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ABSTRACT
Current electricity tariffs do not reflect the real costs that a customer
incurs to a supplier, as units are charged at the same rate, regardless
of the consumption pattern. In this paper, we propose a prediction-
of-use tariff that better reflects these costs, which asks customers
to predict a baseline consumption, and charges them based both on
their actual consumption, and the deviation from their prediction.
We show how under this tariff no customer would have an incentive
to consume in excess of their actual needs, and derive closed form
expressions for their optimal prediction and expected payments.

Second, using principles from cooperative game theory, we study
how customers can collectively reduce their potential deviation by
aggregating under a group-buying scheme. We prove that the asso-
ciated cost game is concave, which means grouping reduces the to-
tal expected bill and that this payment can be fairly allocated among
customers by their Shapley values. Third, considering a model
where customers can join the group online, we propose marginal
payment allocation schemes that incentivise them to commit early,
thus preventing start-up inertia. Finally, we validate our model us-
ing real data from a set of 3000 consumers from the UK.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

Keywords
Cooperative games; group buying; collective energy tariffs; pay-
ment redistribution

1. INTRODUCTION
Recent years have seen significant efforts to switch to a more sus-
tainable smart energy grid, which incentivises the development of
renewable energy resources, as well as lower levels of consump-
tion. However, these efforts have sometimes met with resistance
from consumers because they can lead to rises in electricity prices.
Such price rises cause millions of households to be pushed towards
fuel poverty. Given this, we argue, a priority of current research
should be to develop tools that empower consumers in interacting
with energy providers to obtain the best deals.

Existing electricity tariffs are not well-suited to dealing with these
challenges. In most cases, customers are charged at a flat rate,
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based only on the number of units actually consumed and regard-
less of their consumption pattern. However, this matches poorly
with the structure of the costs that energy suppliers face [17]. In
more detail, in most countries, suppliers purchase electricity sup-
plied to their customers through forward contracts, in which they
commit to acquire a baseline demand, to be supplied at a later pe-
riod. These forward purchases can be done through long term bi-
lateral contracts (for electricity bought several months in advance),
or through the spot markets (for electricity bought in a shorter time
horizon, e.g. a day in advance). Any deviation between the baseload
and the actual consumption is resolved through the balancing mar-
ket, where prices, especially at peak times, can be much higher than
those obtained through forward contracts. For example, if a sup-
plier has a shortfall of electricity acquired, it may have to pay con-
siderably more in the balancing market for the extra units. Equiv-
alently, units bought in excess also have a cost, because typically
the prices per unit sold back in the balancing market, especially in
periods of low demand, are also much lower.

From this, we can see that each consumer has a hidden pre-
dictability cost for the supplier: consumers with a stable consump-
tion involve lower costs than consumers with an unpredictable fu-
ture demand. Suppliers recover these additional predictability costs
by increasing the unit price of flat electricity tariffs. Hence, current
tariffs involve a considerable degree of hidden cross-subsidisation:
predictable customers end up paying more to compensate the risk
of others with more unpredictable consumption patterns.

In this paper we address these challenges by proposing a tar-
iff that better matches the structure of current electricity markets.
Essentially, our proposal involves a new tariff structure, the pre-
diction-of -use (POU) tariff, which asks customers to predict their
baseline consumption and charges them based on both their actual
consumption and the deviation from their prediction. As we show
in Section 3, this tariff reflects explicitly the predictability cost by
separating between a potentially lower price for the baseline con-
sumption from a higher penalty for the deviation. In this way, our
pricing structure incentivises more reliable consumption patterns
and increases rate fairness, as no customer would subsidise other
customers for their predictability cost. Note that tariffs with simi-
lar structure are already a reality in a number of markets. For ex-
ample Braithwait et al. [16] mention in their business report a real-
time tariff offered by several energy suppliers in the US, where
costumers commit to a self-selected baseline load, and are charged
a standard rate for their consumption baseline, a penalty rate for
usage in excess of their baseline, and receive return credit for un-
derconsumed units. However, so far, most of these offerings are ad-
dressed to large-scale industrial consumers, as individual domestic
consumers are typically too small to have a significant influence on
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A potential downside of this tariff is that it transfers part of the
prediction risk faced by the supplier to the consumers. Now, one
way that customers can collectively act to reduce the risk associated
to their consumption imbalance is by joining the electricity tariff as
a single virtual consumer (i.e. aggregating their demand). Such
group buying has been shown to be both popular and effective in
e-commerce (e.g. due to the success of e-sites such as Groupon
or LivingSocial). In the context of energy, real-world initiatives
such as the BigSwitch1 or thePeoplesPower2 achieved significant
discounts by bringing a large number of consumers together and
negotiating a better deal on their behalf with suppliers.

Against this background, we study the underlying properties of
prediction-of-use tariffs, from a coalitional game theory perspec-
tive. By so doing, we ensure that, in expectation, any individual
consumer or subset of consumers will pay less by being part of the
group initiative. Second, we identify cost allocation schemes that
can fairly allocate the expected bill among customers taking part in
an electricity group buying initiative.

From an application perspective, another important issue with
group buying is inertia: consumers are reluctant to join a collec-
tive switching initiative which only a few people have joined. This
may be due to strategic considerations or to the fact that users are
unconvinced the initiative will be successful until a “critical mass”
is reached [5]. To deal with this, we also propose new payment
allocation schemes that incentivize customers to commit early.

In summary, our work makes the following contributions:

• We propose a new kind of tariff that introduces a prediction-
of -use component to price electricity and study the theoret-
ical properties of such a tariff. We show that no agent has
an incentive to consume electricity in excess of its actual
requirements, regardless of the baseline it reported. More-
over, using a probabilistic model of the uncertainty over fu-
ture consumption, we derive closed form expressions for the
optimal baseline an agent should report, as well as its ex-
pected payment using this baseline under the posted tariff.

