(visitall and blocksworld).

coverage exclusive coverage
Domain LM-cut lpml LM-cut lpml
barman-opt11 (20) 4 4 0 0
blocks (35) 28 28 0 0
elevators-opt11 (20) 16 15 1 0
floortile-opt11 (20) 7 6 1 0
nomystery-opt11 (20) 14 12 2 0
openstacks-opt11 (20) 11 10 1 0
parcprinter-opt11 (20) 13 20 0 7
parking-opt11 (20) 1 1 0 0
pegsol-opt11 (20) 17 16 1 0
scanalyzer-opt11 (20) 10 10 0 0
sokoban-opt11 (20) 20 17 3 0
tidybot-opt11 (20) 13 6 7 0
transport-opt11 (20) 6 6 0 0
visitall-opt11 (20) 10 18 0 8
woodworking-opt11 (20) 11 15 1 5
sum(315) 181 184 17 20

Table 2: Comparing the number of tasks solved by LM-cut and
hl pml (coverage), and the number of tasks solved exclusively by
LM-cut and hl pml(exclusive coverage).

Figure 3: Node expansion reduction of hl pml compared with LM-
cut, a 20% reduction means that hl pml expands only 80% of nodes
expanded by LM-cut. To allow fair comparison, we only uses tasks
that can be solved by both heuristics.

has a particular bad performance in the tidybot domain (solve 7
less tasks), this is due to the fact that planning tasks in the tidybot
domain usually have a large number of actions(19200 in average),
which makes the LP encoding very large and slows down our LP
solver. However, in total, the planner based on hl pml solves 3 more
tasks than the LM-cut based planner.

Table 3 and figure 3 show detailed performance statistics for
planning tasks that can be solved by both heuristics. Figure 3 shows
the node expansion reduction of hl pml compared with LM-cut on
these tasks, we can see hl pml greatly reduces node expansions in
all domains except openstacks where the percentage reduction is
0. The reduction in visitall and parcprinter is nearly 100%. For
each domain, table 3 shows additional information such as initial
heuristic value h(I), node expansion, search time and memory us-
age. We can see that hl pml produces a stronger initial heuristic for
all but three domains. hl pml also has a better memory performance:
in 10 out of 15 domains, hl pml uses less memory than LM-cut.
Meanwhile, hl pml only achieves a better time performance in 3 do-
mains(blocks, parcprinter and visitall), in other domains, LM-cut
is faster at solving tasks which can be solved by both heuristics.
This suggests that hl pml is more suitable to solve difficult tasks,
i.e., tasks can’t be solved by LM-cut, However, note that the search
time performance of our heuristic would be greatly improved if a
faster linear programming solver is used. The reason is that we
usually expand tens of thousands of search nodes for a typical plan-
ning task, and every node expansion will involve solving a linear
program. A faster LP solver, will greatly improve the search time
performance of hl pml .

8. CONCLUSIONS
In this paper, we introduce multi-valued landmarks to model car-

dinality constraints in cost optimal planning. With multi-valued ac-
tion landmarks, we are able to construct complete landmark sets for
general planning tasks. As general multi-value action landmarks
are hard to extract and exploit, we introduce multi-valued proposi-
tion landmarks from which multi-valued action landmarks can be
efficiently extracted. For a certain class of propositions called reg-
ular transition propositions, we show there is a close relationship
between the number of times they are added and the number of
times they are deleted. Using this relation, we devise a linear pro-
gramming based multi-valued landmarks heuristic hl pml for cost
optimal planning. hl pml is guaranteed to be admissible and can be
computed in polynomial time. Experiment evaluations show that
our heuristic outperforms state-of-the-art admissible heuristic like
LM-cut in terms of heuristic accuracy on benchmark domains from

