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ABSTRACT
Two decision problems are very close in spirit: module check-
ing of CTL/CTL* and model checking of ATL/ATL*. The
latter appears to be a natural multi-agent extension of the
former, and it is commonly believed that model checking of
ATL(*) subsumes module checking of CTL(*) in a straight-
forward way. Perhaps because of that, the exact relationship
between the two has never been formally established.

A more careful look at the known complexity results,
however, makes one realize that the relationship is some-
what suspicious. In particular, module checking of CTL is
EXPTIME-complete, while model checking of ATL is only
P-complete. Thus, the (seemingly) less expressive frame-
work yields significantly higher computational complexity
than the (seemingly) more expressive one. This suggests
that the relationship may not be as simple as believed. In
this paper, we show that the difference is indeed fundamen-
tal. The way in which behavior of the environment is un-
derstood in module checking cannot be equivalently char-
acterized in ATL(*). Conversely, if one wants to embed
module checking in ATL(*) then its semantics must be ex-
tended with two essential features, namely nondeterministic
strategies and long-term commitment to strategies.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms
Theory, Verification

Keywords
Module checking, model checking, verification, temporal logic,
reactive systems.

1. INTRODUCTION
In design and verification of formal systems, model check-

ing is a well-established method to automatically check for
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global correctness of systems [21, 45]. In such a frame-
work, in order to verify whether a system is correct with
respect to a desired property, we describe its structure with
a mathematical model, specify the property with a tempo-
ral logic formula, and check formally that the model satis-
fies the formula. The method has been first conceived for
closed systems whose behavior is completely determined by
their internal states and transitions. In this setting, models
are often given as Kripke structures (labeled state transition
graphs). CTL* or its sublogics CTL, LTL [24] are usually
used for specification of properties. It is worth observing
that closed models may include internal nondeterminism.
Hence, an unwinding of a Kripke structure results in an in-
finite tree, formally called computation tree, that collects all
possible evolutions of the system. Then, model checking
of a closed system amounts to checking whether the tree is
correct with respect to the specification.

Module checking. In the last two decades, interest has
arisen in analyzing the behavior of individual components
(or sets of components) in systems with multiple entities.
The interest began in the field of reactive systems, which
are systems that interact continually with their environ-
ments. In module checking [37], the system is modeled as a
module that interacts with its environment, and correctness
means that a desired property must hold with respect to all
possible interactions. The module can be seen as a Kripke
structure with states partitioned into ones controlled by the
system and by the environment. Notice that the environ-
ment represents an external additional source of nondeter-
minism, because at each state controlled by the environment
the computation can continue with any subset of its possible
successor states. In other words, while in model checking we
have only one computation tree to check, in module check-
ing we have an infinite number of trees to handle, one for
each possible behavior of the environment.

This makes the module checking problem harder to deal
with. Indeed, while CTL* model checking is PSPACE-comp-
lete, CTL* module checking is 2EXPTIME-complete. More-
over, CTL model checking is P-complete, whereas CTL mod-
ule checking is EXPTIME-complete. Finally, module check-
ing is exponentially harder even in terms of program com-
plexity (i.e., in case we use a fixed-size formula) where we
move from LogSpace-completeness for model checking CTL
to P-completeness for module checking CTL [37, 47].

Alternating-time logic. Taking module checking as the
starting point, researchers have looked for logics to reason
about, and verify strategic behavior of agents in multi-agent
systems [7, 8, 44, 48, 32, 19, 41]. Perhaps the most impor-
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tant development in this field was alternating-time temporal
logic (ATL* for short), introduced by Alur, Henzinger, and
Kupferman [7, 8]. ATL* allows reasoning about strategies
of agents with temporal goals. Formally, it is obtained as
a generalization of CTL* in which the path quantifiers E
(“there exists a path”) and A (“for all paths”) are replaced
with strategic modalities of the form 〈〈A〉〉 (“A can collectively
enforce that...”), where A is a set of agents (a.k.a. play-
ers). Strategic modalities are used to express cooperation
and competition among agents in order to achieve certain
goals. In particular, they can express selective quantifica-
tion over those paths that are the result of the infinite game
between coalition A and the rest of agents.

Module checking vs. ATL*. Model checking of ATL*
comes out as a natural multi-agent extension of CTL* mod-
ule checking [8] and it is commonly believed that the lat-
ter can be embedded by the former in a straightforward
way [8, 14, 52]. However, the relationship between the two
has never been formally shown, which is rather remarkable
given how relevant the topic is for verification of open and
multi-agent systems. This lack of formal correspondence
results is not without a reason, and the existing complex-
ity results suggest potential misalignment. True, the com-
plexity of the two problems in their most general variant
match, i.e., both module checking of CTL* and model check-
ing of ATL* are 2EXPTIME-complete. On the other hand,
for the state-based fragments, we get that model check-
ing of ATL is only P-complete while module checking of
CTL is EXPTIME-complete. The (seemingly) less expres-
sive framework1 yields significantly higher computational
complexity than the (seemingly) more expressive one! Thus,
the relationship cannot be as simple as commonly believed.
Of course, there could be many reasons for this pattern of
complexity (perhaps a translation to from CTL to ATL*
is needed for the embedding, or the optimal translation re-
quires exponential blowup of the formula etc.). In this pa-
per, we show that none of those is the case, and the difference
is fundamental.