• We study the game that our tariff induces among a set of
consumers. We show that the game is concave,3 hence the
bill is always reduced by grouping and it can be distributed
fairly using the well-known Shapley value solution concept.

• Considering a realistic model where consumers may join a
group online, over a period of time, we study the problem of
designing payment distributed schemes that incentivise them
not to delay their arrival (i.e. joining at the earliest time a
consumer is available guarantees her the lowest possible pay-
ment). We develop several such allocation schemes, based
both on strict order of arrival and on arrival windows.

• We study experimentally all the mechanisms proposed us-
ing a dataset of 3000 domestic consumers in the UK. We
quantify the incentives for joining groups and allocation pay-
ments, for consumers with different prediction accuracies.

This paper is organised as follows. Section 2 gives some prelimi-
naries and related work. Section 3 introduces our POU tariffs and
their theoretical properties. The associated cooperative cost game is
studied in Section 4, while Section 5 proposes our online incentive
compatible allocation schemes. Section 6 evaluates the proposed
tariffs using real data and Section 7 concludes.

1https://www.whichbigswitch.co.uk/
2http://www.thepeoplespower.co.uk/
3Concavity in cost games is equivalent to the concept of convexity
in utility maximizing games.

2. RELATED WORK & PRELIMINARIES
Recently, group buying has been an active area of research in the
AI community [7, 8, 9]. However, this strand of work studies how
to incentivise buyers in online markets through volume-based dis-
counts, without pursuing greater reliability or behavioural change.

In the energy domain, several works have proposed the formation
of cooperatives or coalitions among renewable energy producers,
with uncertain supply [2, 12]. Baeyens et al. [2] use a coalitional
game theory approach to propose a fair mechanism for dividing
revenue in wind energy aggregation. However, the game they study
is not always convex, hence the Shapley value allocation may not
be core-stable. By contrast, we assume that consumer prediction
errors follow independent normal distributions (i.e. a common as-
sumption in statistics theory for prediction errors [4]), and show in
this case the prediction-of-use game we consider is always concave.

Several works have considered incentivising the formation of
coalitions among electricity consumers, thus have very similar aims
to this work. For instance, Rose et al. [13] propose a mechanism
that insures truthful revelation of demands and prevents overcon-
sumption (a property we also consider in this work). Kota et al. [6]
and Akasiadis & Chalkiadakis [1] propose the formation of coali-
tions between consumers in order to improve reliability and shift
peak-time electricity loads. However, these works do not study
the concavity or core stability of coalitions in energy purchasing.
Vinyals et al. [?] study coalition formation among electricity cus-
tomers to improve their buying strategy in case they can choose
between buying continuous energy blocks in the forward market or
buying on the spot market. However, their game does not capture
any uncertainty regarding future consumption and it is not convex,
so the existence of core-stable allocations is not guaranteed.

Finally, the work on online group formation, where consumers
join over time, is inspired by recent advances in online mechanism
design (see Parkes [11] for an overview). While the basic aim is the
same (that of assuring participants will have no incentive to delay
their engagement), work in that area typically focuses on allocation
of resources, while here we study incentives for group formation.

2.1 Cooperative game theory
In this section we provide an overview of basic concepts of cooper-
ative game theory [3] used later in the paper. Let N = {1, . . . , n}
be a set of agents. A subset S ⊆ N is called a coalition. Then a
cost game is a tuple 〈N, c〉 where c : 2N → & is a characteristic
function that assigns to every coalition a real value representing the
cost that the coalition incurs by itself (c(∅) = 0). All the prop-
erties and solution concepts are presented in terms of cost games
(i.e. minimizing cost) although connections with the correspond-
ing concepts in utility games (i.e. maximizing) are outlined.

Given a cost game, there are many ways to divide the cost of
the game (i.e. assuming transferable cost) among its members. A
vector ϕ = {ϕ1, . . . ,ϕn} that assigns some cost to each agent
i ∈ N is called an allocation. We denote

∑
i∈S ϕi as ϕ(S). An

allocation is an imputation for N , if it is efficient (ϕ(N) = c(N))
and individually rational (ϕ({i}) ≤ c({i}) ∀i ∈ N ). The most
important allocation concept aiming at stability in cost games is the
anticore (corresponding to the core in utility games).

DEFINITION 1. The anticore of a cost game 〈N, c〉 is composed
of all imputations of N such that ϕ(S) ≤ c(S) ∀S ⊂ N .

Note that ϕ is in the anticore of a cost game iff no coalition S ⊂ N
can improve upon ϕ (i.e. has no cross-subsidies).

Analogous to the anticore, the most prominent solution aiming
at fairness is the Shapley value. The Shapley value is based on the
intuition that the payment that each agent receives should be pro-

the theoretical or experimental properties of such tariffs.
costs. Moreover, to our knowledge, no existing work has studied
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portional to its contribution. To formally define the Shapley value,
we need first to define the notion of marginal contribution.

Let ΠN denote the set of all orderings of agents N . Given an
ordering π ∈ ΠN , let Sπ

<i be the set of predecessors of i in π.

DEFINITION 2. The marginal contribution of an agent i w.r.t.
an ordering π is defined as ∆π(i) = c(Sπ

<i ∪ {i}) − c(Sπ
<i).

Then, the Shapley value of an agent i, is simply the average of
all possible marginal contributions, that is w.r.t all orderings of N .
Formally, the Shapley allocation scheme assigns:

ϕ(i) =
1
n!

∑

π∈ΠN

∆π(i) ∀i ∈ N (1)

One interesting property that a cost game might satisfy is con-
cavity (corresponding to convexity in utility games).