515

initial h(I) value node expansion total search time(sec) memory(KB)
domains LM-cut lpml LM-cut lpml LM-cut lpml LM-cut lpml
barman-opt11-strips (4) 141 194 5067552 3742918 1835.6 5915.03 1117012 769504
blocks (28) 410 448 946421 172400 737.28 735.3 477556 223832
elevators-opt11-strips (15) 501 509 430617 355774 1650.55 4732 619136 560304
floortile-opt11-strips (6) 207 226 861904 253679 405.44 886.16 463424 172012
nomystery-opt11-strips (12) 182 188 6300 3813 76.43 826.91 88960 114652
openstacks-opt11-strips (10) 10 10 5559961 5559961 2291.42 3039.16 1576096 1586948
parcprinter-opt11-strips (13) 11165236 11547174 299623 464 241.33 2.72 291844 74800
parking-opt11-strips (1) 9 9 3391 3106 94.08 214.31 16344 19984
pegsol-opt11-strips (16) 39 53 1325521 671736 199.34 1564.24 419388 270304
scanalyzer-opt11-strips (10) 308 309 20034 9106 458.9 1814.39 209012 409940
sokoban-opt11-strips (17) 174 195 1138432 836751 252.47 3956.15 276112 250116
tidybot-opt11-strips (6) 100 100 5720 5378 85.13 2682.27 167412 262900
transport-opt11-strips (6) 1734 1919 56246 38174 223.39 599.2 73532 71328
visitall-opt11-strips (10) 104 142 591654 217 184.79 1.35 2296180 58252
woodworking-opt11-strips (10) 2210 2270 208731 148226 749.67 1921.34 376160 294916
sum 11171365 11553746 16522107 11801703 9485.82 28890.53 8468168 5139792

Table 3: Detailed performance comparison of LM-cut and hl pml on planning tasks that are solved by both heuristics, bold results indicate
better performance

recent international planning competitions. Compared with LM-
cut based planner, the planner based on hl pml achieves better over-
all coverage performance at the cost of using more CPU time. This
suggests cost optimal planning could benefit from more accurate
and efficient multi-valued landmark heuristics.

Acknowledgements
The work is supported by national natural science foundation of
China under grant no. 61021062, 61105069, 61321491, 973 pro-
gram 2011CB505300 and Jiangsu key technology research and de-
velopment program BE2011171, BE2012161.

9. REFERENCES
[1] B. Bonet and J. Castillo. A complete algorithm for

generating landmarks. In ICAPS, 2011.
[2] B. Bonet and H. Geffner. Planning as heuristic search.

Artificial Intelligence, 129:5–33, 2001.
[3] B. Bonet and M. Helmert. Strengthening Landmark

Heuristics via Hitting Sets. In European Conference on
Artificial Intelligence, pages 329–334, 2010.

[4] J. Davies and F. Bacchus. Solving maxsat by solving a
sequence of simpler sat instances. In Proceedings of the 17th
international conference on Principles and practice of
constraint programming, CP’11, pages 225–239, Berlin,
Heidelberg, 2011. Springer-Verlag.

[5] P. Haslum. hm(p) = h1(pm): Alternative characterisations of
the generalisation from hmax to hm. In Proceedings of the
19th International Conference on Automated Planning and
Scheduling, ICAPS 2009, Thessaloniki, Greece, September
19-23, 2009, 2009.

[6] P. Haslum, J. Slaney, and S. Thiébaux. Incremental lower
bounds for additive cost planning problems. In Proceedings
of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS 2012), 2012.

[7] M. Helmert. The Fast Downward Planning System. Journal
of Artificial Intelligence Research, 26:191–246, 2006.

[8] M. Helmert and C. Domshlak. Landmarks, Critical Paths and
Abstractions: What’s the Difference Anyway? In

International Conference on Automated Planning and
Scheduling/Artificial Intelligence Planning Systems, 2009.

[9] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research, 22:215–278, 2004.

[10] E. Karpas and C. Domshlak. Cost-Optimal Planning with
Landmarks. In International Joint Conference on Artificial
Intelligence, pages 1728–1733, 2009.

[11] E. Keyder, J. Hoffmann, P. Haslum, et al. Semi-relaxed plan
heuristics. Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling (ICAPS
2012), pages 128–136, 2012.

[12] E. Keyder, S. Richter, and M. Helmert. Sound and complete
landmarks for and/or graphs. In Proceedings of the 2010
conference on ECAI 2010: 19th European Conference on
Artificial Intelligence, pages 335–340, Amsterdam, The
Netherlands, The Netherlands, 2010. IOS Press.

[13] J. Porteous and S. Cresswell. Extending landmarks analysis
to reason about resources and repetition. In Proceedings of
the 21st Workshop of the UK Planning and Scheduling
Special Interest Group (PLANSIG-02), pages 45–54, 2002.

[14] J. Porteous, L. Sebastia, and J. Hoffmann. On the Extraction,
Ordering, and Usage of Landmarks in Planning. In European
Conference an Planning, 2001.

[15] S. Richter and M. Westphal. The LAMA Planner: Guiding
Cost-Based Anytime Planning with Landmarks. Journal of
Artificial Intelligence Research, 39:127–177, 2010.

[16] L. Zhang and F. Bacchus. Maxsat heuristics for cost optimal
planning. In Proceedings of the 26th AAAI Conference on
Artificial Intelligence (AAAI-2012), 2012.

516

