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ABSTRACT
Boolean games provide a simple, compact, and theoretically attrac-
tive abstract model for studying multi-agent interactions in settings
where players will act strategically in an attempt to achieve per-
sonal goals. A standard critique of Boolean games, however, is
that the binary nature of goals (satisfied or unsatisfied) inevitably
trivialises the nature of such strategic interactions: a player is as-
sumed to be indifferent between all outcomes that satisfy his goal,
and indifferent between all outcomes that do not satisfy his goal.
In this paper, we introduce Łukasiewicz Games, which overcome
this limitation by considering goals to be specified using finitely-
valued Łukasiewicz logics. The significance of this is that formu-
lae of Łukasiewicz logic can express every continuous piecewise
linear polynomial function with integer coefficients over [0, 1]n,
thereby allowing goal formulae in Łukasiewicz Games to naturally
express a much richer range of utility functions. After introducing
the formal framework of Łukasiewicz Games, we present a num-
ber of detailed worked examples to illustrate the framework, and
then investigate some of the properties of Łukasiewicz Games. In
particular, after investigating the complexity of decision problems
in Łukasiewicz Games, we give a logical characterisation of the
existence of Nash equilibria in such games.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory
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1. INTRODUCTION
Boolean games provide a simple, compact, and theoretically attrac-
tive abstract model for studying multi-agent interactions in settings
where players will act strategically in an attempt to achieve private
goals [8, 2, 5, 6]. In a Boolean game, each player i exercises unique
control over a set of Boolean variables Vi, and will attempt to as-
sign values for these variables in such a way as to satisfy an individ-
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ual goal ϕi, expressed as a formula of propositional logic. Strate-
gic concerns in Boolean games arise from the fact that whether i’s
goal is in fact satisfied will depend in part on the choices made
by other players. Players in Boolean games can be understood as
representing non-deterministic computer programs, and the over-
all framework of Boolean games provides an elegant mathematical
model through which to investigate issues of strategic interaction
in multi-agent systems.

Now, a standard critique of Boolean games is that the binary na-
ture of goals (satisfied or unsatisfied) inevitably trivialises the na-
ture of strategic interactions. For example, players are assumed to
be indifferent between all outcomes that satisfy their goal, and are
indifferent between all outcomes that do not satisfy their goal. This
assumption is clearly a gross simplification for many situations,
a concern which led researchers to extend the original Boolean
games model with costs, leading to richer and more realistic pref-
erence structures for agents [11]. While these refinements make it
possible to model much richer types of interaction, the inherently
dichotomous nature of preferences in Boolean games is surely one
of their most debated features, and the work in the present paper is
directly motivated by this limitation.

Specifically, we introduce Łukasiewicz Games, which overcome
this limitation of Boolean games by allowing goals to be specified
as formulae of finitely-valued Łukasiewicz logics [3]1. The ratio-
nale for using Łukasiewicz logic in this way is given by the Mc-
Naughton Theorem, which says that every continuous piecewise
linear polynomial function with integer coefficients over [0, 1]n can
be expressed as a formula of Łukasiewicz logic in n variables (see,
e.g., [3]). Thus, Łukasiewicz logic provides a natural, compact, for-
mally well-defined and expressive logical representation language
for payoff functions, allowing much richer preference structures
than is easily possible in conventional Boolean games.

The present paper makes three main contributions. First, we
provide a formal definition of Łukasiewicz Games. Second, we
present a number of detailed worked examples, which illustrate
how a range of strategic scenarios can be formalized within this
framework. In particular, we argue, these scenarios cannot natu-
rally be formalized using conventional Boolean games. Third, we
investigate properties of Łukasiewicz Games. We show that despite
their expressive power, the key decision problems for Łukasiewicz
Games are no more complex than for conventional Boolean games;
in addition, we give a logical characterisation for the existence of
equilibria in Łukasiewicz Games.

1In the remainder of the paper, when we refer to Łukasiewicz logic,
it should be understood that we are referring specifically to finitely-
valued Łukasiewicz logics, as distinct from the many other exten-
sions of Łukasiewicz logic that have been investigated in the liter-
ature [3].
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2. PRELIMINARY DEFINITIONS
Since Łukasiewicz logic is fundamental to our present work, but
is not as widely known as the classical logics that underpin con-
ventional Boolean games, we begin by introducing the concepts of
Łukasiewicz logic that are used in the remainder of the paper.

The language of Łukasiewicz logic Ł [3] is built from a countable
set of variables V = {p1, p2, . . .}, the binary connective “→”, and
the truth constant 0 (for falsity). Further connectives are defined as
follows:

¬ϕ is ϕ→ 0̄, ϕ ∧ ψ is ϕ&(ϕ→ ψ),
ϕ&ψ is ¬(ϕ→ ¬ψ), ϕ ∨ ψ is ((ϕ→ ψ)→ ψ),
ϕ⊕ ψ is ¬(¬ϕ&¬ψ), ϕ↔ ψ is (ϕ→ ψ)&(ψ → ϕ),
ϕ	 ψ is ϕ&¬ψ, d(ϕ,ψ) is ¬(ϕ↔ ψ).

We ofter write nϕ as an abbreviation for ϕ⊕ · · · ⊕ ϕ︸ ︷︷ ︸
n

, with n ≥ 1.