DEFINITION 3. A cost game 〈N, c〉 is concave if c(T ∪ {i}) −
c(T ) ≤ c(S ∪ {i}) − c(S) for all i ∈ N and all S ⊂ T ⊆ N \ {i}.

Hence, in concave games the marginal contribution of an agent to
any coalition is greater than its marginal contribution to a larger
coalition. Thus, concavity implies that it is always beneficial (i.e.
reduces cost) to group agents together, meaning the grand coalition
is efficient. Moreover, concavity means that any payment scheme
that is a linear combination of marginal contributions (including the
Shapley value) is in the anticore.

3. PREDICTION-OF-USE TARIFFS
In this define the class of prediction-of-use tariffs. First, in Section
3.1 we formalize the tariff scheme, discuss its economically viabil-
ity and exemplify its application to several consumption patterns.
Next, in Section 3.2 we study some of its theoretical properties.

3.1 The tariff scheme
In a POU tariff, each customer is asked in advance to predict an
expected baseline for her consumption, denoted henceforth by b.
Intuitively described, the tariff works by asking each customer to
pay a rate p (with p > 0) for her consumption, while deviations are
charged proportionally as follows. Units actually consumed, but
not predicted in the baseline are charged an additional marginal rate
of p (with p ≥ 0). For the units whose consumption is predicted,
but are not actually consumed, the tariff also charges a penalty rate
p (with 0 ≤ p < p), typically much smaller than p.

Formally, given a prediction-of-use tariff described by a tuple
〈p, p,p〉 the payment for a consumer with a predicted baseline b
and an actual (realised) consumption x is determined as:

ψ(x,b) =

{
p · x+ p · (x− b) if b ≤ x
p · x+ p · (b− x) otherwise (2)

It is noteworthy that for p = 0 and p = 0 this tariff (c.f. Eq. 2)
models a traditional flat tariff in which customers pay a fixed price
p per kW consumed, regardless of their prediction accuracy.

Although the particular POU tariff is novel, as discussed in [16],
similar tariff structures have been proven economically viable in
practice. In more detail, by setting the prices accordingly, the sup-
plier can receive essentially the same revenue from each customer
under such a tariff that it would have received had the customer
remained on the standard one. Moreover, changes in consumption
patterns induced by these tariffs can potentially provide benefits
not only to customers but also to the suppliers, thus incentivising
the latter to offer them. Next, we illustrate how a supplier can make
a POU tariff economically viable by means of three examples. The

p p p
P+redictive 0.05 0.03 0.05
Predictive 0.06 0.02 0.02
Flat 0.08 0 0

Table 1: Examples of POU tariffs (in £/kWh).
Demand Baseline Payment (in £)
(in kW) (in kW) P+redictive Predictive Flat

Bob 300 500 24 22 24
Annie 300 100 35 34 24
John 300 300 15 18 24

Table 2: Example of monthly consumptions, predicted base-
lines, and payments under tariffs of Table 1.

parameters 〈p,p,p〉 (listed in Table 1) are set to roughly match
long-term averages from the UK balancing market4.

EXAMPLE 1 ( P+REDICTIVE). This tariff gives the best possible price
for the predicted baseline but severely penalizes any imbalance with respect
to it. To make this tariff economically viable, we can imagine the supplier
contracting the baseline predicted by the consumer in the forward mar-
ket and charging the consumer’s imbalance at the prices in the balancing
market. Hence p is set as the price for kWh obtained the forward market
(£0.05); p is set as the difference between the expected price to buy in the
imbalance market and the baseline price (£0.1 − £0.05 = £0.05); and
p is set as the difference between the baseline price and the expected price
to sell in the imbalance market (£0.05−£0.02 = £0.03).

EXAMPLE 2 (PREDICTIVE). This tariff reduces the penalty for im-
balances at the cost of increasing the baseline price. This tariff is eco-
nomically viable for a supplier when contracting not only the baseline at
the forward market but also some extra quantity to account for potential
imbalances. Although the baseline price increases slightly (from £0.05
to £0.06) it also reduces the imbalance prices, from £0.03 to £0.02 for
underconsumption and from £0.05 to £0.02 for overconsumption.

EXAMPLE 3 (FLAT). A flat tariff with p = £0.08 per kWh, roughly
similar to wholesale costs in the prevalent tariffs in the UK.

Next, we illustrate the computation of actual payments w.r.t. these
tariffs. Consider three customers, Bob, Annie and John, that con-
tracted a POU tariff with a predicted monthly baseline of 500kW,
200kW and 300kW respectively. Although at the time of demand,
all of them realise a consumption of 300kW, their payments may
vary because of the different predicted baselines. Table 2 shows
the respective payment of each consumer under each of the three
tariffs. Bob is penalized for his 200 units of overconsumption, An-
nie for her 200 units of underconsumption, whereas John pays his
consumption at the baseline price with no penalties. As we observe
in this example, POU tariffs reward more predictable consumers:
John always pays the cheapest rate in all tariffs. We also observe
that the benefit of John is greater in the P+redictive than not in the
Predictive or the Flat tariff.

3.2 Theoretical properties
This section studies the monotonicity of POU tariffs, and derives
closed form expressions for the optimal baseline an agent should
report, as well as for its expected payment.

3.2.1 Monotonicity w.r.t. consumption
A first important property to be guaranteed in this setting is mono-
tonicity w.r.t. to the realized consumption. Specifically, we need
to guarantee that, irrespective of the predicted baseline b, in a POU
tariff, a higher actual consumption will always result in a higher
4Historical balancing prices for every Settlement Period in a par-
ticular day are available at http://www.elexon.co.uk/
reference/credit-pricing/imbalance-pricing
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payment. This property is important because otherwise an agent
could have the incentive to artificially inflate its consumption just
to meet its prediction (e.g. a domestic consumer could let electric
heating run, even if there is no need for it).

