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ABSTRACT
Bearing contradictory knowledge is often unavoidable among
multi-agents. Measuring inconsistency degrees of knowledge
bases of different agents facilitates the understanding of an
agent to her environment. Several semantics or syntax-based
approaches have been proposed to quantify inconsistencies.
In this paper, we propose a new inconsistency measuring
framework based on both minimal unsatisfiable sets and
maximal consistent sets. Firstly, we define a graph repre-
sentation of knowledge bases, based on which we further-
more explore the logical property of the Additivity condi-
tion. Then, we show how the structure of the proposed
graph representation can be used to discriminate, in a fine-
grained way, the responsibility of each formula or a set of
formulae for the inconsistency of a knowledge base. Finally,
we extend our framework to provide an inconsistency mea-
sure for a whole knowledge base. All the proposed measures
are shown satisfying the desired properties.

Categories and Subject Descriptors
H.3 [Agent Reasoning]: Knowledge representation

General Terms
Theory

Keywords
Measuring Inconsistency, Classical Logic

1. INTRODUCTION
Measuring inconsistency has proven useful and attractive

in diverse scenarios including software specifications [21], e-
commerce protocols [5], belief merging [28], news reports
[13], integrity constraints [8], requirements engineering [21],
databases [22, 11], ontologies [33], semantic web [33], and
network intrusion detection [23].

Indeed, we cannot expect large-sized knowledge bases free
of inconsistency in real applications, such as multi-agents
communicating with each other to build a common knowl-
edge base or to perform certain actions in a complex envi-
ronment. For illustration purpose, we consider an example
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simplified from the Multi-agent System ARTOR (ARTifi-
cial ORganizations [30]) which simulates the partnership of
organizations – each organization owns agents responsible
for purchasing and selling products. We consider a scenario
where each product has N grades of price and M grades of
quantity (higher grade, larger value, e.g. $10 for the price
grade 1 and $20 for the grade 2). Selling agents wish to sell
products at a price as expensive as possible and with a quan-
tity as large as possible, but buying agents wish as cheap as
possible and have quantity upper bounds. By pi(1 ≤ i ≤ N)
and qj(1 ≤ j ≤ M), we denote a trade of price grade i and
of quantity grade j, respectively. Consider the following two
agents:

Buying agent : Selling agent :

pi+1 → pi | pi → pi+1 (1)

qj+1 → qj | qj → pj+1 (2)

p1 ∧ p2 ∧ p3 ∧ ¬p4 | ¬p5 ∧ p6 ∧ · · · ∧ pN (3)

q1 ∧ q2 ∧ ¬q3 | ¬q6 ∧ q7 ∧ · · · ∧ qM (4)

Item 1 (resp. 2) says that if the buying agent accepts the
price (resp. quantity) at grade i + 1 (resp. j + 1), then he
accepts lower prices (resp. less quantities); Whilst the sell-
ing agent accepts the price (resp. quantity) at grade i (resp.
j), then he accepts higher prices (resp. larger quantities).
Together with Item 3 (resp. 4), we can read that the buy-
ing agent agrees to pay at most at price grade 3 and with
the maximal quantity grade 2, but the selling agent accepts
minimal price grade 6 and quantity grade 7. It is easy to
see that there are contradictions between these two agents
(e.g. {p3,¬q7} for the buying agent but {¬p3, q7} for the
selling agent). To make the trade successful, agents should
be equipped with the ability of reasoning with inconsistency.
Moreover, if an agent knows the different inconsistency de-
grees between him and others, a better trade plan could be
arranged when multiple sellers and buyers are available.

Analyzing conflicting information has gained a consider-
able attention and become an important issue in computer
science recently [2]. Indeed, measuring inconsistency is help-
ful to compare different knowledge bases and to evaluate
their quality [7]. Consider again the above example, giving
the opportunity for a buyer agent to choose among different
selling agents, naturally he may try to choose the one that
is less inconsistent.

