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ABSTRACT
We propose an extension to the Assignment Game [37] in
which sellers provide indivisible heterogeneous goods to their
buyers. Each good takes up various amounts of resources
and each seller has capacity constraints with respect to the
total amount of resources it can provide. Hence, the total
amount of goods that the seller can provide is dependent
on the set of buyers. In this model, we first demonstrate
that the core is empty and proceed to suggest a fair allo-
cation of the resulting utility of an optimal match, using
the Shapley value. We then examine scenarios where the
worth and resource demands of each good are private infor-
mation of selfish buyers and consider ways in which they can
manipulate the system. We show that such Shapley value
manipulations are bounded in terms of the gain an agent
can achieve by using them. Finally, since this model can
be of use when considering elastic resource allocation and
utility sharing in cloud computing domains, we provide sim-
ulation results which show our approach maximizes welfare
and, when used as a pricing scheme, can also increase the
revenue of the cloud server providers over what is achieved
with the widely-used fixed pricing scheme.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4 [Social and behavioral sciences]: Economics

Keywords
Assignment Game; Shapley value; Cloud Pricing

1. INTRODUCTION
The Assignment game (AG) [37] is a widely researched

model for a two-sided market in which sellers own an indi-
visible good, with which they supply buyers, in exchange for
money. Originally the model only supported single match-
ings between sellers and buyers for homogeneous goods, but
various generalizations to the model have been proposed,
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which support many-to-many matchings [40] and heteroge-
neous goods [31]. For each good, the buyer has a valuation
or worth, i.e., a maximum willingness to pay.

We propose an extension of the AG, called the Shared
Assignment Game (SAG). In contrast to the original AG,
goods, which are provided by the sellers, require various
amounts of resources. Moreover, each seller has a capacity
constraint with respect to these resources. Thus, the total
amount of goods that a seller provides to buyers is dependent
on the set of buyers that it is matched with. Motivation
for this setting can be found in a cloud environment where
clients (buyers) demand resources in order to execute their
tasks (goods) on servers (sellers). As an example, consider
the scenario depicted in Figure 1. There are two servers,
r1, r2, each with two resource types, CPU and Memory. The
capacities of the resources equal (2 CPUs, 1 GB) for r1 and
(5 CPUs, 4 GB) for r2. Suppose there are two clients b1, b2,
where b1 is interested in executing two different tasks g1 and
g2, which respectively require (2 CPUs, 2 GB), (1 CPU, 2
GB) to execute. Moreover, client b2 is only interested in task
g3 which demands (3 CPUs, 3 GB) to execute. The welfare
created by executing tasks g1 and g2 is $2 and $3 for g3.

Two main questions are: (1) How should we assign
tasks to resources? In this work we focus on an alloca-
tion that maximizes the welfare created through the match-
ings of resources and clients, hence the optimal assignment
delivers goods g1 and g2, achieving a total welfare of $4.
(2) What amount should the clients pay for their
allocated resources? In other words, what share of the
welfare achieved would we attribute to the clients and re-
sources? With regards to this question, we propose either
the core or the Shapley value [38] as a fair method to dis-
tribute the welfare over all agents. We will show that the
core does not necessarily exist and we will continue to fo-
cus on the Shapley value. The Shapley value determines a
share φi for agent i (where i can be either a resource or a
client), reflecting each agent’s importance in achieving the
total utility, such that the shares sum up to the total utility
obtained by all the agents together.

In addition to the above example, other scenarios exist in
which the SAG can be used to match agents and fairly dis-
tribute welfare between them. For instance, consider compa-
nies (sellers) with resource constraints on the type of work-
ers (buyers) they can hire, where each type of worker takes
up different amounts of resources. When more workers are
matched with sellers, while abiding the resource constraints,
more welfare is created.

605



Figure 1: An optimal matching in the SAG.

In a more generalized setting, the above problems repre-
sent any two-sided market where welfare is only generated
when the resource constraints are satisfied. Each seller can
be visualized as solving a 0-1 multi-dimensional knapsack
problem, where each item requires a certain amount of ca-
pacity of each resource-type.1 In order to determine the con-
tribution of all agents and fairly distribute the created rev-
enue between the buyers and sellers, we propose a prominent
method from cooperative game theory, namely the Shapley
value, which is the unique utility sharing mechanism fulfill-
ing certain fairness axioms [25, 43].

1.1 Our Contribution
We introduce the Shared Assignment Game, in which sell-

ers have capacity constraints on the different goods that they
are able to provide. Moreover, we show that in contrary to
the original Assignment Game, the core does not necessar-
ily exist. We continue with a cooperative game theoretic
approach based on the Shapley value , which brings about a
fair distribution of the achieved welfare due to the matching
of buyers and sellers. We then discuss the impact of self-
ish agents holding private information regarding the goods’
properties, where only the buyer knows the worth and re-
source demands of its goods, and may lie about them so
as to increase its utility under our proposed scheme. We
show that our scheme is susceptible to two manipulations:
Splits, where a buyer pretends its good g is actually two
smaller goods g′ and g′′ in order to reduce the price she
pays2, and Bluffs, where a buyer pretends to request a fake
good g with the intention of never having it provided, in
order to receive a compensation from the sellers. We show
that our approach is somewhat resistant to such manipula-
tions and that the utility gain is bounded. The manipulation
depends on knowledge regarding other users, as such manip-
ulations can also harm the agent if performed in the wrong
environment. Finally, since our model is applicable to pric-
ing in cloud environments with elastic demands, we provide
simulation results showing that our approach maximizes so-
cial welfare and substantially increases the revenue of the
platform over currently used fixed pricing.