PROPERTY 1. A tariff is called strictly monotonic w.r.t. reali-
sations if ∀b, ∀x1, x2 with x1 < x2, then ψ(x1, b) < ψ(x2, b).

In words, regardless of b, an agent will not pay more for con-
suming x1 than x2 whenever x1 < x2.

THEOREM 1. The tariff in Equation 2 is strictly monotonic.

PROOF. The proof considers four cases: 1. x1, x2 < b, 2.
x1, x2 ≥ b, 3. (x1 < b)∧(x2 ≥ b) and 4. (x1 ≤ b)∧(x2 > b). For
cases 1 and 2, the inequality follows immediately, by just applying
Eq. 2. For cases 3 and 4, assume by contradiction that ψ(x1, b) >
ψ(x2, b). For both cases, applying Eq. 2 yields: px1+p(b−x1) >
px2+p(x2−b), resulting in p(x1−x2)+p(b−x1)−p(x2−b) > 0.
By replacing in the first term x2 by x1 + (b− x1) + (x2 − b) and
regrouping, we obtain: (p − p)(b − x1) − (p + p)(x2 − b) > 0.
We know from construction of the tariff that 0 ≤ p < p, 0 ≤ p and
hence (p−p) and −(p+p) are strictly negative. Moreover, for case
3, (b−x1) ≥ 0 and (x2− b) > 0 and for case 4, (b−x1) > 0 and
(x2 − b) ≥ 0. Thus, all terms on the left side must be less or equal
to 0 and at least one of them must be strictly negative (the second
in case 3 and the first in case 4), leading to a contradiction.

3.2.2 Expected payment
We assume that the predicted consumption of a customer (related
to time scale at which the tariff requires to predict) is modelled as a
random variable x. Now, given the tariff structure presented in Eq.
2, the expected payment of a customer for a predicted baseline b is:

E[ψ(x, b)] = p

b∫

0

(b−x)f(x)dx + p

∞∫

b

(x−b)f(x)dx +p

∞∫

0

xf(x)dx

= p

∞∫

0

(b − x)f(x)dx + (p + p)

∞∫

b

(x− b)f(x)dx + p

∞∫

0

xf(x)dx

= p b

∞∫

0

f(x)dx + (p + p)

∞∫

b

(x− b)f(x)dx + (p − p)

∞∫

0

xf(x)dx

= p b+ (p + p)

∫ ∞

b
(x− b)f(x)dx + (p− p)E[x] (3)

Here f denotes the pdf of the expected consumption, F is the
cdf of this function, while E[x] is its expectation. Note the third
equality holds by

∫ b

0
(b−x)f(x)dx =

∫ ∞
0

(b−x)f(x)dx−
∫∞
b

(b−
x)f(x)dx. The fourth equality holds by

∫∞
0

f(x)dx = 1.

3.2.3 Optimal baseline
Given the expected payment presented in Eq. 3, the next question
is which quantity an agent should report as a baseline. In other
words, we are interested in determining the optimal baseline b∗

that minimises the expected payment of a customer, namely:

b∗ = argmin
b

E[ψ(x, b)] (4)

Thus, in order to find b∗, we take the derivative of the expected
payment function defined in Eq. 3 and set it to zero to find:

dE[ψ(x, b)]
db

= p− (p + p)(1 − F (b)) = 0 (5)

⇒ F (b) = 1−
p

p + p
=

p

p + p
(6)

Here we call the ratio p
p+p the optimal ratio and we refer to it as r∗.

Note that since the cdf F is a bijective (thus reversible) function,
b∗ is uniquely determined as:

b∗ = F−1(r∗) (7)

Similarly testing the second derivative proves that b∗ is a global
maximum (proof is omitted for lack of space).

Next, the expected payment of the agent given in Eq. 3 when
restricted to the optimal baseline b = b∗ can be simplified as:

E[ψ∗(x)] = p b∗ + (p + p)

∫ ∞

b∗
(x− b∗)f(x)d(x) + (p − p)E[x]

= (p + p)

∫ ∞

b∗
xf(x)dx + (p − p)E[x]

= (p + p)

∫ ∞

0
xf(x)dx + (−p− p)

∫ b∗

0
xf(x)dx

= (p + p) E[x] + (−p− p)(b∗ · F (b∗)−
∫ b∗

0
F (x)dx)

= (p + p) E[x] + (−p− p)

∫ F (b∗)

0
F−1(y)dy (8)

Here, the second equality holds by
∫∞
b∗ (x − b∗)f(x)dx

=
∫∞
b∗ xf(x)dx−b∗

∫∞
b∗ f(x)dx and

∫∞
b∗ f(x)dx = 1−F (b∗) =

1 − p
p+p . The third equality holds by:

∫∞
b∗ xf(x)dx =

∫∞
0

xf(x)dx−
∫ b∗

0
xf(x)dx. The fourth equality holds by means

of partial integration:
∫ b∗

0
xf(x)dx = xF (x)|b

∗
0 −

∫ b∗

0
F (x)dx =

b∗ ·F (b∗)−0 ·F (0)−
∫ b∗

0
F (x)dx. The last equality follows from

interchanging the axes of integration:
∫ b∗

0
F (x)dx = b∗ · F (b∗)−

0 · F (0)−
∫ F (b∗)
0

F−1(y)dy.