To understand the nature of inconsistency and to quantify
it in turn, a number of logic-based inconsistency measures
have been studied, including the maximal η-consistency [18],
measures based on variables or via multi-valued models [7,
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12, 27, 13, 9, 20, 31, 19], n-consistency and n-probability
[6], minimal inconsistent subsets based inconsistency mea-
sures [15, 24, 25, 32], the Shapley inconsistency value [14,
16], and the inconsistency measurement based on minimal
proofs [17]. Although it is hardly possible to have a com-
plete comparison of the proposed measures. One way to
categorize the existing measures can be based on the depen-
dence of syntax or semantics: Semantics based ones aim to
compute the proportion of the language affected by incon-
sistency. The inconsistency values belonging to this class
are often based on some paraconsistent semantics and syn-
tax independent. Whilst, syntax based ones are concerned
with the minimal number of formulae that cause inconsis-
tencies. Viewing Minimal Unsatisfiable Subsets (MUSes) as
the cornerstones of inconsistency, it is natural to derive in-
consistency measures from MUSes of a knowledge base. An-
other possible classification of different measures originates
in the measuring objective: formula oriented or knowledge
base oriented. For example, the inconsistency measures in
[14, 16] are to measure the contribution of a formula to the
inconsistency of a whole knowledge base that it belongs to,
while the rest measures mentioned above are to measure
the inconsistency degree of a whole base. Some basic prop-
erties [16], such as Consistency, Monotony, Free Formula
Independence, and MinInc, are also proposed to qualify in-
consistency measures.

In this paper, we propose a new approach for measuring
inconsistency, both formula oriented and knowledge base ori-
ented. It is inspired, on the one hand, by the observation
that existing measures fail to distinguish certain knowledge
bases which should have different inconsistency degrees. On
the other hand, a specific property is explored, namely Ad-
ditivity that is rarely discussed in the literature due to its
modeling difficulty [16]. Our study is based on a novel anal-
ysis of connections among MUSes, which is shown useful and
general to quantify more finely the inconsistency responsi-
bility of a formula and the inconsistency degree of a whole
base. Note that this is unlike the oriented links between
MUSes explored in [1] which says that the resolution of one
MUS allows for the resolution of the other. By looking in-
side MUSes and taking into account the correlations between
them, the proposed analysis of MUSes structure lead to sev-
eral interesting measures different from the existing ones.
Moreover, we propose an enhanced additivity property and
show that our measures satisfy such a property as well as
several basic properties.

The paper is organized as follows: Section 2 reviews ap-
proaches to measuring inconsistencies based on minimal in-
consistent subsets and maximal consistent subsets. In Sec-
tion 3, we revisit the additivity property and propose the
graph representation of a knowledge base by which we in-
troduce the notion of MUS-decomposition. This notion is
then used in Section 4 to evaluate the degree of inconsis-
tency of each formula in the knowledge base. In Section
5, we generalize our framework to quantify inconsistency of
a whole base. Section 6 concludes the paper and discusses
some perspectives.

2. PRELIMINARIES
Through this paper, we consider the propositional lan-

guage L built from a finite set of propositional symbols P
under connectives {¬,∧,∨,→}. We will use a, b, c, . . . to de-
note propositional variables, and Greek letters α, β, γ, . . . for

formulae. The symbol ⊥ denotes contradiction. For a set S,
we denote |S| its cardinality.

A knowledge base K consists of a finite set of propositional
formulae. K is inconsistent if there is a formula α such
that K ` α, and K ` ¬α, where ` is the deduction in
classical propositional logic. If K is inconsistent, then one
can define the notion of Minimal Unsatisfiable Subset (MUS)
as an unsatisfiable set of formulaeM in K such that any of
its subsets is satisfiable. Formally,

Definition 1 (MUS). Let K be a knowledge base and
M⊆ K. M is a minimal unsatisfiable (inconsistent) subset
of K iff M ` ⊥ and ∀M′ ⊂M, M′ 0 ⊥.

Clearly, an inconsistent knowledge base K can have multi-
ple minimal inconsistent subsets. The set of minimal incon-
sistent subsets of K is denoted as MUSes(K ) = {M ⊆ K |
M is a MUS}. When a MUS is singleton, the single formula
in it is called a self-contradictory formula. A formula α not
involved in any MUS of K is called a free formula, meaning
that α does not have any relationship with the inconsis-
tency of K. Formally, SelfC(K) = {α ∈ K | {α} ` ⊥}, and
free(K) = {α | for all M∈MUSes(K), α 6∈ M}.

At the same time, we can define the Maximal Satisfiable
Subset (MSS), and Hitting set as follows:

Definition 2 (MSS). Let K be a knowledge base and
M a subset of K. M is a maximal satisfiable (consistent)
subset of K iff M 0 ⊥ and ∀α ∈ K \M, M∪ {α} ` ⊥.

We denote byMSSes(K) the set of all maximal consistent
subsets of K.

Definition 3 (Hitting set). Given a universe U of
elements and a collection S of subsets of U , H ⊆ U is a
hitting set of S if ∀E ∈ S, H ∩ E 6= ∅. We say that H is a
minimal hitting set of S if H is a hitting set of S and each
H ′ ⊂ H is not a hitting set of S.