1In our simulations, we will make use of known approxima-
tions to this NP-hard problem.
2Indeed we consider indivisible goods, however in cloud set-
tings, programs such as MapReduce, [24], may be used to
temporarily “split” a good and merge it back later. Never-
theless, both parts still need to be allocated on a server.

1.2 Related Work
The Assignment Game was proposed in [37] and in [40]

is generalized to consider many-to-many matchings. In [31]
it is further generalized to consider heterogeneous goods.
In contrast, in our model each seller has a capacity con-
straint for the set of goods it sells and goods vary in their
demand for resources. In [19] matchings are considered with
externalities and in [4] mechanisms are brought forth for
the Shapley-Scarf housing market. Furthermore, the Shap-
ley value and other cooperative solution concepts were used
to allocate utility in a stable or fair manner in domains
including pollution control [35], network settings [15, 13,
36, 6, 14, 18] and even sharing the costs of joint facilities
such as airfields [26, 33]. Alternatively, the Shapley value
can be viewed as a prediction regarding outcomes reached
when bargaining or negotiating in market settings [29, 30, 9].
Previous work studies unweighted coalitional manipulation
problems [45] and [3] considers Shapley Value manipulations
in Weighted Voting Games. Similar false-name manipula-
tions were also studied in [42, 23, 46, 27]. Fair solutions and
mechanisms are combined in [21]. For an overview of the
Shapley Value, its axioms and applications, see [44].

The remainder of the paper is organized as follows. In Sec-
tion 2 we formulate the SAG and show that the core may
be empty. Additionally, we consider buyers to have private
information on their goods and bring forth bounds on their
possible manipulations. An application to the cloud environ-
ment is illustrated in Section 3, together with a simulation.
Finally, conclusions are represented in Section 4.

2. THE SHARED ASSIGNMENT GAME (SAG)
The SAG is a game over the agent set N , consisting of

two disjoint agent types: buyers B ⊆ N and sellers R ⊆ N .
Each good g, has a worth that buyer b assigns to it, wg(b).

3

It captures the value of the good in the eyes of the buyer
or the maximum price it is willing to pay to receive it. The
worth is only split between the seller and buyer if the seller
has sufficient resources to provide the good.

Denote the set of goods that a buyer b ∈ B wishes to
receive as Gb. Each good has a tuple (dg, wg(b)), where
dg = [d1

g . . . d
L
g ] is the demand vector and every dkg denotes

the demand of g for resource type k.
Seller j ∈ R has a capacity vector Cj = [C1

j . . . C
L
j ], where

Ckj is the capacity constraint of seller j for resource type k.
An assignment f : B → R ∪ {⊥} maps buyers to sellers,
where the value {⊥} indicates the buyer is not mapped to
any seller. We denote the buyers mapped to a seller r ∈ R
in assignment f as Bfr = {b|f(b) = r}. We denote the
total demand of resource x of seller r under assignment f as
Qfr,x =

∑
t∈Bfr

dxt . An assignment is feasible if it respects the

capacity constraints of the sellers so for any seller r and any
resource type x we have Qfr,x ≤ Cxr (i.e., the total amount
of resource x used in sellers r under the assignment f is at
most the available amount of that resource of that seller).

For any coalition S ⊆ N let aS be a feasible assignment
over the agents in S, and let AS be the set of all feasible
assignments over S. Let Gb(aS) ⊆ Gb be the set of goods
that buyer b receives in aS . Denote the social welfare, WaS ,
as the total worth of the received goods in aS , so

3We fix the reservation price of all sellers at 0, hence the
valuation of the buyer equals the gain of the partnership,
i.e., the worth of the good.
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WaS =
∑
b∈B

∑
g∈Gb(aS) wg(b). Further, denote by BaS ,

the set of buyers that are matched with at least one seller,
in aS . An optimal assignment a∗S is an assignment that
maximizes the social welfare of all feasible assignments over
S, i.e., arg maxaS∈AS WaS . We denote the maximum social
welfare achievable for set S as W ∗S = maxaS∈AS WaS . More-
over, we impose a standard assumptions regarding agents
and their resource demands: ∀i, k ∃j for which Ckj ≥ dki ,
i.e., for any requested good by a buyer, there exists at least
one seller with the initial resource capacity to provide it.

TU Cooperative Game: A transferable utility cooper-
ative game G = (N, v) [37], is composed of a set of agents
N = {1, 2, . . . , n} and a characteristic function v : 2N → R
giving the total value created by various coalitions (agent
subsets). By convention, v(∅) = 0. By v(A,B) we denote
the output of function v applied on the input set {A,B}.
The characteristic function defines the amount of utility any
coalition achieves, but selfish agents are only interested in
their share of the total utility. An imputation is a division
of the grand coalition gains, and is represented by a vector
p = (p1, . . . , pn) where pi ∈ R+ is the share of agent i, where
the total is the grand coalitions value

∑n
i=1 pi = v(N). An

imputation p dominates an imputation p̄ if there exists a
subset of agents S for which pi > p̄i, ∀i ∈ S.