3.2.4 Expected payment under normal distributions
The expected payment with ex-post optimal baseline of Eq. 8 holds
for a random variable that follows any class of probability distri-
bution. Here, we are interested in deriving the expected payment
in the particular case when the predicted consumption x follows
a normal demand distribution N(µ,σ ). For this case, we observe
that the expected payment of Eq. 8 simplifies as:

E[ψ∗(N(µ,σ ))] = (p + p) µ+ (−p− p)

∫ F (b∗)

0
F−1(y)dy

= (p + p + (−p− p) r∗) µ+ (−p− p) σ

∫ r∗

0
Φ−1(y) dy

= p µ
︸︷︷︸

Consumption term

+(−p− p) σ

∫ r∗

0
Φ−1(y) dy

︸ ︷︷ ︸
Penalty term

(9)

The first equality follows from the expected payment of Eq. 8 after
replacing the expected value of x by the mean of the normal dis-
tribution (E[x] = µ). We obtain the second equality by observing
that in normal distributions F−1(y) = µ+σΦ−1(y) where Φ−1(·)
is the inverse of the standard normal cdf. Finally, the third equality
can be simplified and leads to a very intuitive equation composed
of two terms: one depending on the expected consumption value
(what we refer to as the consumption term) and one depending on
its variance (what we refer to as penalty term). We refer to the first
as the consumption term because it rates the expected consumption
value at the best price you can achieve under a POU tariff, the base-
line price. Then, we refer to the second as a penalty term because
it increases the minimum payment per consumption depending on
the variance of the customer.
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We next prove that this penalty term is always greater or equal
to 0. First, notice that by definition σ ≥ 0. Thus, for the product in
the penalty term of Eq. 9 to be ≥ 0, it remains to show that:

(−p− p)

∫ r∗

0

Φ−1(y)dy ≥ 0 for all r∗ ∈ [0, 1] (10)

To prove that, notice that since p ≥ 0 and p > 0 then (−p− p) ≤
0. Hence in order for the product in Eq. 10 to be ≥ 0, it remains
to show that

∫ r∗

0
Φ−1(y)dy ≥ 0 for all r∗ ∈ [0, 1]. We will dis-

tinguish between two cases, r∗ ≤ 1
2 and r∗ > 1

2 . First, if r∗ ≤ 1
2

we find directly, using that Φ−1(r∗) ≤ 0 for all 0 ≤ r∗ ≤ 1
2 that

(10) holds. Secondly, suppose r∗ > 1
2 . Then,

∫ r∗

0
Φ−1(r∗) =

∫ 1
2
0

Φ−1(r∗) +
∫ r∗

1
2

Φ−1(r∗) and since Φ−1(r∗) ≥ 0 for all 1
2 ≤

r∗ ≤ 1 and
∫ 1

2
0

Φ−1(r∗) −
∫ r

1
2
Φ−1(r∗) ≤ 0 because of the sym-

metry of the standard normal distribution, hence inequality (10)
holds and the penalty term in Eq. 9 is always greater or equal to 0.

4. THE PREDICTION-OF-USE GAME
The previous section studied the POU tariff from the perspective of
an individual consumer. When applied to a set of consumers (aka
agents), this tariff induces a cooperative game, as consumers can
form coalitions to reduce their expected payments.

Consider a set of N customers that joined the group-tariff scheme.
Given a subset of customers S ⊆ N , let xS =

∑
i∈S xi be its ag-

gregate error in demand prediction. We define the corresponding
prediction-of-use (POU) game G = 〈N, c〉, where c : 2N → & is:

c(S) = E∗[ψ(xS)] for all S ⊆ N. (11)

where E[ψ∗(xS)] is the expected joint payment for deviation de-
mand prediction xS defined as in Eq. 9.

Now, an important question raised by this grouping is whether it
is beneficial for agents to form a coalition (i.e. to share the risk as-
sociated to their consumption imbalance) and whether the coalition
that forms is core-stable (i.e. there is no individual agent or subset
of agents that have an incentive to break away to form their own
group). In this section, we answer these questions using the tools
from cooperative game theory [3].

The following theorem states that POU games, assuming that
deviations in consumption predictions follow independent normal
distributions, are concave. Our proof uses a similar technique to
the ones used in [10] to prove the convexity of newsvendor games.

THEOREM 2. Assuming independent normal distributions for
consumers prediction errors, xi ∼ N(µi,σi) for all i ∈ N , the
POU game (N, c) is concave.

PROOF. We need to prove that the following function (associ-
ated with the concavity condition given in Definition 3) is always
negative, i.e.

coni,S,T = c(T ∪ {i})− c(T )− (c(S ∪ {i})− c(S)) ≤ 0 (12)

for all i ∈ N and all S ⊂ T ⊆ N\{i}. Simplifying using Equation
9, we obtain:

coni,S,T = p (µT∪{i} − µT − µS∪{i} + µS)+

(−p− p) (σT∪{i} − σT − σS∪{i} + σS)

∫ r∗

0

Φ−1(y)dy

First, the difference in consumption term cancels out because
µT∪{i}−µT = µi = µS∪{i}−µS (the mean of a sum of two nor-
mal distributions is the sum of the means of their individual distri-
butions). For the second term, we know (−p−p)

∫ r∗

0
Φ−1(y)dy ≥

0 from Eq. 10. Finally, the following has been shown in [10] to
hold for ∀S ⊂ T ⊆ N \ {i}: σT∪{i} − σT ≤ σS∪{i} − σS . Thus it
follows that σT∪{i} − σT − (σS∪{i} − σS) ≤ 0 and therefore Eq.
12 holds.

Having established the POU game is concave, the following prop-
erties follow immediately.

COROLLARY 1. The POU game with independent normal con-
sumption prediction deviations in demand prediction is subadditive
and totally balanced.

COROLLARY 2. The Shapley value payments are in the anti-
core of the POU game with independent normal consumption pre-
diction deviations.