Contribution of this paper. In essence, we show that the
way in which the behavior of the environment is understood
in module checking cannot be equivalently characterized in
ATL*. The main intricacy is that in module checking we
need to handle nondeterministic choices of the environment
that affect the computation tree by pruning the non-selected
transitions. This is something that cannot be done in the
standard semantics of ATL*. In order to embed module
checking in ATL* one must extend its semantics with non-
deterministic strategies and the possibility of long-term com-
mitment to strategies. We prove it formally by a number of
(non) expressivity theorems.

Related work. Module checking is an active area of re-
search. Since its introduction in [35, 37], it has been ex-
tensively studied in several directions. In [36], the basic
CTL/CTL* module checking question has been extended
to the setting where the environment has imperfect infor-
mation about the state of the system, showing that such
a constraint does not affect the overall complexity of the

1One can see CTL/CTL* module checking as a logical sys-
tem where the syntax is simply CTL/CTL* but the seman-
tics is altered. Thus, by a slight abuse of terminology, we
can talk about the “expressive power” of module checking.
We clarify the issue in Section 3.1.

problem. In [13] the module checking problem has been ex-
tended to infinite-state open systems, by considering push-
down modules. The pushdown module checking problem has
been first investigated for perfect information, showing that
it is exponentially harder than in the finite-state case. Then,
in [10, 12], the problem has been investigated for imperfect
information. In [10], it has been proved that it is in gen-
eral undecidable, and that the undecidability relies on hid-
ing information about the pushdown store. [26, 9] extended
module checking to µ-calculus specifications, and showed it
to be as complex as in the CTL case. Finally, in [43] the
module checking problem has been investigated with respect
to bounded pushdown modules (formally hierarchical mod-
ules), pointing out a rare case in which the program com-
plexity of the model and module checking problems coincide.
>From a more practical point of view, Martinelli [39] built

a semi-automated tool to perform the finite-state module
checking problem, both in the perfect and imperfect set-
ting, with respect to a specification given in the existential
fragment of CTL (see also [40]). An approach to CTL mod-
ule checking based on tableau has been exploited in [11].
Moreover, Godefroid and Huth used an extension of module
checking to reason about three-valued abstractions [28]. We
refer to [23, 27, 29] for the evolution of this idea.

Literature on model checking of alternating-time tempo-
ral logic is equally rich. The complexity of the problem
has been studied in a multitude of papers [8, 48, 30, 50,
17], cf. also [15] for an overview. Symbolic model checking
algorithms for ATL were developed e.g. in [33, 46]. Exist-
ing implementations of model checkers include mocha [5,
4] and MCMAS [38], the latter constantly developed since
2004. Also, the probabilistic model checker PRISM has
been recently extended to handle a probabilistic variant of
ATL [20]. ATL has been studied as a framework for speci-
fication and verification in several domains, including com-
munication protocols [51], fair exchange protocols [34, 31],
and agent-oriented programs [22].

An important strand in research on ATL/ATL* emerged
in quest of the “right” semantics for strategic ability. ATL
was combined with epistemic logic [51, 32, 1], and several se-
mantic variants were defined for various assumptions about
agents’ memory and available information [48, 32, 42]. Also,
many conceptual extensions have been considered, e.g., with
explicit reasoning about strategies [49, 53, 19, 41], agents
with bounded resources [3, 16], and reasoning about persis-
tent strategies and commitment [2, 14]. Especially the last
kind of semantics will prove useful in our analysis.

2. PRELIMINARIES

2.1 Models and Modules
In this paper, we consider several frameworks for model-

ing and verification of temporal properties. Modules in mod-
ule checking [35] were proposed to represent open systems
– that is, systems that interact with an environment whose
behavior cannot be determined in advance. In their simplest
form, modules are unlabeled transition systems with the set
of states partitioned into those “owned” by the system, and
the ones where the next transition is controlled by the en-
vironment. Models of alternating-time temporal logic [8],
called concurrent game structures, are multi-player transi-
tion systems with transitions labeled by tuples of actions,
one from each agent.
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Definition 1 (Module). A module is a tuple M =
〈AP, Sts, Ste, q0,→,PV 〉, where AP is a finite set of (atomic)
propositions, St = Sts∪Ste is a nonempty finite set of states
partitioned into a set Sts of system states and a set Ste of
environment states, →⊆ St× St is a (global) transition re-
lation, q0 ∈ St is an initial state, and PV : St→ 2AP maps
each state q to the set of atomic propositions true in q.