The Shared Assignment Game (SAG) is the game
H = (N, v) over the agents N = B ∪ R where the coali-
tion C’s value is the total utility achieved in the optimal
assignment over the agents in C, i.e., the total social wel-
fare under the optimal assignment for C: v(C) = W ∗C =
maxaC∈AC WaC . The total worth created due to the op-
timal match between sellers and buyers, i.e., W ∗N is split
between all agents according to a solution concept.

The core: The core is the set of imputations that are not
dominated. As it is stable under coalitional deviation, the
core has been used [37] as a fair solution concept. However,
the following lemma shows that in contrary to the original
assignment game, it does not necessarily exist in our case.

Lemma 1. The core in the SAG may not exist.

Proof. Consider two sellers, r1, r2, with one resource
type and capacities cr1 = 1 and cr2 = 2. Consider three
buyers, each interested in one good: g1, g2 and g3 with tuples
respectively of (dg1 = 1, wg1(b1) = 2), (dg2 = 1, wg2(b2) =
2), (dg3 = 2, wg3(b3) = 3). It is easy to see that the optimal
matching brings about: W ∗N = 5. Thus, this worth needs to
be distributed between the agents. Assume by contradiction
that there exists a core allocation x, so:

xr1 + xr2 + xb1 + xb2 + xb3 = 5. (1)

Since x lies in the core it holds that:

xr1 + xr2 + xb2 + xb3 ≥ v(r1, r2, b2, b3) = 5, (2)

hence xb1 = 0. Similarly, it follows that xb2 = 0. However

xr2 = xr2 + xb1 + xb2 ≥ v(r2, b1, b2) = 4, (3)

and similarly xr1 ≥ 2. This is in contradiction to (1).

Even if the core would exist, it would be able to allocate the
social welfare in what seems to be unfair to either the sellers
or buyers. As an example, The “gloves game” [34], can be
represented as a SAG and its core may give all the created
welfare to either the buyers or the sellers. It is due to this
consideration and due to Lemma 1 that we continue to focus

on the Shapley value as a fair solution concept to allocate the
welfare between the agents. As such, we define the utility of
each agent i ∈ N as its Shapley Value: φi(v). The Shapley
value was proposed as a fair solution for dividing the gains
of the grand coalition N of all the agents. It examines the
expected contribution an agent adds to its predecessors in
an agent order chosen uniformly at random, and is the only
solution exhibiting a natural set of fairness axioms [38, 43].
Given a game H(N, v), denote by π a permutation of the N
agents (π : {1, . . . N} → {1, . . . N} and π is reversible), by
Πn the set of all agent permutations, by Γπi the predecessors
of agent i in π so, Γπi = {j | π(j) < π(i)}, and by Ωπi
the successors of i in π: Ωπi = {j | π(j) > π(i)}. The
marginal contribution of i to permutation π, denoted mπ

i,v,
is its contribution to its predecessors in the permutation, so
mπ
i,v = v(Γπi ∪{i})−v(Γπi ). The Shapley value of i, denoted

φi(v), is i’s contribution averaged over all permutations:

φi(v) =
1

N !

∑
π∈Πn

mπ
i =

1

N !

∑
π∈Πn

v(Γπi ∪ i)− v(Γπi ) (4)

An equivalent formula is:

φi(v) =
∑

S⊆N\i

|S|!(|N − S − 1|)!
|N |! m

{S}
i,v (5)

where m
{S}
i,v = v(S ∪ i) − v(S), i.e., i’s marginal contribu-

tion to S ⊆ N . For each S, we call |S|!(|N−S−1|)!
|N|! m

{S}
i,v the

proportional marginal contribution of m
{S}
i,v .

The SAG by itself only defines the total utility any agent
subset can achieve. By applying solution concepts we can
use its structure to reach normative and predictive conclu-
sions regarding the sharing of the total revenue. In the
normative interpretation, applying the Shapley value to the
SAG would give us the importance of each component and
its “fair” contribution to the total welfare. In the predic-
tive sense, it estimates how much utility each component is
expected to achieve when negotiating with other agents. 4

We propose using the Shapley value as an instrument for
sharing the revenue in the SAG, rather than letting agents
negotiate through a market mechanism. One caveat is that
the SAG assumes monetary transfers between participants.
A seller who has a non-zero Shapley value would get it from
the pool of payments made. As the Shapley values sum up
to the grand coalitions utility, we are guaranteed that the
sum of the total payments is zero (i.e. no external subsidy
is required as we have budget balance). However, if a buyer
does not receive its good in the optimal assignment a∗N , it
might still receive a positive utility, since the Shapley Value
looks at its contribution to all possible assignments. This
may be difficult to do in certain scenarios, e.g., a cloud com-
puting platform, such as Windows Azure or Amazon EC2.
One alternative is to offer a discount to the buyer or task
owner, to use in future transactions.

We continue with an example in which the Shapley value
distributes revenue in a fair manner, by rewarding the agents
that are most critical to the system.