These properties follow immediately from the concavity result in
Theorem 2 and standard cooperative game theory (c.f. [3]). More-
over if the game is convex (respectively concave, for cost games),
for any ordering of the players π : N → N a core-stable al-
location can be constructed in polynomial time by assigning to
each agent its marginal contribution with respect to the ordering
π (∀i∈N: ϕ(i) = ∆π(i)). For a convex/concave game, all such
marginal payments are in the core. The Shapley value, which com-
putes the average marginal payments across all possible orderings
can be seen as the “fairest” of such allocations, but is not the only
core stable one. Computing the Shapley value for each agent can
be computationally expensive and, as we discuss in the next sec-
tion, in online settings we may like to focus on particular orders,
that would guarantee the additional “no delay” property.

5. ONLINE SETTINGS
The previous section studied the properties of the POU game from
a static perspective. Essentially, the property that a payment allo-
cation scheme (e.g. Shapley) is in the anticore means that no sub-
set of agents have an incentive to break away, once a coalition is
formed. However, in real group buying situations, customers join
dynamically, over a period of time until a critical mass is reached.
In mechanism design terms, the group formation problem is an on-
line problem [11]. An important challenge identified in the litera-
ture on group formation [5] is that strategic customers may delay
joining the group, to see whether enough customers have already
joined, or perhaps whether they can receive a better alternative in
the meantime. Hence, in payment allocation schemes, it is impor-
tant to prevent incentives for this behaviour. In this section, we
propose several computationally tractable allocation schemes that,
in addition to be core-stable, guarantee “no delay".

Formally, we consider a set N agents (with n = |N |), arriving at
times 1 . . . n. Note that, w.l.o.g. we are only interested in the order
of arrival of these agents, not in actual times. Here, at denotes the
agent arriving at position t in the sequence of 1 . . . n, assuming no
two agents arrive exactly at the same time5. The order of arrival of
agents in N is denoted by O (where O : N → N ). Each agent is
expected a payment ϕO(at) if arriving at position t in O. More-
over, let O<t and O>t refer to the suborderings of elements in O
before and after position t, and SO

<at and SO
>at denote respectively

the subsets of predecessors and successors of agent at. Moreover,
we will use O−a to denote ordering O with agent a removed.

PROPERTY 2 (NO DELAY). An agent a, whose earliest avail-
ability of arrival is t has no incentive to misreport a t′ > t, because
ϕO(at) ≤ ϕO′

(at′), where O′ = O−a
<t′ ∪ {a} ∪O−a

>t′

Given the above notation, we are now ready to define some core-
stable payment allocation schemes that guarantee no-delay.
5Ties can be broken at random, using a fair coin.
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5.1 Allocation using a strict arrival order
A natural payment allocation scheme in this online domain is the
marginal cost allocation with respect to the ordering O, ∀t : ϕO(at)
= ∆O(at) (c.f. Definition 2). Such a allocation scheme is an
imputation of N and core-stable, but, crucially, it does not sat-
isfy the no delay property. This is because, due to the concavity
of the offline game (c.f. Theorem 2), joining a larger group al-
ways has decreasing marginal costs than joining a smaller group
(i.e. ϕO(at+1) ≤ ϕO(at)). To rectify this, consider the reverse
marginal cost of the agent (i.e. the marginal costs in the reverse
order to O):

R∆O(at) = c(S>at ∪ {at})− c(S>at) (13)

LEMMA 1. The Reverse Marginal (RM) allocation scheme, which
assigns ϕO(at) = R∆O(at) is in the anticore of the POU game
and satisfies the “no delay" property (Property 2).

PROOF. The first proof is immediate since the marginal pay-
ments with respect to any ordering of N (including the reverse
order of O) are in the anticore of a concave game. Also due to
concavity ∀t, t′ ∈ N such that t < t′, R∆O(at) ≤ R∆O′

(at)
where O′ = O−a

<t′ ∪ {a} ∪ O−a
>t′ holds because O−a

<t contains a
subset of the agents in O−a

<t′ . Hence Property 2 holds. 6

EXAMPLE 4. Consider n = 4 agents, arriving in the order
O = {ABCD} (for simplicity, say these 4 agents are equal in
their expected consumptions N(µ,σ )). Using the RM mechanism,
the marginal payment of the first agent to arrive will be ϕO(A) =
c({ABCD}) − c({BCD}), which is the lowest of the 4 agents.
The marginal payment of the last agent to arrive is ϕO(D) =
c({D}) = ψ(xD, bD), which is the highest of the 4 agents, and
the same as if it participates in the market alone. Although the
last agent is indifferent to joining, this is still his best strategy in
expectation if there is some non-zero probability of later arrivals.

5.2 Allocation using arrival windows
As shown in the previous section, the RM allocation ensures the

non-delay property by heavily penalizing customers based on their
order of arrival. However, this penalization may be inappropriate
as customers may see as unfair that payments vary significantly
among near arrival positions. In contrast, in the Shapley value each
agent receives a payment proportional to its contribution but it does
not incentivize an early commitment since all agents are treated the
same, regardless of their arrival time. Given this, in this section,
we propose a new payment allocation that generalises both the RM
and the Shapley value allocation.

In general, the way many group buying schemes work in practice
is by promising a discount to the first w customers to register, and
perhaps another discount level to agents in later arrival windows.
For example, in the electricity domain, the first 100 customers to
join a scheme are promised a certain price. When the next 100
customers join, these can also get a discount, but the designer may
want to give a better deal to agents in earlier arrival windows. In-
spired by this model, we can generalise both the reverse marginal
(RM) and Shapley value as follows.