Definition 2 (CGS). A concurrent game structure is
a tuple M = 〈AP,Agt, St, Act, d, o,PV 〉 including nonempty
finite set of propositions AP , agents Agt = {1, . . . , k}, states
St, (atomic) actions Act, and a propositional valuation PV :
St → 2AP . The function d : Agt × St → 2Act defines
nonempty sets of actions available to agents at each state,
and the (deterministic) transition function o assigns the out-
come state q′ = o(q, α1, . . . , αk) to each state q and tuple of
actions αi ∈ d(i, q) that can be executed by Agt in q.

A pointed CGS is a pair (M, q0) of a concurrent game
structure and an initial state in it.

Nondeterministic choices of agents in a CGS can be repre-
sented by sets of actions. In this sense, agent a can select at
state q any nonempty set ααα ⊆ d(a, q), and the set of succes-
sors of ααα is simply the union of successor sets for each action
in α. Then, modules can be seen as a subclass of concur-
rent game structures – more precisely, 2-player turn-based2

pointed CGS’s with agents Agt = {sys, env}. We will use
both definitions of modules interchangeably.

To give an example, consider an ATM that allows cus-
tomers to choose among the operations of putting money,
getting money, or checking the balance, cf. Figure 1. The en-
vironment represents all possible infinite lines of customers,
each with their own plans. Also, the machine can loop
in the starting state, preventing customers from executing
any operation. We formally define the ATM as a mod-
ule MATM = 〈AP, Sts, Ste,→, q0,PV 〉 such that Sts =
{start, put, get, check}, Ste = {choice}, AP = St, PV (x) =
{x} for each x ∈ AP , q0 = start and →= {(start, start),
(start, choice), (choice, x), (x, start) | x ∈ Sts\{start}}. We
leave rewriting of MATM as a CGS for the interested reader.

2.2 CTL/CTL* Module Checking
We first recall the definition of labeled trees, and the syn-

tax as well as semantics of Computation Tree Logic.
Let N be the set of positive integers. A tree T is a prefix

closed subset of N∗. The elements of T are called nodes
and the empty word ε is the root of T . For x ∈ T , the set
of children of x is children(T, x) = {x · i ∈ T | i ∈ N}.
For k ≥ 1, the (complete) k-ary tree is the tree {1, . . . , k}∗.
For x, y ∈ N∗, we write x ≺ y to mean that x is a proper
prefix of y. For x ∈ T , a (full) path λ of T from x is a
minimal set λ ⊆ T such that x ∈ λ and for each y ∈ λ
such that children(T, y) 6= ∅, there is exactly one node in
children(T, y) belonging to λ. Given a path λ = x0x1 . . .
we denote λ[0] = x0 and λ[1..∞] = x1x2 . . . . For y ∈ λ,
we denote by λy the (suffix) path of T from y given by
{z ∈ λ | y � z}. For an alphabet Σ, a Σ-labeled tree is a

2A CGS is turn-based iff every state in it is controlled by
(at most) one agent. That is, for every q ∈ St, there is an
agent a ∈ Agt such that |d(a′, q)| = 1 for all a′ 6= a. The
agent a is the “owner” of state q. Note that, in a turn-based
CGS, if we label states with their owners then there is no
need to label transitions with tuples of actions anymore.

start

choice

put get check

Figure 1: ATM model MATM . Environment states
are marked gray; system states are marked white.

pair 〈T, V 〉 where T is a tree and V : T → Σ maps each
node of T to a symbol in Σ.

CTL* is a branching–time temporal logic [24], where path
quantifiers, E (“for some path”) and A (“for all paths”), can
be followed by an arbitrary linear-time formula, allowing
boolean combinations and nesting over temporal operators
X (“next”), U (“strong until”), F (“eventually”), and G (“al-
ways”). There are two types of formulas in CTL*: state
formulas ϕ, whose satisfaction is related to a specific state
(or node of a labeled tree), and path formulas γ, whose sat-
isfaction is related to a specific path. Formally:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eγ,
γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γ U γ.

where p is an atomic proposition. The other operators can
be defined as: Aγ ≡ ¬E¬γ, Fγ ≡ trueU γ, and Gγ ≡ ¬F¬γ.

CTL [21] is a restricted subset of CTL*, obtained replac-
ing the syntax of path formulas γ as follows: γ := Xϕ |
ϕUϕ | ϕWϕ (“weak until”), i.e., every path quantifier must
be immediately followed by a temporal operator.

We define the semantics of CTL* (and its fragment CTL)
with respect to a St-labeled tree 〈T, V 〉 with propositional
valuation PV . Let x ∈ T and λ ⊆ T be a path from x. For a
state (resp., path) formula ϕ (resp. γ), the satisfaction rela-
tion 〈T, V 〉,PV , x |= ϕ (resp., 〈T, V 〉,PV , λ |= γ) is defined
as follows:

• 〈T, V 〉,PV , x |= p iff p ∈ PV (x);

• 〈T, V 〉,PV , x |= Eγ iff there exists a path λ from x
such that 〈T, V 〉,PV , λ |= γ;

• 〈T, V 〉,PV , λ |= ϕ iff 〈T, V 〉,PV , λ[0] |= ϕ;

• 〈T, V 〉,PV , λ |= Xγ iff 〈T, V 〉,PV , λ[1..∞] |= γ;

• 〈T, V 〉,PV , λ |= γ1 U γ2 iff there is y ∈ λ such that
〈T, V 〉,PV , λy) |= γ2 and 〈T, V 〉,PV , λz) |= γ1 for all
z ∈ λ such that z ≺ y.