4Obviously in any round of negotiation a buyer b either
strikes a deal with some seller and achieves its good’s worth
wg(b), or it does not strike a deal and achieves zero utility.
Its Shapley value is likely to be somewhere in between the
two, as it is the expected utility it is likely to have in the
uncertain negotiation.
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Example 1. Consider servers and tasks of Figure 1. The
characteristic function, v, is described by: v(r2, b1) = 4,
v(r2, b2) = 3, v(r2, b1, b2) = 4. Moreover, ∀S ⊆ N\{r1},
v(S, r1) = v(S). For any other S ⊆ N , v(S) = 0. See Table
1 for the agents’ Shapley values.

As shown in Figure 1, only the goods g1 and g2 are pro-
vided, hence the social welfare is equal to v(N) = W ∗N = 4.
This amount is distributed between all agents according to
(5). Note that seller r1 does not contribute anything to any
sub-coalition, so using (5), φr1(v) = 0. However, seller r2

receives a large part of the aggregated welfare created as it
provides both g1 and g2. Finally, good g3 is not provided,
however b2 receives the remainder payment, considering that
though it did not receive g3, it does marginally contribute
to certain sub-coalitions, so according to the “fairness” cri-
teria of the Shapley Value it should receive a compensation.
Finally, note that v(N) =

∑
i∈N φi(v).

Utility Sellers Utility Buyers Discount

φr1 = 0, φr2 = 30
12

φb1 = 1 φb2 = 6
12

Table 1: Distribution of welfare according to the
Shapley value φi.

2.1 Scenarios with Private Information
Unlike Example 1, in certain domains, such as in cloud

environments, the worths and demands of goods are pri-
vate information, supplied by the buyers. Hence, it might
be beneficial for a subset of buyers to provide false reports
regarding these values, in order to receive a higher Shap-
ley value. Unless stated otherwise, in the remainder of the
paper we hold by two assumptions:

• Each buyer is only interested in a single good, i.e.,
wg(b) ≡ wb and dkg ≡ dkb .

• Each buyer only receives its good from a single seller,
i.e., we restrict ourselves to many-to-one matching.

For each buyer b ∈ B, we denote the set of sellers that have
enough initial capacity to provide its good g, as Rb ⊆ R.
Thus, Rb = {r | r ∈ R, Ckr ≥ dkb , ∀k}.

Before we show the robustness of the Shapley value against
agent manipulations, we prove two lemmas.

Lemma 2. The amount of permutations in which S ⊆ N
agents are a subset of the predecessors of b, equals N !

|S|+1
.

Formally: |{π | S ⊆ N,S ⊆ Γπb }| = N !
|S|+1

.

Proof. Given agent b in a fixed position and |Γπb | agents
as predecessors of b, where |Γπb | lies between |S|, . . . , |N−1|.
When summing over |Γπb |, all permutations of the remaining
N\{b} agents for which S ⊆ Γπb equals:

N−1∑
|Γπ
b
|=|S|

|Γπb |!(|N − 1| − |Γπb |)! ·

(
|N − S − 1|
|Γπb | − |S|

)
. (6)

The first two factorial elements in (6) represent the car-
dinality of the set of permutations of agents in Γπb and in
Ωπb . Except for the S ⊆ Γπb agents, there remain |N −S− 1|

agents in {Γπb ∪ Ωπb } that fit into |Γπb | − |S| slots. Equation
(6) turns into:

|N − S − 1|!|S|!
N−1∑
|Γπ
b
|=|S|

(
|Γπb |
|S|

)
=

N !

|S|+ 1
. (7)

Equation 7 can be proven by induction.

We bound the Shapley value that an agent can receive.

Lemma 3. ∀b ∈ B, wb|Rb|
|N|·(|N|−|Rb|)

≤ φb(v) ≤ wb|Rb|
|Rb|+1

Proof. Upper Bound: To produce an upper bound on
the Shapley Value, we consider its representation as given
in (4) and examine the best-case scenario where mπ

b,v = wb
if ∃r ∈ Rb such that r ∈ Γπb . From Lemma 2 we have: |{π |
∀r ∈ Rb, r ∈ Γπb }| =

|N|!
|Rb|+1

, i.e., the amount of permutations

in which all sellers in Rb are predecessors of b.
Hence through the symmetry of permutations it follows

that |{π | ∀r ∈ Rb, r ∈ Ωπb }| =
|N|!
|Rb|+1

. Therefore:

|{π | ∃r ∈ Rb, r ∈ Γπb }| = |N !| − |N |!
|Rb|+ 1

=
|N |!|Rb|
|Rb|+ 1

(8)

and from (4): φb(v) ≤ |Rb|wb|Rb|+1
.

Lower bound: From our standard assumptions it holds
that ∀i, k, ∃j for which Ckj ≥ dki . Thus, from (5), ∀b ∈
B, m

{r}
g,v = wb if r ∈ Rb. Hence, a buyer will always be able

to receive a proportional marginal contribution of:

|Rb|∑
S=1

|S|!(|N − S − 1|)!
|N |!

(
|Rb|
S

)
wb, (9)

since it is the only buyer and can choose any combination
of sellers to provide its good. Equation 9 turns into:

|Rb|!(|N | − |Rb| − 1)

|N |!

|Rb|∑
S=1

(
|N | − 1− S
|Rb| − S

)
wb (10)

=
|Rb|!(|N | − |Rb| − 1)

|N |!