We denote by LBHS(K) the smallest size of a hitting set
of K, i.e., LBHS(K) = min{|H| | H is a hitting set of K}.

2.1 Inconsistency Measures
In this section, we review some inconsistency measures

important and related to the rest of this paper.
There have been several contributions for measuring in-

consistency in knowledge bases defined through minimal in-
consistent subsets theories. In [16], Hunter and Konieczny
introduce a scoring function allowing to measure the degree
of inconsistency of a subset of a knowledge base. In details,
for a subset K′ ⊆ K, the scoring function is defined as the
diminution of the number of minimal inconsistent subsets
while K′ is removed, i.e., |MUSes(K )| − |MUSes(K \K ′)|.
By extending the scoring function, the authors introduce
an inconsistency measure of a whole base, defined as the
number of minimal inconsistent subsets of K. Formally,
IMI(K) = |MUSes(K )|. In the same paper, a family of
“MinInc inconsistency values” MIV based on minimal in-
consistent subsets is also presented:

• MIVD(K,α) is a simple measure that values 1 if α be-
longs to a minimal inconsistent subset and 0 otherwise.

• MIV# is defined by the scoring function: MIV#(K,α)
= |{M ∈ MUSes(K ) | α ∈M}|.
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• MIVC takes into account the size of each minimal in-
consistent subset in addition to the number of MUSes

of K, formally MIVC(K,α) =
∑

α∈M|M∈MUSes(K)

1

|M| .

Combining both minimal inconsistent subsets and maxi-
mal consistent subsets, Mu et al. present in [26] an approach
to quantify the degree of inconsistency of a knowledge base.
Another inconsistency value, called IM measure, that deals
with that combination, has been introduced in [10]. The IM
measure counts for a given knowledge base, the number of
its MSSes and its Self-contradictory formulae (subtraction
of 1 is required to make IM (K) = 0 when K is consistent):

IM (K) = |MSSes(K)|+ |SelfC(K)| − 1.

Recently, in [17] a new framework based on the notion of
minimal proof is proposed to measure inconsistency degrees.
This framework uses conflicting minimal proofs to charac-
terize the inconsistency of any subset of formulae in a base.

3. MUS PARTITIONING IN KNOWLEDGE
BASES

There are a set of well accepted basic properties that in-
consistency measures should satisfy (see Definition 4), while
leaving one property Additivity debatable [15]. In this sec-
tion, we propose an enhancement of the additivity property
to make it more intuitive and give a way to modify the IM
measure introduced above to satisfy the enhance additivity.

Definition 4 ([16]). Let K and K′ be two knowledge
bases, α and β two formulae. A set of properties of an in-
consistency measure I is defined as follows:

(1) Consistency: I(K) = 0 iff K is consistent,

(2) Monotony: I(K) ≤ I(K ∪K′),

(3) Free Formula Independence: if α is a free formula in
K ∪ {α}, then I(K ∪ {α}) = I(K),

(4) MinInc: If M ∈MUSes(K), then I(M) = 1.

The monotony property shows that the inconsistency value
of a knowledge base has to be non-decreasing while adding
new formulae. The free formula independence property states
that the set of formulae not involved in any minimal incon-
sistent subset should have no contribution to inconsistency.
And MinInc means that a single MUS as a whole has incon-
sistency value 1. Besides, another property called Additiv-
ity1 has been proposed in [16].

Definition 5 (Additivity). Let K1, . . . ,Kn be knowl-
edge bases and I an inconsistency measure. I is additive if it
satisfies the following condition: If MUSes(K1 ∪ . . . ∪Kn) =
MUSes(K1 )⊕ . . .⊕ MUSes(Kn)2, then I(K1 ∪ . . . ∪Kn) =
I(K1) + . . .+ I(Kn).