Let Form denote the set of formulae of Łukasiewicz logic. A
valuation, e, is a mapping e : V → [0, 1], which assigns to all
propositional variables a value from the real unit interval; we re-
quire that e(0) = 0. The semantics of Łukasiewicz logic are then
defined, with a small abuse of notation, by extending the valuation
e to complex formulae. Although strictly speaking we only need
state the rule for the “→” operator (as we can define the remaining
operators in terms of this operator and 0), we present the complete
ruleset in the interest of clarity:

e(ϕ→ ψ) = min(1− e(ϕ) + e(ψ), 1)
e(¬ϕ) = 1− e(ϕ)

e(ϕ&ψ) = max(0, e(ϕ) + e(ψ)− 1)
e(ϕ⊕ ψ) = min(1, e(ϕ) + e(ψ))
e(ϕ	 ψ) = max(0, e(ϕ)− e(ψ))
e(ϕ ∧ ψ) = min(e(ϕ), e(ψ))
e(ϕ ∨ ψ) = max(e(ϕ), e(ψ))
e(ϕ↔ ψ) = 1− |e(ϕ)− e(ψ)|
e(d(ϕ,ψ)) = |e(ϕ)− e(ψ)|

A valuation e is a model for a formula ϕ if e(ϕ) = 1. A valuation
e is a model for a theory T , if e(ψ) = 1, for every ψ ∈ T .

In this paper, we restrict our attention to finite-valued Łukasiewicz
logics Łk. In such logics, it is assumed that the domain is a set of
the following form: Lk = {0, 1

k
, . . . , k−1

k
, 1}. The notions of

valuation and model for Łk are defined analogously just replacing
[0, 1] by Lk as set of truth values for the logic, that is, valuations
are functions with the signature e : V → Lk. It is sometimes use-
ful to introduce constants in addition to 0 that will denote values in
the domain Lk. Specifically, we will denote by Łck the Łukasiewicz
logic obtained by adding constants c for every value c ∈ Lk. We
assume that valuation functions e interpret such constants in the
natural way: e(c) = c.

A well-known result by McNaughton established that every con-
tinuous piecewise linear polynomial function with integer coeffi-
cients over [0, 1]n (called a McNaughton function) is definable by
a formula in Łukasiewicz logic [3].

In the case of finite-valued Łukasiewicz logics Łck, the functions
defined by a formula are combinations of the restrictions of Mc-
Naughton functions over (Lk)n and the constant functions for each
c ∈ Lk. Notice that the class of functions definable by Łck-formulas
exactly coincides with the class of all functions f : (Lk)n → Lk,
for every n ≥ 0.2 In this sense, we can associate to every formula
ϕ(p1, . . . , pn) from Łck a function fϕ : (Lk)n → Lk.

Finally, note that the satisfiability problem for finite Łukasiewicz
logics is no more complex than for classical propositional logic: the
problem is NP-complete [7, 3].

2This result can be obtained by using Lemma 3.

3. ŁUKASIEWICZ GAMES
We now introduce the framework of Łukasiewicz games. First, let
V = {p1, . . . , pm} be a finite set of propositional variables, as
above. Our games are populated by a finite set of players P =
{P1, . . . , Pn} (also referred to as “agents”). Note that throughout
this paper, we assume that |P| = n. Each player Pi controls a
subset of propositional variables Vi ⊆ V, so that the sets Vi form a
partition of V. The fact that player Pi is in control of the set Vi of
propositional variables means that Pi has the unique ability within
the game to choose values for the variables in Vi. It is assumed that
variables take values from the set Lk = {0, 1

k
, . . . , k−1

k
, 1}.

A strategy for an agent Pi is a function si : Vi → Lk, which
corresponds to a valuation of the variables controlled by Pi. A
strategy profile is a collection of strategies (s1, . . . , sn), one for
each player. Every strategy profile directly corresponds to a valua-
tion function e : V → Lk and vice versa; we find it convenient to
abuse notation a little by treating strategy profiles as valuations and
valuations as strategy profiles.

As in conventional Boolean games, we assume that each player
is associated with a Łck-formula ϕi, with propositional variables
from V, whose valuation is interpreted as the payoff function for
player Pi. That is, the player Pi seeks a valuation e that maximises
the value of the corresponding function fϕi . Of course, not all the
variables in ϕi will in general be under Pi’s control and, conse-
quently, the utility Pi obtains by playing a certain strategy (i.e.,
choosing a certain variable assignment) also potentially depends in
part on the choices made by other players.

Łukasiewicz Games can be seen as a generalization of Boolean
Games [8, 2], since the latter are obviously a special case of the
former. However, Łukasiewicz Games also incorporate the notion
of cost/effort, given that each player’s strategic choice can be seen
as an assignment to each controlled variable carrying an intrinsic
cost. This makes it possible to formalize situations in which agents
aim at a better tradeoff between the costs of making certain choices
and the resulting payoff.

EXAMPLE 1. Consider the following example with two players
P1 and P2, who control variables {x} and {y, z}, respectively. The
payoffs are given by the following formulae:

ϕ1 := x ∧ ¬y ∧ z and ϕ2 := x⊕ z.

In order for P2 to maximize the payoff, it suffices to assign s2(z) =
1, no matter what P1 does. Player P1, however, has no chance of
maximizing the payoff except by assigning s1(x) = 1 and hoping
that s2(z) = 1 and s2(y) = 0. The latter makes sense, since,
given s2(z) = 1, any assignment to y does not change the value
of ϕ2, so P2 has no incentive in assigning any other value to y but
0 and raising the costs. Still, P2 knows that P1 needs s1(x) = 1
and consequently can get the maximum payoff by simply keeping
the costs at minimum with s2(z) = 0 and s2(y) = 0.