(
|N | − 1

|Rb| − 1

)
wb =

|Rb|wb
|N |(|N | − |Rb|)

It follows that:

wb|Rb|
|N | · (|N | − |Rb|)

≤ φb(v) ≤ wb|Rb|
|Rb|+ 1

(11)

We denote by ŵb, the reported worth of buyer b ∈ B for its
good g. This represents the worth that the buyer reports to
the system or sellers. If a good is not received ŵb = wb = 0
and when buyer b behaves truthfully it follows that wb = ŵb.
The reported worth does not necessarily equal the actual
worth, wb and agents might resort to such manipulations in
order to increase their payoff. Furthermore, we define the
Manipulation Gain of a buyer b as:

ub = wb − (ŵb − φb(v)) = φb(v) + wb − ŵb. (12)

This captures the real payoff the buyer obtains from re-
ceiving its good and when behaving truthfully, the Shapley
Value corresponds to this payoff.

We consider two types of agent manipulations:
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1. A buyer b who splits its good g into g′ and g′′, with
wb = ŵb′ + ŵb′′ and ∀k, dkb = dkb′ + dkb′′ . Since we
assume each buyer is only interested in a single good,
we also denote this by b splitting itself into b′ and b′′.

2. A buyer b, who bluffs by requesting a fake good from
the system, in order to increase its utility.

2.1.1 Splits
Denote the original game, before splitting b into b′ and

b′′, as H = (N, v) and the new game after the split, as
H ′ = (N+1, w). We show that splitting a good can decrease
or increase the Shapley Value of an agent.

Example 2. Consider a seller R with one resource type
and capacity cR = 2.5. Furthermore, consider two buyers
b1, b2 with tuples (db1 = 2, wb1 = 2) and (db2 = 1, wg2 = 1).
From (5) it follows that φb1(v) = 2

3
. When b1 decides to split

in two, we get a total of three identical “buyers” b′1, b
′′
1 , b2,

with demands db′1 , db′′1 , db2 = 1 and worths ŵb′1 , ŵb′′1 , wb2 =

1. It follows from (5) that φb′′1 (w) + φb′1(w) = 1
2

and
φb′′1

(w)+φb′1
(w)

φb1 (v)
= 3

4
. This illustrates that a split can lower

the Shapley Value of a buyer.
On the other hand, a split might also be profitable, e.g.,

when evenly splitting b2 instead of b1. Then from (5) we

get: φb′2(w) + φb′′2 (w) = 1
4

and
φb′′2

(w)+φb′2
(w)

φb2 (v)
= 3

2
, thus the

Shapley value of b2 has increased.

To quantify the potential loss in Shapley value do to a split,
we first provide a lower bound on the ratio of agents’ marginal

contributions. For any m
{S}
b,v in H, consider four marginal

contributions in H ′: (1) m
{S}
b′,w, (2) m

{S}
b′′,w, (3) m

{S,b′}
b′′,w ,

(4) m
{S,b′′}
b′,w , where ∀i, S ,m

{S}
i,v and m

{S}
i,w are defined as in

(5). For any S ⊆ N\{b} we define the Marginal Ratio, αS(b),
as the ratio between the proportional marginal contributions

of the above marginal contributions and m
{S}
b,v . We seek a

lower bound, so mS
b,v > 0. From (5), ∀S ⊆ N\{b}, αS(b) is:

|S|!|N−S|!
|N+1|! [m

{S}
b′,w +m

{S}
b′′,w] + |S+1|!|N−S−1|!

|N+1|! [m
{S,b′}
b′′,w +m

{S,b′′}
b′,w ]

m
{S}
b,v
|S|!|N−S−1|!

|N|!

We show a lower bound on the Marginal Ratio.

Lemma 4. For all S ⊆ N\{b}, αS(b) ≥ 2
|N|+1

.

Proof. By splitting a good g into g′ and g′′, we enlarge
the space of possible strategies, since g′ and g′′ can always
be combined together to construct g. Thus, w(S, b′, b′′) =
w(S, b′′, b′) ≥ v(S, b). As v(S) = w(S) we get:

αS(b) =
2[w(S, b′, b′′)− w(S)](|S + 1|)
|N + 1|(v(S, b)− v(S))

(13)

+
[w(S, b′) + w(S, b′′)− 2w(S)](|N − 2S − 1|)

|N + 1|(v(S, b)− v(S))

≥ 2

N + 1
+

[2w(S, b′, b′′)− w(S, b′)− w(S, b′′)]|S|
|N + 1|(v(S, b)− v(S))

+
[w(S, b′) + w(S, b′′)− 2w(S)](|N − S − 1|)

|N + 1|(v(S, b)− v(S))

≥ 2

N + 1
.

The inequalities of (13) follow, as |N−S−1| ≥ 0, w(S, b′, b′′) ≥
w(S, b′) ≥ w(S) and w(S, b′, b′′) ≥ w(S, b′′) ≥ w(S).

As Lemma 4 holds for all S, from (5), this gives a lower
bound on the loss of a buyers b’s Shapley Value due to a split.
We now continue to tighten this bound by using Lemma 4.