First, our mechanism divides the n agents into several arrival
windows of size w. There are in total 1 n

w 2 arrival windows, where
the last window may contain less than w elements. Moreover, we
6While the proof is skipped here due to lack of space, it can also
be shown that, out of the possible n! orders of the n agents, the
marginal payments in the RM mechanism are the only ones that
guarantee no delay for any valuation setting. This is especially true
for settings in which σi > 0, ∀i ∈ N , because in such settings
marginal payments will all be different.

can factor each t ∈ {1 . . . n} as t = (k− 1)w+ l, where k = 1 t
w 2

is the window of arrival and l = t mod w is the position of the
agent within the window. To simplify the notation, we will refer to
ak
l as the agent that arrived at position l within window k. Thus,

each window of arrival Wk, where k = 1 . . . 1 n
w 2, will contain the

agents: Wk = {ak
1 , . . . , a

k
w}.

The main intuition of our method is that, between the arrival win-
dows Wt the reverse marginal mechanism will apply, rewarding
earlier groups with a lesser marginal payment. But the agents in-
side each arrival group will be treated the same, and between them
Shapley allocation scheme will apply.

Formally, let ΠWk be the set of possible orderings of the agents
inside the window of arrival k, and let ω ∈ ΠWk be one such
ordering. Given an order of arrival O, for each ordering ω ∈ ΠWk ,
we construct an ordering π(ω) : N → N as:

π(ω) = 〈O<(k−1)·w+1,ω ,O>k·w〉

Hence, π(ω) merges ordering ω for those elements in Wk, and
O outside it. Then, the so-called Window-of-Arrival (WoA) allo-
cation scheme assigns to each agent i ∈ N the following payment:

ϕ(i) =
1
w!

∑

ω∈ΠWk

R∆π(ω)(i) (14)

where k is the window of arrival of i.
Note the similarity to the definition of the Shapley value (see

Equation 1), except that we only average over all orderings of Wk,
for the rest their arrival order is used.

EXAMPLE 5. Consider an example with n = 8 agents, arriv-
ing in order O = {ABCDEFGH} and let the size of the ar-
rival window be w = 3. Now, consider the payment that agent D
(which is here a2

1), belonging to arrival window W2 = {D,E, F}.
Then ω iterates over all orderings Π{D,E,F}. The orders that need
to be considered are π = {〈ABCDEFGH〉, 〈ABCDFEGH〉,
〈ABCEDFGH〉, 〈ABCEFDGH〉, 〈ABCFDEGH〉,
〈ABCFEDGH〉}. The payment of agent D will be the marginal
payments over the orders in π, each considered in reverse order.

Two mechanisms appear as special cases. For w = 1, the mech-
anism is the same as the RM mechanism, thus the strict order of
arrival matters. For w = n, then W1 = N and the mechanism
reduces to the Shapley scheme.

THEOREM 3. The Window-of-Arrival (WoA) allocation scheme
is in the anticore of the POU game.

PROOF SKETCH. Recall that the POU game among a set of N
agents is concave. Therefore, the anticore of this game is a closed,
convex set. Mathematically, the anticore is a polytope with n! ver-
tices (or extrema). In each extrema, the payments are equivalent to
the marginal costs in one of the n! (where n = |N |) orderings of
the set of N agents [14]. Given that the anticore is convex, points
which are linear combinations of payments in these extrema are
also in the anticore. The Shapley value, which averages over all
n! possible orderings is just the most well known such point, and
the center of gravity of the anticore polytope. The payments de-
scribed by Eq.14 can be shown to be averages over the marginal
payments in (w!)(

n
w ) orders from the extrema, and thus are also in

the anticore.
In terms of computational complexity, O((w!)(

n
w )) ≤ O(n!). But

in practice, as shown in Eq. 14, because of redundancy only w!
distinct orderings need to be considered when computing the WoA
payment of an agent with window size w. Thus. the computation
of the WoA payment of an agent is tractable for small w.
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Figure 1: Expected payments under the P+redictive tariff for (a) individuals as singletons; (b) customers types as singletons and
when grouping under Shapley; and c) good/poor customers types when joining a group of all good/poor types. Payments are split
into the consumption term (µ · p) and the remaining penalty term.

6. EXPERIMENTAL EVALUATION
We analyse the incentives that a real set of domestic customers will
have to collectively join our group buying scheme. The data used in
our analysis comes from a large dataset of around 3000 households
in the UK. For each household, the dataset included the electric-
ity consumption of each consumer for every half an hour during a
three-month period. For each consumer we take the sample mean
over her consumption realizations as a point estimate for µ and the
standard deviation as an unbiased estimator for σ. The evaluation
considers the customers individual payments when joining alto-
gether a P+redictive tariff (as defined in Table 1). The P+redictive
tariff has been chosen to be the one with higher penalty for imbal-
ances and hence, the one that provides higher benefits for grouping.
In particular, the total payment reduction for grouping this set of
households under the P+redictive tariff is £11113 per month (i.e.
equivalent to an average saving of £3.7 per month per household).

In the next section, we evaluate how these group savings are
allocated among individuals under a core-stable Shapley scheme.
Afterwards, in Section 6.2, we do the same considering an online
enrollment with savings distributed using arrival windows.

6.1 Payment allocation under Shapley
We analyse the incentives of customers to join our tariff scheme
as a group with respect to joining alone, when using the Shapley
value allocations. However, computing the Shapley value for each
customer has a time exponential in the size of the group and thus
it is not scalable to the entire dataset. Instead, we compute the
Shapley value for types of customers which has a more tractable
time complexity polynomial to the number of types [15].