We now formally define Łukasiewicz games.

DEFINITION 1 (ŁUKASIEWICZ GAMES). A Łukasiewicz game
G on Łck is given by a structure:

G = 〈P,V, {Vi}, {Si}, {ϕi}〉

where:

1. P = {P1, . . . , Pn} is a finite set of players.

2. V = {p1, . . . , pm} is a finite set of propositional variables
taking values from

Lk =

{
0,

1

k
, . . . ,

k − 1

k
, 1

}
.
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3. Vi ⊆ V is the set of propositional variables under control of
player Pi, so that the sets Vi form a partition of V, i.e.:

V =

n⋃
i=1

Vi, and for i 6= j,Vi ∩ Vj = ∅.

4. Si is the strategy set for player i that includes all valuations
si : Vi → Lk of the propositional variables in Vi, i.e.

Si = {si | si : Vi → Lk}.

5. ϕi is a Łck-formula, built from variables in V, whose associ-
ated function

fϕi : (Lk)t → Lk

corresponds to the payoff function (also called utility func-
tion) of Pi, and whose value will be determined by the valu-
ations in {S1, . . . , Sn}.

A strategy profile ~s for G is a tuple ~s = (s1, . . . , sn), with each
si ∈ Si being the strategy selection for the corresponding player in
G. Given a strategy si for Pi, we denote by s−i the collection of
strategies (s1, . . . , si−1, si+1, . . . , sn) not including si, and S−i is
the set of all s−i’s. With an abuse of notation, we use

fϕi(s1, . . . , sn) and fϕi(si, s−i)

to denote Pi’s payoff under the strategy profile (s1, . . . , sn): re-
call that ϕi defines a payoff function fϕi , and a strategy profile
(s1, . . . , sn) corresponds to a valuation e : V→ Lk.

We now introduce the concepts of dominance, best response and
Nash equilibrium adapted to our framework. In what follows, we
always assume we are working with an arbitrary n-player Łukasiewicz
game G on Łck.

DEFINITION 2 (DOMINANCE). Let G be a Łukasiewicz game.
A strategy si ∈ Si for playerPi is called strictly dominated (weakly
dominated) if there exists a strategy s′i ∈ Si such that for all
s−i ∈ S−i

fϕi (si, s−i) < fϕi (s′i, s−i) (fϕi (si, s−i) ≤ fϕi (s′i, s−i), resp.).

DEFINITION 3 (BEST RESPONSE). Let G be Łukasiewicz game
and let (s1, . . . , sn) be a strategy profile for G. The strategy si for
Pi is called a best response whenever, fixing s−i, there exists no
strategy s′i such that

fϕi(si, s−i) < fϕi(s
′
i, s−i).

DEFINITION 4 (PURE STRATEGY NASH EQUILIBRIUM). Let
G be a Łukasiewicz game. A strategy profile (s?1, . . . , s

?
n) is called

a pure strategy Nash Equilibrium (NE) for G, whenever s?i is a best
response to s?−i, for each 1 ≤ i ≤ n.

Complexity results are not at all the main focus of the present
paper, but it is natural to ask whether the enriched framework of
Łukasiewicz games leads to a blow-up in computational complex-
ity compared with conventional Boolean games. We will assume
in what follows that we are working with games defined on a fixed
domain Lk for k ∈ N such that k > 0. Let us refer to the EVAL-
UATION PROBLEM for Łukasiewicz games as the problem of com-
puting, for a given valuation function e : V→ Lk and a formula ϕ
of Łukasiewicz logic on Lk, the value e(ϕ). Since we are dealing
with rationals in a fixed domain, this problem is trivially solvable
in polynomial time. The MEMBERSHIP problem is the problem of
determining, for a given Łukasiewicz game G and strategy profile
~s for G, whether ~s forms a pure strategy Nash equilibrium for G.

The NON-EMPTINESS problem is the problem of determining for a
given game G whether there exist any pure strategy Nash equilibria
for the game. The problems are co-NP-complete and Σp2-complete
for conventional Boolean games. And, perhaps surprisingly, we
have:

THEOREM 1. The MEMBERSHIP and NON-EMPTINESS prob-
lems for Łukasiewicz games are co-NP-complete and Σp2-complete,
respectively.

The proof of this can be adapted from proofs of the corresponding
results for conventional Boolean games: the key point is that strate-
gies for Łukasiewicz games are “small witnesses” in the terminol-
ogy of computational complexity. A strategy for a player simply
consists of a value from the domain Lk for every variable con-
trolled by that player. Since values in Lk are rational numbers that
can be assumed to be expressed in binary, they have a compact rep-
resentation.

4. EXAMPLES
We now introduce a number of examples to illustrate Łukasiewicz
games, and in particular, we choose examples that we believe can-
not be easily expressed in the framework of conventional Boolean
games (i.e., using classical logic to express goals).

4.1 Generalized Matching Pennies
The first game we present is a generalization of Matching Pennies3,
the classic example of a zero-sum game without a pure strategy
equilibrium. In the original game, two players P1 and P2 both
have a penny and must secretly choose whether to turn it to head
or tails, revealing their choices simultaneously. If their choices are
the same, then P1 takes both pennies; if they are different, P2 takes
both.