The clauses for negation and conjunction are standard. In
addition, 〈T, V 〉,PV , λ |= γ1 W γ2 iff either 〈T, V 〉,PV , λ |=
γ1 U γ2 or 〈T, V 〉,PV , λ |= Gγ1. Given a CTL* (state) for-
mula ϕ, we say that 〈T, V 〉 satisfies ϕ if 〈T, V 〉,PV , ε |= ϕ.

For a module M = 〈AP, Sts, Ste,→, q0,PV 〉, the set of
all (maximal) computations of M starting from the initial
state q0 is described by a St-labeled tree 〈TM , VM 〉, called
computation tree, which is obtained by unwinding M from
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the initial state in the usual way. The problem of decid-
ing, for a given branching-time formula ψ over AP , whether
〈TM ,PV ◦ VM 〉 3 satisfies ψ, denoted M |= ψ, is the usual
model-checking problem [21, 45]. On the other hand, for an
open system, 〈TM , VM 〉 corresponds to a very specific envi-
ronment, i.e. the maximal environment that never restricts
the set of its next states. When we examine specification
ψ w.r.t. a module M , the formula ψ should hold not only
in 〈TM , VM 〉, but in all the trees obtained by pruning some
environment transitions from 〈TM , VM 〉. The set of these
trees is denoted by exec(M) and is formally defined as fol-
lows. For each state q ∈ St, let succ(q) be the ordered tuple
of q′ node successors of q, i.e., q → q′. A tree 〈T, V 〉 is in
exec(M) iff T ⊆ TM , V is the restriction of VM to the tree
T , and for all x ∈ T the following holds:

• if VM (x) = w ∈ Sts and succ(q) = 〈q1, . . . , qn〉, then
children(T, x) = {x · 1, . . . , x · n} (note that for 1 ≤
i ≤ n, V (x · i) = VM (x · i) = qi);

• if VM (x) = w ∈ Ste and succ(q) = 〈q1, . . . , qn〉, then
there is a sub-tuple 〈qi1 , . . . , qip〉 of succ(q) such that
children(T, x) = {x · i1, . . . , x · ip} (note that for 1 ≤
j ≤ p, V (x · ij) = VM (x · ij) = qij ).

Intuitively, when the module M is in a system state qs,
then all states in succ(qs) are possible successors. When M
is in an environment state qe, then the possible next states
(that are in succ(qe)) depend on the current environment.
Since the behavior of the environment is nondeterministic,
we have to consider all the nonempty sub-tuples of succ(qe).

For a module M and a CTL(*) formula ψ, we say that M
reactively satisfies ψ, denoted by M |=r ψ, if all the trees
in exec(M) satisfy ψ. The problem of deciding whether M
reactively satisfies ψ is called module checking [37]. Note
that M |=r ψ implies M |= ψ (since 〈TM , VM 〉 ∈ exec(M)),
but the converse in general does not hold. Also, note that
M 6|=r ψ is not equivalent to M |=r ¬ψ.

As an example, consider again the ATM module from Fig-
ure 1. Clearly, MATM |= EFput as it is (in principle) possi-
ble to deposit money. On the other hand, MATM 6|=r EFput.
Think of a line of people who never want to deposit. It corre-
sponds to an execution tree of MATM with no node labeled
with put, and such a tree does not satisfy EFput.

2.3 Alternating Time Logic ATL/ATL*
Alternating-time temporal logic [8] generalizes CTL* by

replacing path quantifiers E,A with strategic modalities 〈〈A〉〉.
Informally, 〈〈A〉〉γ expresses that the group of agents A has
a collective strategy to enforce temporal property γ. The
language ATL* is given by the grammar below:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γ U γ.

where A ⊆ Agt is any subset of agents, and p is a proposi-
tion. “Sometime” and “always” are obtained like in CTL*.
Also, we can use [[A]]γ ≡ ¬〈〈A〉〉¬γ to express that no strat-
egy of A can prevent property γ. Similarly to CTL, ATL is
the syntactic variant in which every occurrence of a strategic
modality is immediately followed by a temporal operator.