Theorem 1. φb′(w)+φb′′(w) ≥
[

1
|N| + |N|−1

|N|(|N|−|Rb|)

]
φb(v).

Proof. In H ′, denote the proportional marginal contri-

butions of m
{r}
b′,w, m

{r}
b′′,w, m

{r,b′′}
b′,w and m

{r,b′}
b′′,w , where r ∈ Rb,

as initial contributions of b′ and b′′. According to (5), their
sum equals:∑|Rb|
S=1

[
|S|!(|N+1−S−1|)!

|N+1|! + |S+1|!(|N+1−(S+1)−1|)!
|N+1|!

] (|Rb|
S

)
(ŵ′b + ŵ′′b ).

From (9) and Lemma 3 it follows that,

φb′(w) + φb′′(w)

φb(v)
=

|Rb|wb
|N|(|N|−|Rb|)

+ X̄

|Rb|wb
|N|(|N|−|Rb|)

+X
, (14)

where, X̄ and X equal the sum of all proportional marginal

contributions of m
{S}
b′,w and m

{S}
b′′,w for all S, except for the

initial contributions of b′, b′′ and b in respectively H ′ and H.
Moreover, as a result from Lemma 4, X̄ ≥ 2

|N|+1
X. Hence,

from Lemma 3, φb′(w) + φb′′(w) is equal to:

wb|Rb|
|N |(|N | − |Rb|)

+ φb′(w) + φb′′(w)− wb|Rb|
|N |(|N | − |Rb|)

(15)

≥ wb|Rb|
|N |(|N | − |Rb|)

+
2

|N |+ 1

[
φb(v)− wb|Rb|

|N |(|N | − |Rb|)

]
.

By (11) and (15) :

φb′(w) + φb′′(w)

φb(v)
≥

wb|Rb|
|N|(|N|−|Rb|)

wb|Rb|
|Rb|+1

[
1− 2

|N |+ 1

]
+

2

|N |+ 1

(16)

=
1

|N | +
|N | − 1

|N |(|N | − |Rb|)
,

which equals 2
|N| when |Rb| = 1.

Actual Lower Bound: The lower bound of Theorem 1
does not take into account that our SAG deals with indivisi-
ble goods. Hence, even if goods are temporarily split by the
buyer, e.g., when dealing with a cloud environment through
MapReduce, [24], or a similar program, the goods are worth-
less unless all of their parts get provided. So if either g′ or
g′′ is not received in H ′, wb′ = wb′′ = 0. Consider w.l.o.g.
that in H ′, b′ ∈ Ba∗

N
and b′′ /∈ Ba∗

N
. For b′ and b′′, the

Manipulation Gain turns into:

ub′ + ub′′ = 0− (ŵb′ − φb′(w)) + 0− (ŵb′′ − φb′′(w)) (17)

= φb′(w) + φb′′(w)− ŵb′ − ŵb′′
= φb′(w) + φb′′(w)− wb.

Applying Theorem 1, and Lemma 3 we obtain:

ub′ + ub′′

φb(v)
≥ 2N − |Rb| − 1

|N |(|N | − |Rb|)
− wb

wb|Rb|
|N|(|N|−|Rb|)

(18)

≥ 2N − |Rb| − 1

|N |(|N | − |Rb|)
− |N |(|N | − |Rb|)|Rb|

,
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which can be strongly negative. The following example il-
lustrates that this bound is rather tight and that an agent
stands to lose immensely due to a split.

Example 3. Consider a single seller R with one resource-
type and capacity CR = 3. Consider K − 1 identical buyers
with tuples (di = 2, wi = w), for i = 1, . . . ,K − 1, and a
buyer b with tuple (db = 3, wb = 2w), which splits itself into
b′ and b′′ with db′ = db′′ = 1.5 and ŵb′ = ŵb′′ = w. From
(5) it follows that φb(v) = 2w

(K+1)K
and φb′(w) + φb′′(w) =

2w
(K+1)K

. The ratio of manipulation gains equals:

ub′ + ub′′

φb(v)
=

2w
(K+1)K

− w
2w

(K+1)K

= 1− K(K + 1)

2
. (19)

Thus, when K grows, b’s loss is large and when w increases,
its manipulation gain in G′ decreases linearly.

Example 3 and (18) add to Theorem 1, showing that buyers
which split their goods, risk incurring large losses. We show
however that a split may also be beneficial for a buyer.

Theorem 2. ∀b ∈ B: φb′(w)+φb′′(w) ≤ |N|(|N|−|Rb|)|Rb|+1
φb(v).

This bound is tight.

Proof. From Lemma 3, ∀b ∈ B we have:

φb′(w) + φb′′(w)

φb(v)
≤
|Rb| ŵb′+ŵb′′|Rb|+1

wb|Rb|
|N|(|N|−|Rb|)

=
N(|N | − |Rb|)
|Rb|+ 1

. (20)

Example 4. We show tightness through an example: Con-
sider R sellers with a single resource-type and capacities
Cj = 4− ε, ∀j ∈ R, where ε > 0. Also, consider K identical
buyers with tuples (di = 2, wi = 3), ∀i ∈ K. Furthermore,
consider a buyer b with tuple (db = 2, w). Buyer b splits
itself into b′, with (db′ = 2 − ε, ŵb′ = w − ε) and b′′, with
(db′′ = ε, ŵb′′ = ε). When taking the limit of ε to zero, from
(4), it follows that φb′(w) = ŵb′(1− 1

|R|+1
) and φb′′(w) = 0.