Now, imagine that both players must perform an action with a
certain cost and are in charge of the variables p1 and p2, respec-
tively. P1’s overall strategy is to be as close as possible to P2’s
choice. In contrast, P2 wants to keep the greatest possible distance
between the choices. The players’ strategy spaces are given by the
sets of functions

S1 = {s1 | s1 : {p1} → Lk}, S2 = {s2 | s2 : {p2} → Lk}.

Now, recall that the Łukasiewicz logic expression d(p1, p2), de-
fined in Section 2, gives the difference between its arguments p1
and p2. Using this expression, we can define the payoff function
for P1 as the formula ¬d(p1, p2), while P2’s payoff is defined by
the formula d(p1, p2). The game is formally defined as follows:
G = 〈{P1, P1}, {p1, p2}, {p1}, {p2}, S1, S2,¬d(p1, p2), d(p1, p2)〉.
Table 1 shows the payoff matrix for this generalized version of
Matching Pennies with k = 5.

4.2 Weak-Link Games
Weak-link games4 are a class of coordination games, where the
players benefit from mutually coordinating on the same strategy.
The original version of the game (see [4]) consists of n players
who simultaneously choose a number from a finite set {1, . . . ,m}.
Each player i’s payoff is defined by the following function:
ui(x1, . . . , xn) = a+b·min(x1, . . . , xn)−c·(xi−min(x1, . . . , xn)),

where xi is the choice made by player i, and a, b, c are positive
3Note that a similar generalization, based on infinite-valued
Łukasiewicz logic, was first presented in [9].
4Nothing to do with the popular TV game show “The Weakest
Link”.
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P1

P2

0, 1/5 2/5 3/5 4/5 1
0 1, 0 4/5, 1/5 3/5, 2/5 2/5, 3/5 1/5, 4/5 0, 1

1/5 4/5, 1/5 1, 0 4/5, 1/5 3/5, 2/5 2/5, 3/5 1/5, 4/5
2/5 3/5, 2/5 4/5, 1/5 1, 0 4/5, 1/5 3/5, 2/5 2/5, 3/5
3/5 2/5, 3/5 3/5, 2/5 4/5, 1/5 1, 0 4/5, 1/5 3/5, 2/5
4/5 1/5, 4/5 2/5, 3/5 3/5, 2/5 4/5, 1/5 1, 0 4/5, 1/5

1 0, 1 1/5, 4/5 2/5, 3/5 3/5, 2/5 4/5, 1/5 1, 0

Table 1: Generalized Matching Pennies.

parameters. Intuitively, xi is interpreted as the effort i is willing
to make in her interaction with others. The payoff ui is heavily
influenced by the choice of the agent with the lower effort level.
Therefore, each player’s payoff depends on the weakest link in the
strategic interaction. The game hasm pure strategy Nash equilibria
corresponding to the strategy profiles in which the players select the
same values.

Notice that in weak-link games, the payoff function’s domain is
a strict subset of the function’s range. Therefore, we introduce a
variant of such games where domain and range coincide in order to
make it possible to define a representation in terms of Łck-formulae.

We formalize n-player weak-link games in the following game:

G = 〈P,V, {Vi}, {Si}, {ϕi}〉

where:

1. V = {p1, . . . , pn}.

2. Vi = {pi}.

3. The strategy space is defined as follows, for each i:

Si = {si | si : {pi} → Lk}.

4. Each player Pi’s utility is given by the formula

ϕi(p1, . . . , pn) :=

n∧
j=1

pj 	

(
pi 	

n∧
j=1

pj

)
whose associated payoff function is

fϕi = max

(
n

min
j=1

xj −max

(
xi −

n

min
j=1

xj , 0

)
, 0

)
.

Table 2 shows the payoff matrix forP1 for the two-player version
of the weak-link game with k = 7 (P2’s payoff is obtained by
replacing P1 by P2 and vice versa), where

ϕ1(p1, p2) := (p1 ∧ p2)	 (p1 	 (p1 ∧ p2))

with payoff function

fϕ1 = max(min(x1, x2)−max(x1 −min(x1, x2), 0), 0).

Notice that in this game there is no strictly dominated strategy,
while the strategy s1(p1) = 0 is weakly dominated.

4.3 Traveler’s Dilemma
The Traveler’s Dilemma was introduced by Basu [1] in order to il-
lustrate the tension between the rational solution suggested by the
existence of a Nash Equilibrium, and apparently reasonable behav-
ior based on intuition. We introduce (a slightly modified variant of)
the Dilemma and show how to formalize it as a Łukasiewicz game.

The game is as follows. Two travelers fly back home from a
trip to a remote island where they bought exactly the same an-
tiques. Unfortunately for them, their luggage gets damaged and
all the items acquired are broken. An agent of the airline promises
a refund for the inconvenience, but, not knowing the exact value of
the objects, she puts forward the following proposal. Both travelers
must privately write down on paper a number between 0 and 100,
corresponding to the cost of the antiques. If they both write the
same number, the agent can assume that they are both telling the
truth, so they will both receive exactly that amount minus one unit
(with a minimum of 0). If the travelers write different numbers, the
one who wrote the lower number, say x, (assumed to be the honest
one) will receive x plus a reward of two units (with a maximum of
100). The other player, who is regarded by the agent as dishonest,
will receive x with a penalty of two units (with a minimum of 0).