Given a CGS, we define the strategies and their outcomes
as follows. A perfect recall strategy for agent a is a function
3PV ◦ VM denotes the composition of the functions PV
and VM that allows to re-label each state-labeled node u
in 〈TM , VM 〉 with PV (VM (u)).

sa : St+ → Act such that sa(q0q1 . . . qn) ∈ d(a, qn). A mem-
oryless strategy for a is a function sa : St → Act such that
sa(q) ∈ d(a, q). A collective strategy for a group of agents
A = {a1, . . . , ar} is simply a tuple of individual strategies
sA = 〈sa1 , . . . , sar 〉. The “outcome” function out(q, sA) re-
turns the set of all paths that can occur when agents A
execute strategy sA from state q on. The semantics |=ATL

of alternating-time logic is obtained from that of CTL* by
replacing the clause for Eφ as follows:

M, q |= 〈〈A〉〉γ iff there is a perfect recall strategy sA for A
such that for every λ ∈ out(q, sA) we have M,λ |= γ.

We will refer to the logical system (ATL*, |=ATL) simply as
ATL*, and to (ATL, |=ATL) as ATL.The problem of deciding
whether a pointed CGS (M, q0) satisfies the ATL(*) formula
ψ is called ATL(*) model checking problem [8].

Consider the ATM module from Figure 1 again. Clearly,
MATM |=ATL 〈〈sys, env〉〉Fput. The right strategy is: for
the agent sys, proceed from start to choice, and for the
agent env, proceed from choice to put. On the other hand,
MATM |=ATL ¬〈〈sys〉〉Fput∧¬〈〈env〉〉Fput: none of the agents
can bring about put without cooperation from the other one.

Embedding CTL* in ATL*. The path quantifiers of
CTL* can be expressed in the standard semantics of ATL*
as follows: Aφ ≡ 〈〈∅〉〉A and Eφ ≡ 〈〈Agt〉〉φ [8]. We point
out that the above translation of E does not work for sev-
eral extensions of ATL*, e.g., with imperfect information
(cf. [18]), nondeterministic strategies, and irrevocable strate-
gies. On the other hand, the translation of A into 〈〈∅〉〉 does
work for all the semantic variants of ATL* considered in
this paper. Thanks to that, we can define a translation
atl(φ) from CTL* to ATL* as follows. First, we convert
φ so that it only includes universal path quantifiers, and
then replace every occurrence of A with 〈〈∅〉〉. For example,
atl(EG(p1 ∧ AFp2)) = ¬〈〈∅〉〉F(¬p1 ∨ ¬〈〈∅〉〉Fp2). Note that if
φ is a CTL formula then atl(φ) is a formula of ATL.

3. MODULE CHECKING VS. ATL
What is the relationship between CTL module checking

and ATL model checking? Intuitively, it seems that the for-
mer is a special case of the latter. M, q |=r φ expresses that,
for every possible strategy of the environment, the system
can always respond in such a way that formula φ will hold on
the resulting path(s). This suggests [[env]]atl(φ) as a suit-
able translation of module checking into ATL. There are,
however, two features that differ from the standard seman-
tics of ATL. First, strategies of the environment are irrevo-
cable in the sense of [2]. Technically, this means that the
execution tree is pruned of all the transitions inconsistent
with the strategy before we start to evaluate φ. In con-
trast, nested subformulae in ATL are evaluated in the orig-
inal transition system. Secondly, the environment’s strate-
gies in module checking are nondeterministic, whereas the
semantics of ATL admits only deterministic strategies. We
show that these features are essential and make embedding
of module checking into ATL impossible.

3.1 No Pruning, No Module Checking
Before we proceed, we briefly introduce the notions of dis-

tinguishing power and expressive power (cf. e.g. [54]).

Definition 3 (Distinguishing and expressive power).
Let L1 = (L1, |=1) and L2 = (L2, |=2) be two logical systems
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q0

q1 q2

q3 p

q0

q1

q3 p

Figure 2: Distinguishing power of pruning: modules
M1 (left) and M2 (right)

over the same class of models M. By [[φ]]|= = {(M, q) |
M, q |= φ}, we denote the class of pointed models that sat-
isfy φ in the semantics given by |=. Likewise, [[φ,M ]]|= =
{q |M, q |= φ} is the set of states (or, equivalently, pointed
models) that satisfy φ in a given structure M .
L2 is at least as expressive as L1 (written: L1 �e L2 iff

for every formula φ1 ∈ L1 there exists φ2 ∈ L2 such that
[[φ1]]|=1

= [[φ2]]|=2
.

L2 is at least as distinguishing as L1 (written: L1 �d L2

iff for every model M and formula φ1 ∈ L1 there exists
φ2 ∈ L2 such that [[φ1,M ]]|=1

= [[φ2,M ]]|=2
.4

Note that L1 �e L2 implies L1 �d L2 but the converse is
not true. For example, it is known that CTL has the same
distinguishing power as CTL*, but strictly less expressive
power. We also observe that module checking CTL* can
be seen as a logical system (CTL*, |=r), and analogously
for module checking CTL. Thus, we can use Definition 3 to
study the expressivity of both problems.

Theorem 1. ATL* is not sufficient to express CTL/CTL*
module checking. Formally, (CTL, |=r) 6�d ATL*, and hence
also (CTL, |=r) 6�e ATL*.