Finally,
φb′+φb′′

φb

ε→0−−→ |N|(|N|−|R|)
|R|+1

.

Brittleness: By Theorem 2, a buyer may decide to split its
good, especially if it fully knows the other agents’ demands
and worths. The next example shows that a small change
in the system or a wrong estimation of the buyer, can be
detrimental to the buyer’s manipulation gain.

Example 5. Consider two identical servers r1, r2 with
one resource type and capacities Cr1 , Cr2 = 3 and three iden-
tical buyers, with tuples (di = 2, wi ≡ w), for i = 1, 2, 3. In
the game H = (N, v), it holds that ∀i, φbi(v) = 7

30
· w.

When b3 splits itself equally into b3′ and b3′′ , its Shapley
Value rises and equals: φb3′ + φb3′′ = 8

15
· w. When param-

eters slightly change and Cr2 = 3 − ε, where ε is small and
positive, the Manipulation Gain turns into: ub3′ + ub3′′ =[

19
60
− 1
]
· w

2
< 0, decreasing linearly with w. Had b3 chosen

not to split itself, its Shapley Value would be 7
30
· w.

Hence splitting is very risky, as even a small parameter per-
turbation can cause an loss larger than the potential gain.

2.1.2 Bluff
Another possible manipulation in a game H = (N, v) is

bluffing : declaring a fake good g. Though the buyer does

not intend for g to be delivered, it can request g in order
to extract a higher utility from the system. For an upper
bound of this utility, we assume that buyer b has complete
information on the worth of all the other agents. We define
the lying ratio as the ratio between the Shapley Value of a
buyer b /∈ Ba∗

N
and the maximum social welfare achievable

for N : φb(v)
v(N)

. The following theorem proves that b is limited

in the amount of welfare it can receive from the system.

Theorem 3. The lying ratio is bounded by 1
|Rb|+1

− 1
|N||Rb|

.

Proof. Just as in Lemma 3, for an upper bound, we con-
sider a best-case scenario, i.e., if there is an r ∈ Rb such that
r ∈ Γπb then mπ

r,v = wb. By (8), |{π | ∃r ∈ Rb, r ∈ Γπb }| =

|N |! − |N|!
|Rb|+1

= |N|!|Rb|
|Rb|+1

. Furthermore, if |Γπb | = |N − 1|,
mπ
b,v = 0, otherwise, b ∈ Ba∗

N
. Thus, we need to subtract

the permutations in which |Γπb | = |N − 1|, so that the per-

mutations of interest equal: |N|!|Rb||Rb|+1
− |N − 1|!. Our stan-

dard modeling assumptions state that ∀i, k, ∃j for which
Ckj ≥ dkb . Since b /∈ Ba∗

N
, it follows that in the optimal as-

signment, each resource which can initially supply the good
of b, is matched with tasks with aggregated worth higher
than wb, hence v(N) ≥ |Rb| · wb. Thus from (4):

φb(v)

V (N)
≤

1
|N|! (

|N|!|Rb|
|Rb|+1

− |N − 1|!) · wb
|Rb| · wb

=
1

|Rb|+ 1
− 1

|N ||Rb|
.

(21)

The upper bound of Theorem 3 considers a buyer with full
information on all other buyers and sellers. Thus the good,
g, can be unwillingly provided when a small error is made in
estimating other agents’ parametersThen, by Lemma 2 and
(12), the manipulation gain equals:

ub = 0 + φb(v)− ŵb ≤ ŵb
|Rb|
|Rb|+ 1

− ŵb = − ŵb
|Rb|+ 1

. (22)

Hence, if b’s estimation on the values of other agents is erro-
neous, the best case states that b stands to lose a significant
amount in comparison to its potential gain by bluffing. This
makes it unlikely for agents to employ bluff manipulations.

3. APPLICATIONS TO MARKETS
AND CLOUD COMPUTING

One application of our model is allocation and pricing
in cloud computing. Public cloud computing services, such
as Windows Azure and Amazon EC2, provide clients with
scalable, on-demand access to compute resources. Tradi-
tionally, a client specifies the type and “size” of the virtual
machine (VM) it requires, and pays a fixed price per time
interval. The price of a machine depends on the virtual
machine’s “size”. Such fixed price mechanisms may be prob-
lematic as clients only wish to pay for resources that they
actually use [20]. For example, a client who needs many
CPUs but little memory may feel cheated paying for a large
machine, as she is not using most of the memory. Our model
can be used in cloud environments, through the “VM” tech-
nology, which allows a single server to run multiple tasks,
guaranteeing each a specified amount of resources. This is
done by equating the sellers in the SAG, to servers with re-
sources in the cloud. The goods they provide correspond
to the required resource bundles (or VM’s) of tasks that
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the clients wish to execute on the cloud. Examples of re-
source types in cloud environments include CPU, memory
and bandwidth. We keep our assumption of only allowing
many-to-one matches, as each task only needs to be executed
by a single server. Finally, the SAG supports buyers with
multiple tasks to execute, based on the available resources,
incorporating a version of elastic demand.