Payoffs in the Traveler’s Dilemma are defined by the following
function, whose payoff matrix is shown in Table 3:

f(x, y) =

 max (x− 1, 0) x = y
min (x+ 2, 100) x < y
max (y − 2, 0) y < x

.

Given that each player wants to maximize her/his payoff, what
choices should they make? If both travelers choose 100, they both
get 99, which is almost the exact value of their items. However,
each traveler soon realizes that if she deviates from the previous
choice and writes 99, while the other player sticks to the original
selection, she can increase her payoff to 100. Under the assumption
of common knowledge and rationality, however, the other player is
drawn to make the same decision, which leads to writing 99, yield-
ing a mutual payoff of 98. Still, deviating from this selection is
unilaterally beneficial for each individual, producing again a situa-
tion of coordination between the players’ choices. This reasoning
only ends when both players select 0, thus gaining nothing in the
process. The strategy profile (0, 0) is the unique pure strategy Nash
equilibrium of the game. This, however, clearly clashes with what
intuition would lead us to accept as a rational choice. It seems un-
reasonable that two individuals would follow the above line of rea-
soning and rationally come to the conclusion that the best solution
is ending up empty-handed.

The Traveler’s Dilemma can be formalized as a Łukasiewicz
game over Ł100 as follows. Define the following game

G = 〈{T1,T2}, {p1, p2}, {p1}, {p2}, {ϕ1(p1, p2), ϕ2(p1, p2)}〉,

where T1 and T2 are the two travelers; {p1, p2} is the set of propo-
sitional variables, with p1 being controlled by T1 and p2 being con-
trolled by T2; the payoff formulas are defined as follows5

5The connective ∆ is defined as follows in each finite-valued
Łukasiewicz logic Łk:

∆ϕ := ¬(k(¬ϕ))
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P1

P2

0 1/7 2/7 3/7 4/7 5/7 6/7 1
0 0 0 0 0 0 0 0 0

1/7 0 1/7 1/7 1/7 1/7 1/7 1/7 1/7
2/7 0 0 2/7 2/7 2/7 2/7 2/7 2/7
3/7 0 0 1/7 3/7 3/7 3/7 3/7 3/7
4/7 0 0 0 2/7 4/7 4/7 4/7 4/7
5/7 0 0 0 1/7 3/7 5/7 5/7 5/7
6/7 0 0 0 0 2/7 4/7 6/7 6/7

1 0 0 0 0 1/7 3/7 5/7 1

Table 2: Weak-Link Game.

T1

T2
0 1 2 3 · · · 97 98 99 100

0 0, 0 2, 0 2, 0 2, 0 · · · 2, 0 2, 0 2, 0 2, 0
1 0, 2 0, 0 3, 0 3, 0 · · · 3, 0 3, 0 3, 0 3, 0
2 0, 2 0, 3 1, 1 4, 0 · · · 4, 0 4, 0 4, 0 4, 0
3 0, 2 0, 3 0, 4 2, 2 · · · 5, 0 4, 0 4, 0 4, 0
...

...
...

...
...

. . .
...

...
...

...
97 0, 2 0, 3 0, 4 0, 5 · · · 96, 96 99, 95 99, 95 99, 95
98 0, 2 0, 3 0, 4 0, 5 · · · 95, 99 97, 97 100, 96 100, 96
99 0, 2 0, 3 0, 4 0, 5 · · · 95, 99 96, 100 98, 98 100, 97

100 0, 2 0, 3 0, 4 0, 5 · · · 95, 99 96, 100 97, 100 99, 99

Table 3: Traveler’s Dilemma Payoff Matrix.

ϕ1(p1, p2) :=
(

∆ (p1 ↔ p2) ∧
(
p1 	 1

100

))
∨(

¬∆ (p2 → p1) ∧
(
p1 ⊕ 2

100

))
∨(

¬∆ (p1 → p2) ∧
(
p2 	 2

100

)) ,

ϕ2(p1, q2) :=
(

∆ (p1 ↔ p2) ∧
(
p1 	 1

100

))
∨(

¬∆ (p2 → p1) ∧
(
p1 	 2

100

))
∨(

¬∆ (p1 → p2) ∧
(
p2 ⊕ 2

100

)) .

These objective formulae define the following payoff functions:

fϕ1(x1, x2) =

 max
(
x1 − 1

100
, 0
)

x1 = x2
min

(
x1 + 2

100
, 1
)

x1 < x2
max

(
x2 − 2

100
, 0
)

x2 < x1

fϕ2(x1, x2) =

 max
(
x1 − 1

100
, 0
)

x1 = x2
min

(
x2 + 2

100
, 1
)

x2 < x1
max

(
x1 − 2

100
, 0
)

x1 < x2.

Both fϕ1 and fϕ2 can be easily seen to be the linear transformation

into L100 of the payoff function for the Traveler’s Dilemma over
the set {0, 1, . . . , 99, 100}.

5. CHARACTERISING NASH EQUILIBRIA
The aim of this section is to provide different characterizations
of the existence of pure strategy Nash equilibria in Łukasiewicz

and its semantic interpretation in Lk is

e(∆ϕ) =

{
1 e(ϕ) = 1
0 otherwise .

games. We first need some additional terminology and preliminary
results. In particular, we need payoff functions to be defined ex-
actly on the same domain and have as inputs not only the same
set of variables but the whole set of variables occurring in a game.
This requirement leads to introducing the concept of a normalized
Łukasiewicz game.