Proof. We adapt an example from [2], see Figure 2. It is
easy to check that (M1, q0) and (M2, q0) are in strategic
bisimulation [2]. Thus, they must satisfy exactly the same
formulae of ATL*. On the other hand, for the CTL for-
mula φ ≡ AXEXp ∨ AXEX¬p, we have that M1, q0 6|=r φ but
M2, q0 |=r φ, which concludes the proof. �

Note that the proof does not use the fact that ATL admits
only deterministic strategies. Clearly, extending the seman-
tics of ATL to nondeterministic strategies would not change
the above result. The crucial factor is pruning of the model
according to the strategy of the environment. In particular,
it is easy to see why the “intuitive” translation of M, q |=r φ
to M, q |=ATL [[env]]atl(φ) does not work without pruning.
Consider again φ ≡ AXEXp ∨ AXEX¬p. In ATL, selected
strategies are “forgotten” when a nested strategic modality
is encountered. Hence, the formula 〈〈a〉〉(〈〈b〉〉ψ1 ∨ 〈〈c〉〉ψ2)↔
(〈〈b〉〉ψ1 ∨ 〈〈c〉〉ψ2) is valid in ATL*. In consequence, we have
M, q |=ATL [[env]]atl(φ) iff M, q |=ATL atl(φ) iff M, q |=CTL φ,
which is certainly not equivalent to M, q |=r φ.

3.2 Pruning and Irrevocable Strategies
4Equivalently: for every pair of pointed models that can be
distinguished by some φ1 ∈ L1 there exists φ2 ∈ L2 that
distinguishes these models.

Strategies in ATL* are revocable in the sense that in the
evaluation of a nested strategic modality, agents are no longer
restricted by strategies they have possibly chosen in order
to reach the state where the nested modality is evaluated.
As an example, consider formula 〈〈os〉〉G〈〈a〉〉Fprint that says
that the operating system is able to provide the printing
facility to process a. In ATL*, the formula is harder to sat-
isfy than one might expect. In particular, when evaluating
φ ≡ 〈〈a〉〉Fprint at an intermediate state, we must find a strat-
egy for a that works against any possible behavior of os –
despite the fact that os has selected its strategy in 〈〈os〉〉Gφ
exactly to make φ true.

A different semantics of strategic play was considered in [2].
There, strategies are assumed irrevocable in that they com-
pletely specify the player’s behaviour in all conceivable sit-
uations, and for all future moments. Semantically, this can
be implemented by a model update that prunes from the
model all the transitions that cannot occur if players A ex-
ecute strategy sA.

Definition 4 (Model update). Let M be a CGS, A
a coalition, and sA a memoryless strategy of A. The update
of M by sA, denoted M † sA, is the same as M , except that
the choices of each agent a ∈ A are fixed by the strategy, i.e.,
d(a, q) = {sa(q)} for each a ∈ A and q ∈ St.

The semantics |=IATL of “Irrevocable ATL” replaces the
clause for strategic modalities as follows:

M, q |=IATL 〈〈A〉〉φ iff there is a memoryless strategy sA for
A st. for every λ ∈ out(q, sA) we have M † sA, λ |= φ.

Moreover, the“irrevocable”semantics for agents with perfect
memory extends |=IATL with the clause:

M, q |=MIATL φ iff tree(M, q), q |=IATL φ,

where tree(M, q) is the tree unfolding of the pointed CGS
(M, q). We will refer to the logical system (LATL∗ , |=MIATL)
as MIATL*, and to (LATL, |=MIATL) as MIATL. We note in
passing that MIATL can be seen as a special case of two
more expressive languages: ATL with strategy contexts [14]
and Strategy Logic [41].

The difference between revocable and irrevocable strate-
gies shows best when we consider the ability to achieve a goal
which, again, involves (nested) strategic ability. For exam-
ple, formula 〈〈a〉〉G(p∧〈〈a〉〉X¬p) is satisfiable in the standard
semantics of ATL, but unsatisfiable in IATL and MIATL.

As it turns out, changing the semantics of ATL to irre-
vocable strategies gives to the logic the whole distinguishing
power of module checking. On the other hand, we strongly
suspect that MIATL is still not enough to cover the whole
expressive power of module checking.

Theorem 2. MIATL has at least the distinguishing power
of CTL* module checking.

Proof. We prove that if MIATL does not distinguish two
models then module checking also does not. If two pointed
models M1,M2 satisfy the same formulae of MIATL then
they must be in alternating bisimulation [6], and hence also
their tree unfoldings are alternating-bisimilar. But then,
for every T ∈ exec(M1) there must be a bisimilar T ′ ∈
exec(M2), and vice versa. Thus, T and T ′ must satisfy ex-
actly the same formulae of CTL*. In consequence, M1 |=r φ
iff ∀T ∈ exec(M1).T |=

CTL*
φ iff ∀T ′ ∈ exec(M2).T2 |=CTL*

φ iff M2 |=r φ. �
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Figure 3: Distinguishing power of nondeterministic
strategies: modules M3 (left) and M4 (right)

Conjecture 1. MIATL does not cover the expressive po-
wer of CTL*/CTL module checking.