In fixed pricing, a good or task whose worth is below the
fixed price may not be executed at all, even if there are free
resources. Further, a fixed-price scheme leaves unspecified
how tasks are allocated to sellers or servers, as it only deter-
mines where tasks are eligible to run. In the cloud domain,
the Shapley value can be seen as a fair way of allocating the
gains from optimally executing the available tasks on the
available servers, or as a prediction regarding the prices for
cloud servers that would emerge under agent negotiation.

In previous work, the revenue of the cloud sever providers
under fixed and spot pricing is discussed in [1]. Available
pricing methods include truthful auctions, e.g., VCG mecha-
nisms. However, they do not consider pricing from a fairness
perspective and when describing the optimal allocation of
tasks, their computation can be NP-hard. Also, when rely-
ing on approximations, it loses some of its strategy-proofness
[2]. Note that our proposed solution is not strategy-proof
(see Theorems 1 and 2), nevertheless we do provide approx-
imate fairness guarantees and we use approximations which
are computable in polynomial time, [10]. Finally, new meth-
ods, [28], allow cloud providers to allocate tasks efficiently
and fairly according to their resource demands, which can
be combined with our proposed pricing model.

3.1 Simulation
In order to further support our proposed SAG as a pric-

ing mechanism, we use a simulation to show that when ap-
plied to a cloud pricing environment, the SAG maximizes
social welfare and increases the revenue of the cloud servers
over a fixed-price scheme (FPS). We simulated 50 incom-
ing tasks with demands for two resource types (e.g., CPU,
MEM) randomly sampled from i.i.d Gaussian distributions
N (20, 10), however similar results hold with other distribu-
tion parameters. The worth of every task t, wt, is com-
puted by taking the maximum demand of either resource-
type, max{dCPUt , dBWt } and adding an offset α (same α for
all tasks). First, we compute Ba∗

N
and W ∗N as solutions to a

Multi-Dimensional-Multiple-Knapsack (MDMK) [39]. The
optimal value of the MDMK is hard to compute, so we used
a greedy approximation [22, 32]. We then approximated the
Shapley Value of all the incoming tasks using the algorithm
of [10]. The revenue of the SAG is the Shapley Value of all
the servers, and the social welfare is WaN =

∑
i∈Ba∗

N

wi.

Figure 2 compares the social welfare and the revenue of
SAG and FPS. The x-axis is the demand ratio: the ratio
of the expected aggregated capacity of the servers, over the

expected aggregated demand of the tasks,
∑
i∈T Ci∑
j∈R dj

. This

ratio is equal for both resource types and we increase it by
adding resources. The FPS uses a fixed price f̄ , where f̄ is
the revenue optimal fixed price, calculated by summing over
the revenue at each demand ratio, for the given input set of
tasks. The FPS social welfare equals

∑
{t|wt≥f̄} wi and the

FPS revenue equals f̄ · |{t | wt ≥ f̄}|.
Results: The social welfare is approximately maximized
under the SAG, as under the MDMK, all tasks in Ba∗

N
are

SAG

SAG

Figure 2: Social Welfare and Revenue Comparison
of the FPS and the SAG.

executed. For FPS this is not always the case, as tasks may
have a worth that is lower than the fixed price f̄ . When in-
creasing the demand ratio we get an increase in social welfare
and revenue, as more tasks are executed. The revenue under
the SAG remains a lot higher than the FPS, as a low ratio
corresponds to a high competition over the servers. Conse-
quently the servers receive a higher Shapley Value and the
SAG revenue increases. Further, the FPS “filters out” a lot
of tasks with a low worth, while the tasks with high worth
only pay the threshold f̄ . When the demand ratio increases,
the revenues of the SAG and FPS converge. The FPS has
a larger pool of tasks to filter from and the competition
for servers decreases, which results in a lower revenue from
the SAG. Overall SAG outperforms FPS, maximizing social
welfare and increasing revenue, especially when competition
over servers is high. As competition decreases, SAG still
achieves a higher social welfare, but its advantage in terms
of server revenue decreases (and for some parameters and
low competition, revenues may even be higher under FPS).

4. CONCLUSION
We introduced the Shared Assignment Game, where sell-

ers are constrained in their resources in a two-sided market,
using the Shapley value to fairly share costs. Under private
information, such as in cloud environments, we showed that
agents can manipulate outcome using ”splits“ and ”bluffs“.
Our bounds on these manipulations show that the SAG is
somewhat robust to them. Finally, our simulation shows
that SAG outperforms the fixed-price scheme, maximizing
social welfare and increasing revenue, especially under high
competition for servers. Future research directions include
investigating the performance of our approach on real-world
cloud datasets, examining manipulations in games where
agents are unreliable (see for example [11, 8, 16]), investigat-
ing coalitional manipulations and collusion (see [41, 5, 12, 7])
and examining manipulations when task owners adaptively
learn from experience. We also wish to apply the Shapley
value to new upcoming allocation methods, e.g., [28] and
compare the allocated welfare to all agents, with other ex-
isting pricing mechanisms, e.g., VCG and [17].
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