DEFINITION 5 (NORMALIZED GAME). A Łukasiewicz game

G = 〈P,V, {Vi}, {Si}, {ϕi}〉,

where V = {p1, . . . , pm}, is called normalized whenever each
payoff function ϕi is of the form ϕi(p1, . . . , pm), i.e., all the vari-
ables from V occur in each ϕi.

As mentioned above, not every Łukasiewicz game is normalized,
since each payoff function might contain a different subset of vari-
ables. However, we now show that each game can be transformed
into a normalized one. This amounts to showing that any payoff
formula can be rewritten in an equivalent form in the whole set V
of variables.

DEFINITION 6. Let ϕ(p1, . . . , pw) be a Łck-formula. We say
that ϕ(p1, . . . , pw) has an equivalent extension

ϕ](p1, . . . , pw, q1, . . . , qv)

in {q1, . . . , qv}, if, for every (a1, . . . , aw) ∈ (Lk)w

fϕ(a1, . . . , aw) = fϕ](a1, . . . , aw, b1, . . . , bv)

for all (b1, . . . , bv) ∈ (Lk)v .

The next Lemma shows that for any arbitrary Łukasiewicz formula
over Łck, we can always find an equivalent extension in any set of
variables.

LEMMA 1. Let ϕ(p1, . . . , pw) be a be any Łck-formula. For any
set of variables {q1, . . . , qv}, there exists an equivalent extension
of ϕ(p1, . . . , pw) in {q1, . . . , qv}.
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The above Lemma makes it possible to assume every Łukasiewicz
game is normalized. To make this precise, we introduce first a no-
tion of equivalence for games.

DEFINITION 7 (EQUIVALENT GAMES). Let

G = 〈P,V, {Vi}, {Si}, {ϕi}〉 and G′ = 〈P′,V′, {V′i}, {S′i}, {ϕ′i}〉

be two Łukasiewicz games over Łck. We say that G and G′ are equiv-
alent whenever:

1. P = P′,

2. V = V′,

3. For each i, Vi = V′i and Si = S′i,

4. (s?1, . . . , s
?
n) is a NE for G if and only if (s?1, . . . , s

?
n) is a NE

for G′.

Given Lemma 1 it is straightforward to prove that all Łukasiewicz
games have an equivalent normalized counterpart.

LEMMA 2. Every Łukasiewicz game is equivalent to a normal-
ized game.

From now on, we will tacitly assume each game to be normal-
ized. Also, notice that, so far, we have been denoting by

fϕi(si, s−i)

the value of the function fϕi given the strategy combination (si, s−i).
As mentioned above this actually is an abuse of notation since the
strategy combination (si, s−i) corresponds to a specific assignment
to all the variables in the game, but for the valuation of fϕi only the
assignments to the variables actually occurring in fϕi are taken into
account. Since every game can be considered normalized, the use
of this notation can now be regarded as correct.

5.1 Equilibria and Satisfiability
We now show that the existence of equilibria for an arbitrary game
over Łck is equivalent to the satisfiability of a special Łck-formula.
Notice that, if we restrict to the language of Łck, such a formula al-
ways exists. In fact, for each variable p, we can encode a valuation
e(p) = j

k
by using constants through formulas of the form

p↔ j

k
,

which are satisfiable if and only if e(p) does equal j
k

. Therefore,
we can build a formula that expresses the fact that a NE actually
exists by encoding all possible strategy combinations and all possi-
ble changes of strategy by each player. Still, we are going to show
that even if we do not have additional constants in our logic, it is
still possible to write such a formula.

In order to show how, we need some preliminary results. We
begin by proving that valuations can be encoded by formulas.

LEMMA 3. For every propositional variable p and every valu-
ation e : {p} → Lk there exists a formula ψ(p) such that

e(p) =
j

k
if and only if e(ψ(p)) = 1.6

PROOF. We assume j and k to be coprime. If that is not the case
then we have that
6Notice that the following proof translates into logical terms the
algebraic proof of Lemma 19 in [10], whose context and content
are significantly different from those of the present article.

e

(
ψ j′

k′
(p)

)
= 1 if and only if e(p) = j′

k′ ,

where j′ and k′ are coprime and j
k

= j′

k′ .
Let qj,k and rj,k denote the quotient and the remainder, respec-

tively, of the Euclidean division of k by j.
If e(p) = 0, let

ψ0(p) := ¬p.

Then

e(p) = 0 iff e(¬p) = 1.

If e(p) = 1
k

, then let

ψ 1
k

(p) := ¬d(¬((k − 1)p), p).

It is easy to check that

e(p) = 1
k

if and only if e(¬d(¬((k − 1)p), p)) = 1.

In fact,

e(¬d(¬((k − 1)p), p)) = 1− |(1− (k − 1)x)− x|,

and

1− |(1− (k − 1)x)− x| = 1 iff x =
1

k
.

For e(p) = j
k

, with j ≥ 2, the proof proceeds by induction. For
j and k coprime, let

ψ j
k

(p) = ψ(rj,k,k) (¬ (qj,kp)) ,

while, for j and k not coprime, take j′ and k′ coprime such that
and j

k
= j′

k′ and let

ψ j
k

(p) = ψ j′
k′

(p) = ψ(rj′,k′ ,k′)
(¬ (qj′,k′p)) ,

Notice that rj,k < j. So, for instance, if j = 2, then
ψ 2

k
(p) := ψ 1

k

(
¬
(
qj,kp

))
= ¬d

(
¬
(
(k − 1)

(
¬
(
qj,kp

)))
,¬
(
qj,kp

))
.