Proof sketch. Let φ ≡ φ1 → φ2, where φ1 ≡ AGAFp, and
φ2 ≡ AG(EXp ∧ EX¬p). We argue that there is no formula
φ′ of MIATL* such that M, q |=r φ iff M, q |=MIATL φ

′.
First, φ1 is equivalent to the CTL* formula AGFp express-

ing that p occurs infinitely often on all paths (of the given
tree). Secondly, φ2 holds only if: (a) at every state of the
model, reachable in the given tree, there is a transition to a
state satisfying p and another one to a state with ¬p; and
(b) the tree is obtained from a globally nondeterministic
strategy of the environment, in the sense that at no reach-
able state the environment chooses deterministically. This
is because, if env used a deterministic strategy, then at all
states controlled by env there would be only one transition –
either to a state with p, or to one with ¬p. Thus M, q |=r φ
expresses that every strategy of the environment that pro-
vides p infinitely often must be globally nondeterministic.
It seems that this property cannot be expressed in MIATL,
which can only quantify over deterministic strategies. �

Regardless of the general (in)expressivity result, we will
now show that module checking cannot be embedded in
MIATL in a straightforward way, unless nondeterministic
strategies are added to the semantics.

3.3 Deterministic Strategies Are Not Enough
We will begin by defining formally what we take as“straight-

forward” translations of module checking.

Definition 5 (upsaMIATL*). We define the univer-
sally prefixed single-agent MIATL* ( upsaMIATL*) as the
following syntactic restriction on MIATL*: only 1 agent
name can occur in the formula, and only once, in a univer-
sal strategic modality at the beginning of the formula. That
is, formulae of upsaMIATL* take form [[a]]ψ where a is an
agent and ψ contains no strategic modalities except for 〈〈∅〉〉.

Universally prefixed single-agent MIATL ( upsaMIATL for
short) is defined as the analogous restriction of MIATL.

We show now that upsaMIATL* is not sufficient to char-
acterize CTL/CTL* module checking.

Theorem 3. upsaMIATL* covers neither the distinguish-
ing nor expressive power of CTL/CTL* module checking.
Formally, (CTL, |=r) 6�d upsaMIATL*, and hence also
(CTL, |=r) 6�e upsaMIATL*.

Proof. Consider modules M3,M4 in Figure 3. In each of
them, the environment has two deterministic strategies (go

“left” or go “right”). Note also that the “left” strategies
yield bisimilar execution trees in M3 and M4, and hence the
trees satisfy exactly the same formulae of CTL* (likewise for
the “right” strategies). Thus, for every MIATL* formula of
shape φ ≡ [[env]]ψ with ψ containing no strategic modalities
except 〈〈∅〉〉, either φ holds in both M3, q0 and M4, q0, or in
none of them.

On the other hand, consider φ ≡ AX(AXp ∨ AX¬p). It is
easy to see that M3, q0 |=r φ but M4, q0 6|=r φ. �

The proof shows clearly that upsaMIATL* lacks the abil-
ity to refer to nondeterministic strategies, which are a natu-
ral element of module checking. In the final step of our anal-
ysis, we will extend the semantics of MIATL* with nonde-
terministic strategies, and show that the result corresponds
to the module checking problem.

Definition 6 (MNIATL*). Nondeterministic MIATL*
( MNIATL* for short) is given by the syntax of ATL* and
the semantic relation |=MNIATL , defined as follows. First, a
nondeterministic memoryless strategy of agent a is a func-
tion sa : St+ → 2Act such that ∅ 6= sa(q0q1 . . . qk) ⊆ d(a, qk).
Then, we define the semantics of “nondeterministic irrevo-
cable ATL” by extending |=IATL with the following clause:

M, q |=NIATL 〈〈A〉〉φ iff there is a memoryless strategy sA
st. for every λ ∈ out(q, sA) we have M † sA, λ |= φ.

Finally, we define M, q |=MNIATL φ iff tree(M, q), q |=MIATL φ,
where tree(M, q) is the tree unfolding of the pointed CGS
(M, q). MNIATL, upsaMNIATL*, and upsaMNIATL are
defined as suitable syntactic restrictions of MNIATL*.

Theorem 4. Module checking CTL* corresponds precisely
to the universally prefixed single-agent MNIATL*. Module
checking CTL corresponds precisely to the universally pre-
fixed single-agent MNIATL.

Proof. (i) module checking �e MNIATL. We use the
following translation for module checking of CTL*: tr(φ) =
[[env]]atl(φ). Now, M, q |=r φ iff for every T ∈ exec(M, q)
we have T |=CTL φ. Since every such tree corresponds to a
nondeterministic memoryless strategy in tree(M, q), this is
equivalent to saying that

(
tree(M, q)†senv

)
, q |=NIATL atl(φ)

for every such strategy senv. Thus, equivalently, we have
that M, q |=MNIATL [[env]]atl(φ).