To define such types, we order the 3000 customers from good
predictors (with low standard deviation) to poor predictors (with
high standard deviation). Then, Figure 1(a) plots the expected pay-
ment of each customer when joining the P+redictive tariff on her
own (i.e. as a singleton) factored into two components: one corre-
sponding to her consumption (in grey color) and another one corre-
sponding to her penalty for imbalance (in black color). It is worth
noting that the penalty term is the only one that can be reduced by
grouping and hence it is the focus of our analysis. The results show
that while plotting the consumption term w.r.t the standard devia-
tion forms an irregular pattern, as expected, the amount of penalty
that each consumer pays as a singleton linearly increases with her
standard deviation (i.e. the better a customer predicts her consump-
tion, the lower the price per unit that she pays for it). Given this,
we cluster our customer dataset into three types based on their stan-

dard deviation: good predictors (σ = 3.59); medium predictors
(σ = 8.87), and poor predictor (σ = 17.9). The characteristics
of each customer type, as well as its frequency in the dataset (the
number between parenthesis) are depicted in Figure 1(a).

Then, Figure 1(b) shows the expected payment of each customer
type as a singleton and when grouped with the 3000 customers by
types (i.e. using type frequencies as listed in Figure 1(a)) under
the Shapley allocation scheme. The first thing we observe is that
customers have incentives for grouping independently of their type
(i.e. the expected penalty is significantly reduced for all types).
Thus, the expected penalty under Shapley for a customer of the
good type is reduced from £3.27 to £0.19 per month. Similarly,
the expected penalty under Shapley for medium and poor customer
types are reduced from £5.47 to £0.91 per month and from £16.35
to £5.24 per month respectively. Second, we observe that due to the
fairness of the Shapley scheme, the penalty of the poor predictable
type is higher than the penalty of the medium type which, in turn is
higher than those of the good type.

Now, whilst these results give us an idea of the incentives that
each customer has to join our group-buying scheme in a real-world
group sample, it also leads to the question of whether they are sub-
ject to have a minority of poor predictable customers within the
group (i.e. 94% of customers in the real-world dataset are of the
good predictable type). To answer this, we run a second set of ex-
periments in which we study how the incentives of customers vary
with the inclusion of the different customer types.

In more detail, Figure 1(c) shows how the penalty in the Shap-
ley value of a good and a poor predictor changes as the group is
enlarged (up to 100 customers) with customers of the same type
or with customers of the opposite type. Interestingly, it shows not
only that a good a predictor benefits from joining other poor pre-
dictors, but also that the incentive is greater than when joining with
other good predictors. For example, compare the £1.8 per month
penalty expected for a good predictor when joining a poor one,
with the £2.31 per month penalty expected when joining another
good predictor. A similar trend is observed for poor predicting
customers: the reduction on their penalties when joining a group
of poor predictors is greater than when joining a group of good
predictors (£1.63 instead of £5.97 per month, for a group of 100
customers). Intuitively, this is because joining an agent with poor
predictability provides a greater aggregate reduction of the joint
prediction error.
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Figure 2: The expected penalty under the WoA scheme of poor
predictable customers when joining a group of other poor pre-
dictable customers w.r.t. their order of joining.

6.2 Payment allocation using arrivals
In this experiment, we consider customers (focusing, for ease of
presentation, on the poor predictor type) joining the scheme over
time and analyse the incentives that they have to commit early un-
der a Window-of-Arrival (WoA) allocation scheme.

Figure 2 shows the expected payment of a poor predictor with
respect to her order of arrival in a group composed of 99 poor
predictor customers. We analyzed the results for three different
sizes of arrival window. As expected, for a single window of ar-
rival (w = 99) all customers are treated equally, regardless of their
arrival order, and hence all are expected to have the same penalty
payment (i.e. £1.64 per month). On the other end, for the case
w = 1 (i.e. equal to the RM allocation), customers are heavily pe-
nalised for any delay in their arrival: the penalty goes from £0.82
per month for the first customer to £16.29 per month for the last
(i.e. the penalty of the last customer is the same as the one she
gets by joining alone). Finally, when dividing customers into three
windows of arrival (i.e. w = 33) this sharp effect is smoothened
by allocating payments more equally within windows. In particu-
lar, the expected monthly penalty of customers joining in the first
window is £0.90, in the second £1.17 and in the third £2.83. We
also observe that the difference in penalty due to the arrival is much
more significant in the last windows (i.e. as more customers join
the scheme the difference on the expected penalty between the first
groups of arrival is reduced). For example, in the case w = 1, the
penalty of the last customer is much higher than the penalty of the
second-to-last one (compare £6.75 with £16.29 per month). This
is a side-effect of concavity. The marginal cost contribution of a
customer is always larger in smaller groups. Hence, as groups get
bigger, the difference between the marginal contribution of a cus-
tomer to one group with respect to another is almost insignificant.

7. CONCLUSIONS
This paper proposes a new tariff scheme that requires each con-
sumer to predict a baseline for her future consumption, and com-
putes the bill based on her actual consumption and on the deviation
from the baseline. Our tariff has several advantages: it encour-
ages users to provide reliable consumption predictions, as well as
to join early in group buying initiatives. Moreover, while previ-
ous work has noted the potential of grouping consumers to reduce
uncertainty in aggregate demand, ours is the first to characterise
the incentives for joining electricity group buying initiatives, using
principled concepts from cooperative game theory.

There are several open problems that are left for future work. On
the theoretical side, while in this paper we studied incentives for
cooperation w.r.t. a single tariff, it would be interesting to study the
properties of our prediction-of-use game in a setting with multiple
tariffs and competing providers (as is done in [8, 9] for volume-
based discounts). On the practical side, it would be interesting
to run trials with domestic customers to explore how consumer’s
adoption and behaviour are affected by the incentives given by our
prediction-of-use group buying scheme.
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