This concludes the proof of the Lemma.

Now we are ready to show that for each game the existence of
an equilibrium is equivalent to the existence of a special satisfiable
formula EG . We prove this by giving an explicit construction of EG .
As before, we assume the game to be normalized.

Notice that as an immediate consequence of Lemma 3, we have:

COROLLARY 1. In every Łukasiewicz game G on Łck, for every
strategy combination (s1, . . . , sn) there exists a Łck-formula ψ so
that

fψ(s′1, . . . , s
′
n) = 1 if and only if si = s′i

for all i.

In fact, let Vi = {p1i , . . . , pmi} be the set of variables in control
of player i, and let

(α1i , . . . , αmi) ∈ (Lk)mi .

The formula

ψα1i
(p1i)

encodes the assignment by player i of the value α1i to the variable
p1i , i.e.

e(ψα1i
(p1i)) = 1 iff e(p1i) = α1i .
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So, the formula

ψα1i
(p1i) ∧ · · · ∧ ψαmi

(pmi)

encodes player i’s strategy

{α1i , . . . , αmi},

and the formula
n∧
i=1

(
ψα1i

(p1i) ∧ · · · ∧ ψαmi
(pmi)

)
(1)

encodes the strategy combination

{α11 , . . . , αm1 , . . . , α1i , . . . , αmi , . . . , α1n , . . . , αmn} .

To avoid any possible confusion, notice that for j 6= i, we might
have that mi 6= mj , since i and j might be in control of a different
number of variables.

Now, take, for each player i the set of all strategies

Si = {si | si = (β1i , . . . , βmi) ∈ (Lk)mi}.

Assign to each player i a new set of variables

Vsi =
{
q
β1i
1i

, . . . , q
βmi
mi

}
,

for each si ∈ (Lk)mi . This means that if a player controls mi

variables, she has (k+ 1)mi different strategy combinations and is
therefore assigned mi · (k + 1)mi new variables.

Proceeding as above, take the formula

ψβ1i

(
q
β1i
1i

)
that encodes the assignment by player i of the value β1i to the
variable q

β1i
1i

, so that the formula

ψβ1i

(
q
β1i
1i

)
∧ · · · ∧ ψβmi

(
q
βmi
mi

)
(2)

encodes player i’s strategy

{β1i , . . . , βmi}.

Let

ϕi(p11 , . . . , pm1 , . . . , p1i−1 , . . . , pmi−1 , . . . , p1i , . . . , pmi ,

p1i+1 , . . . , pmi+1 , . . . p1n , . . . , pmn)
(3)

be player i’s payoff formula, and let

ϕi(p11 , . . . , pm1 , . . . , p1i−1 , . . . , pmi−1 , . . . , q
β1i
1i

, . . . , q
βmi
mi ,

p1i+1 , . . . , pmi+1 , . . . p1n , . . . , pmn)

(4)

be the formula obtained from (3) by replacing the variables

{p1i , . . . , pmi}

with the variables {
q
β1i
1i

, . . . , q
βmi
mi

}
.

So, using (3) and (4), the formula

ϕi(p11 , . . . , pm1 , . . . , p1i−1 , . . . , pmi−1 , . . . , q
β1i
1i

, . . . , q
βmi
mi ,

p1i+1 , . . . , pmi+1 , . . . p1n , . . . , pmn)→
ϕi(p11 , . . . , pm1 , . . . , p1i−1 , . . . , pmi−1 , . . . , p1i , . . . , pmi ,

p1i+1 , . . . , pmi+1 , . . . p1n , . . . , xmn)

(5)

encodes the fact that player i’s payoff does not increase. To sim-
plify the notation, we denote the formula (5) by χ.

Now, define the formula EG , where each

~s ∈ (Lk)
∑n

i=1mi

is a strategy combination:

EG :=
∨

~s∈(Lk)
∑n

i=1
mi

[
n∧
i=1

(
ψα1i

(p1i ) ∧ · · · ∧ ψαmi
(pmi )

)
∧

n∧
i=1

[ ∧
si∈(Lk)

mi

[
ψβ1i

(
q
β1i
1i

)
∧ · · · ∧ ψβmi

(
q
βmi
mi

)
∧ χ
]]]
(6)

From the above construction, it is easy to check that EG actually
encodes the existence of equilibria. In fact, EG is a disjunction in-
dexed by all possible strategy combinations. The existence of an
equilibrium requires at least one of the disjuncts to be satisfiable.
Each disjunct is a conjunction of formulas encoding the require-
ment that for a given strategy combination and for every player,
every change of strategy does not result in any payoff increase. So,
if any such a disjunct is satisfiable, the related strategy combination
actually corresponds to a NE.

THEOREM 2. A Łukasiewicz game G on Łck admits a Nash Equi-
librium if and only if EG is satisfiable.

5.2 Equilibria and Satisfiable Games
Our purpose now is to show that whenever a game G has a Nash
equilibrium, there exists a special kind of game, called a satisfiable
game, that is equivalent to G.

DEFINITION 8 (SATISFIABLE GAMES). A Łukasiewicz game
G on Łck is called satisfiable if there exists a strategy combination
(s1, . . . , sn) such that fϕi(s1, . . . , sn) = 1 for all i.