The additivity was proposed to ensure that the amount of
conflict of a knowledge base K can be obtained by summing
up the degrees of its sub-bases Ki under the condition that
{MUSes(Ki)} is a partition of MUSes(K). However, Luce

1The Additivity condition is named Decomposability in [15].
2We denote a partition {A,B} of a set C by C = A ⊕ B,
i.e., C = A ∪B and A ∩B = ∅.

and Raiffa have pointed out that the interaction of sub-bases
(sub-games in [29]) is not taken into account by Additivity,
which is one of the criticisms about this condition [29, 16].
Although the partitionability of MUSes is used to describe
a sort of interaction in Definition 5, we argue that it is not
enough. Consider the following example:

Example 1. Let K1 = {a,¬a},K2 = {¬a, a ∧ b}, and
K3 = {c,¬c}, each of which has only one single MUS. Con-
sider two bases K = K1 ∪K2, and K′ = K1 ∪K3. Clearly,
MUSes(K)= MUSes(K1) ⊕MUSes(K2), and MUSes(K′)
= MUSes(K1) ⊕ MUSes(K3). For any measure I, if I
satisfies Additivity by Definition 5, we should have I(K) =
I(K1)+I(K2), and I(K′) = I(K1)+I(K3). If I furthermore
satisifes MinInc (see Definition 4), single MUS leads to the
same inconsistency value. Then I(K) = I(K′), which is
counterintuitive because the components of MUSes(K′) are
less interactive, thus more spreading, than that of MUSes(K).
And in turn K′ should, intuitively, contains more inconsis-
tencies than K.

To enhance the consideration of interaction among sub-
bases, we propose the following Enhanced Additivity:

Definition 6 (Enhanced Additivity). Let K1, . . . ,
Kn be knowledge bases and I an inconsistency measure. If
MUSes(K1 ∪ . . . ∪Kn) = MUSes(K1 ) ⊕ . . .⊕ MUSes(Kn)
and {α ∈ M | M ∈ MUSes(Ki)} ∩ {β ∈ M | M ∈
MUSes(Kj)} = ∅ for all 1 ≤ i 6= j ≤ n, I(K1 ∪ . . .∪Kn) =
I(K1)+. . .+I(Kn). I is then called an independent-additive
measure.

Note that the enhanced additivity requires an extra pre-
condition, which is to encode a stronger independence among
sub-bases to perform additivity. The enhanced additivity
can exclude the counterintuitive conclusion as given in Ex-
ample 1: suppose I satisfies the enhanced additivity, then
we have I(K′) = I(K1)+I(K3), but not necessarily I(K′) =
I(K1)+I(K2). Hence I(K) is not necessarily equal to I(K′).

Alternatively, the enhanced-additivity, given below, can
be defined through multi-set partition instead of set parti-
tion as used in Definition 6.

Definition 7. I is called multi-set additive if it satisfies:
I(K1 ∪ . . . ∪ Kn) =

∑k
i=1 I(Ki) when MUSes(

⋃n
i=1Ki) =⊎n

i=1 MUSes(Ki), where
⊎

is the multi-set union over sets.

For Example 1, whilst MUSes(K ) = {{a,¬a}, {¬a, a ∧ b}},
we have MUSes(K1 )

⊎
MUSes(K2 ) = {{a,¬a}, {¬a, a ∧ b},

{a,¬a}}. This leads to the conclusion that it is unnecessarily
to have I(K) = I(K1)+I(K2), the same as using Definition
6. In fact, it is easy to see that I is multi-set additive if and
only if it is enhanced additive.

Clearly, additivity implies enhanced additivity. While we
can see that the MIV measure family satisfies the additivity
and the enhanced additivity, it is not the case for the IM
measure as showed below.

Proposition 1. IM is neither additive nor enhanced ad-
ditive.

Proof. Consider the counter-example: K1 = {a,¬a},
K2 = {b,¬b}, and K = K1 ∪ K2. It is easy to check that
K and Ki (i = 1, 2) satisfy the conditions of additivity and
enhanced additivity. But we have IM (K1 ∪ K2) = 3 while
IM (K1) = IM (K2) = 1.
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Indeed, the following theorem states that under certain
constraints, MSSes is multiplicative instead of additive.

Proposition 2. Let K1 and K2 be two knowledge bases
such that {α ∈ MUSes(Ki)} ∩ {β ∈ MUSes(Kj)} = ∅.
Then, |MSSes(K1 ∪K2 )| = |MSSes(K1 )| × |MSSes(K2 )|.

As the enhanced additivity gives a more intuitive charac-
terization of interaction among sub-sets to be added up, in
the following, we are interested in restoring the enhanced
additivity of the IM measure. To simplify terminology, in
the rest of the paper, we call the enhanced additivity simply
Additivity by default unless other claims are made.

To reach this goal, let us first define three fundamental
concepts: MUS-graph, MUS-decomposition, and elementary
MSS.

Definition 8 (MUS-graph). Given an inconsistent
knowledge base K, the MUS-graph of K, denoted GMUS(K),
is an undirected graph where:

(1) MUSes(K) is the set of vertices, and

(2) ∀M,M′ ∈ MUSes(K ), {M,M′} is an edge iff M∩
M′ 6= ∅.