Note that [[env]]atl(φ) is not a formula of MNIATL (with-
out star) even if φ is a formula of CTL. For example, for φ ≡
AFp, we get [[env]]〈〈∅〉〉Fp. However, if φ is in CTL, we can
improve the translation as follows: tr′(φ) = [[env]]Now atl(φ)
where Now φ ≡ φUφ. For example, tr′(AFp) becomes
[[env]](〈〈∅〉〉Fp)U (〈〈∅〉〉Fp), which is a MNIATL formula.

Clearly, given a state formula φ and a path λ, we have
λ |= Now φ iff λ[0] |= φ in any semantics |= used in this pa-
per. Thus, M, q |=MNIATL [[env]]Now atl(φ) iff M, q |=MNIATL

[[env]]Now atl(φ), which proves that tr′ is a correct transla-
tion of CTL module checking into MNIATL.

We also observe that the outcome of tr, as well as tr′, is
always in the universally prefixed single-agent fragment of
the language.

(ii) MNIATL �e module checking. We take a formula
of universal single-agent prefixed MNIATL* φ ≡ [[a]]ψ, and
we obtain ψ′ by replacing all occurrences of 〈〈∅〉〉 with A.
We also fix a to play the role of the environment. Then,
M, q |=

MNIATL*
φ iff M, q |=r Aψ′ (and likewise for “vanilla”

MNIATL). �
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3.4 Discussion
Our results show in a formal way that – and how – the

original version of ATL* is not the right framework to embed
module checking:

1. Most importantly, Theorem 1 shows that there are
properties expressible via module checking, which can-
not be expressed in ATL*. This is the case even if
the model is given (i.e., in the sense of distinguishing
power). The proof also suggests that the reason lies
in lack of pruning of the non-selected choices from the
model (on the side of ATL*).

2. Indeed, changing the semantics of ATL* to one based
on pruning (MIATL*) is a step in the right direction,
as the MIATL* covers the whole distinguishing power
of CTL* module checking, cf. Theorem 2. This is also
confirmed by known complexity results for MIATL [14]
that match with those of CTL module checking [35].

3. Still, it seems that pruning is not enough to have a gen-
eral, model-independent translation of module check-
ing into alternating-time logic (Conjecture 1). We also
prove that CTL/CTL* module checking does not ad-
mit a natural translation into MIATL* even in the
sense of distinguishing power, i.e., when a model is
given (Theorem 3).

4. Finally, adding nondeterministic strategies on top of
pruning allows to embed the whole CTL* module check-
ing into the framework of alternating-time logic.

Thus, we conclude that both irrevocability and nondeter-
minism of environment’s strategies are essential features of
module checking.

4. CONCLUSIONS
In this paper, we have formally addressed the relation-

ship between CTL*/CTL module checking and ATL*/ATL
model checking. Since their early introduction, dating back
to 1996/1997, there has been a common belief that the lat-
ter would subsume the former in a straightforward way. In
this paper we show that this cannot be done. The main rea-
son lies in the fact that in module checking strategies of the
environment are nondeterministic and irrevocable (formally
represented by pruning a part of the computation tree). In
ATL*, instead, agents can only use deterministic and revo-
cable strategies. We prove that – due to these limitations
– ATL* model checking does not cover the distinguishing
and expressive power of CTL* module checking, and even
module checking of the less expressive logic CTL. We show
that the lack of distinguishing power crucially stems from
revocability of strategies in ATL*. Indeed, by considering
the MIATL* extension of ATL* in which strategies are ir-
revocable, we show that a variant of ATL* model check-
ing with at least the same distinguishing power as CTL*
module checking. On the other hand, we show that mod-
ule checking cannot be embedded in MIATL* in a natural
way, because the latter lacks nondeterministic strategies. Fi-
nally, we present a syntactic and semantic variant of ATL*
that exactly corresponds to the problem of module checking
CTL/CTL* specifications.

In the recent years, a large effort has been devoted to
introduce and investigate extensions of ATL* in order to
come up with logics that properly address specific formal

verification scenarios. Individuating the right logic and its
peculiarities in correspondence of a precise decision prob-
lem is always a challenging task. This paper shows some
advantages of that research. We have been able to grasp
the right ingredients one has to add to ATL* in order to
properly simulate CTL* module checking, thanks to the ex-
isting literature on revocability of strategies and strategic
commitment.

Finally, our results open some questions for future work
in practical aspects of verification of open systems. Indeed,
the belief that ATL* model checking was a straightforward
multi-agent extension of CTL* module checking has some-
how reduced the development of module checking tools. Re-
search concentrated mainly on ATL* model checkers, as-
suming that those can be used also for module checking.
As we have now shown, that is not possible; in consequence,
there is a gap to fill. This is extremely important since mod-
ule checking has the right power to address reliability of a
system embedded in hostile, or simply unpredictable envi-
ronment. Another interesting question concerns comparison
of module and model checking for systems with incomplete
information. Both frameworks have their semantic variants
based on the assumption of partial observability. We plan
to study their relationship in the future.
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