The following lemma is an immediate consequence:

LEMMA 4. Every satisfiable Łukasiewicz game G on Łck admits
a Nash Equilibrium.

As said above, we want to show that every game G on Łck admits
a NE if and only if it is equivalent to a satisfiable game. In order to
do so, we need to use some concepts related to the algebraic seman-
tics of Łukasiewicz logics and their model theory. Space limitations
prevent us from defining these concepts; we refer the reader to [10].

Take any linearly ordered finite MV-algebra MVk.7 The first-
order theory Th(MVk) of MVk is the set of first order sentences in
the language 〈⊕,¬, 0〉 that hold over MVk. As shown in [10], each
theory Th(MVk) admits quantifier elimination in 〈⊕,¬, 0〉. This
means that every formula of Th(MVk) is equivalent to a quantifier-
free formula.

Now, take any Łukasiewicz game G on Łck, and let ~xi, ~yi denote
tuples of variables assigned to player i, and letEG be the following
sentence in Th(MVk) (whereu denotes the Boolean metalanguage
conjunction and ≤ the order relation):

∃~x1, . . . , ~xn ∀~y1, . . . , ~yn
nl

i=1

 ϕi(~x1, . . . , ~xi−1, ~yi, ~xi+1, . . . , ~xn)
≤
ϕi(~x1, . . . , ~xi−1, ~xi, ~xi+1, . . . , ~xn)

 .

It is then easy to check that:
7MV-algebras generalize Boolean algebras and form the algebraic
semantics of Łukasiewicz logics [3].
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LEMMA 5. A Łukasiewicz game G on Łck admits a Nash Equi-
librium if and only if EG holds in Th(MVk).

From Lemma 5, we obtain a characterization of the existence of
NE in terms of the validity of a first-order formula EG . The fact
that EG is valid in Th(MVk) is equivalent to the definability of
a non-empty set that corresponds to the set of equilibria of G. By
quantifier-elimination, such a set is in turn definable by a quantifier-
free formula Φ(~x1, . . . , ~xn). In order to show the existence of an
equivalent satisfiable game, we exploit the fact that this quantifier
free-formula can be translated into a formula of the logic Łck. This
step will be a consequence of the following lemma.

LEMMA 6. For every quantifier-free formula Φ (with param-
eters) of Th(MVk) in the language 〈⊕,¬, 0〉 there exists a Łck-
formula ϕ such that Φ is satisfiable over MVk if and only if there
exists a valuation e such that e(ϕ) = 1.

PROOF. Let TermsMV be the set of terms t of Th(MVk) in
the language of MV-algebras and let FormŁc

k
be the set of Łck-

formulas. Define a translation τ : TermsMV → FormŁc
k

such
that

1. If t is x, then τ(t) = p.

2. If t is j
k

, then τ(t) = j
k

.

3. If t is t′ ⊕ t′′, then τ(t) = τ(t′)⊕ τ(t′′).

4. If t is ¬t′, then τ(t) = ¬τ(t′).

Now, every quantifier-free formula Φ of Th(MVk) is a Boolean
combination of equalities and (strict) inequalities between terms.
So, define a new mapping λ : FormMV → FormŁc

k
, where

FormMV is the set if quantifier-free formulas Φ of Th(MVk), as
follows (where ∼ denotes the Boolean metalanguage negation):

1. If Φ is (t = t′), then λ(Φ) = ∆(τ(t)↔ τ(t′)).

2. If Φ is (t < t′), then λ(Φ) = ¬∆(τ(t′)→ τ(t)).

3. If Φ is Φ′ u Φ′′, then λ(Φ) = λ(Φ′) ∧ λ(Φ′′).

4. If Φ is ∼Φ′, then λ(Φ) = ¬λ(Φ′).

It is easy to check that every formula Φ is satisfiable in MVk

if and only if λ(Φ) is satisfiable. In fact, on the one hand, every
function symbol in 〈⊕,¬, 0〉 (and every parameter as well) has an
interpretation in MVk corresponding to the interpretation of the
related connective (and constants) in Łck. On the other hand, the use
of the operator ∆ forces each formula of the form ∆(τ(t)↔ τ(t′))
and ¬∆(τ(t′) → τ(t)) to behave like a Boolean formula, making
compositions of such formulas into Boolean combinations.

Given the previous lemma, and following the above reasoning, it
is possible to prove that, by replacing each payoff formula ϕi in G
with the formula

τ(Φ(~x1, . . . , ~xn)) ∨ ϕi,

we obtain a satisfiable game G′ equivalent to G.

THEOREM 3. A Łukasiewicz game G on Łck admits a Nash Equi-
librium if and only if it is equivalent to a satisfiable game.

6. CONCLUSIONS
Boolean games are a rich and natural model for understanding strate-
gic behaviour in logic-based goal-oriented multi-agent systems. Al-
though they have many desirable features and have attracted much
interest, the dichotomous nature of the preferences in conventional
Boolean games severely limits the types of scenarios that can easily
be expressed using Boolean games based on classical (two valued)
logic. By expressing goal formulae with Łukasiewicz logic, we are
able to naturally and compactly express much richer objectives for
agents, as we have demonstrated here.

Several questions suggest themselves for future work. For ex-
ample, it is natural to consider whether we can adapt techniques
for theorem proving with Łukasiewicz logic to solving Łukasiewicz
games. In addition, further consideration of the computational com-
plexity of Łukasiewicz games would be of interest.
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