A MUS-graph of a knowledge base K gives us a struc-
tural representation of its interconnected minimal unsatisfi-
able subsets.

Moreover, GMUS(K) leads to a partition of a knowledge
base K, named MUS-decomposition, as defined below.

Definition 9 (MUS-decomposition). Let K be a
knowledge base, and {C1, . . . , Cp} with Ci ⊆ K for 1 ≤ i ≤ p.
{C1, . . . , Cp} is the MUS-decomposition of K iff {C1, . . . , Cp}
is the set of the connected components of GMUS(K).

A MUS-decomposition {C1, . . . , Cp} of a knowledge baseK
represents a partition of the minimal unsatisfiable subsets of
K into connected components.

By the fact that MUSes(K) 6= ∅ and the uniqueness of
connected components of a graph, we can easily see:

Proposition 3. MUS-decomposition exists and is unique
for an inconsistency knowledge base.

Definition 9 allows us to associate to a given knowledge
base K a set of sub-bases K1, . . . ,Kp such that the elements
of each sub-base Ki are the formulae of the connected com-
ponent Ci.

In the following, we present an alternative to the incon-
sistency measure IM so as to make it additive. To this end,
we introduce the concept of elementary MSS by using the
MUS-decomposition.

Definition 10. Let K be a knowledge base, K′ ⊆ K, and
{C1, . . . , Cp} the MUS-decomposition of K. K′ is an elemen-
tary MSS of K iff there exists a connected component Ci of
K such that K′ ∈ MSSes(Ci). We denote by EMSS(K )
the set of all elementary MSS of K, i.e., EMSS(K ) =⋃p
i=1MSSes(Ki).

That is, an elementary maximal consistent subset should
be locally restricted by a connected component ofMUSes(K).

Example 2. 3 Let K = {a∧ d,¬a,¬b, b∨¬c,¬c∧ d,¬c∨
e, c,¬e, e ∧ d}. The MUS-decomposition of K contains two
subsets, C1 = {M1}, and C2 = {M2,M3,M4,M5} where
M1 = {¬a, a ∧ d}, M2 = {c,¬b, b ∨ ¬c}, M3 = {c,¬c ∧ d},
M4 = {¬c ∨ e, c,¬e}, and M5 = {¬e, e ∧ d} (see figure 1).
Then, EMSS(K ) = {{a ∧ d}, {¬a}, {¬b, b ∨ ¬c,¬c ∧ d,¬c ∨
e, e∧ d}, {¬b, b∨¬c,¬c∧ d,¬c∨ e,¬e}, {b∨¬c,¬c∨ e, c, e∧
d}, {¬b,¬c ∨ e, c, e ∧ d}, {b ∨ ¬c, c,¬e}, {¬b, c,¬e}}.

Now, we use the notion of EMSS to define an alternative
of the IM measure, named I ′M :

I ′M (K) =

 |EMSS(K )|+ |SelfC (K )| if K ` ⊥;

0 otherwise.

Proposition 4. the I ′M measure is additive.

Proof. The conclusion follows immediately from the fact
that both |EMSS(K )| and |SelfC (K )| are additive.

That is, by taking into account the connections between
minimal inconsistent subsets, MUS-decomposition gives us
a way to define an inconsistency measure which still satisfies
the additivity.

4. MUS-DECOMPOSITION BASED INCON-
SISTENCY MEASURE

In this section, we use the MUS-decomposition of a knowl-
edge base, defined in the previous section, to estimate the
responsibility of each formula to the inconsistency of its base.

Given a MUS-graph of a knowledge base K, a distance,
as defined next, is an assignment of a real number to each
MUS pair of K.

Definition 11. Let K be a knowledge base. We denote
dMUS(M,M′) the shortest path between M and M′ in the
MUS-graph GMUS(K).

As easily seen, dMUS(M,M′) is a distance, that is, it sat-
isfies: (1) dMUS(M,M′) ≥ 0; (2) dMUS(M,M′) =dMUS

(M′,M); and (3) dMUS(M1,M2) ≤ dMUS(M1,M3) +
dMUS(M3,M2). So, we call it the distance between M
and M′.

Next, we will extend Definition 11 to compute the distance
between a formula and a MUS.

Definition 12. Let K be a knowledge base, α ∈ K \
free(K), and M ∈ MUSes(K ). The distance between α
and M is defined as dMUS(α,M) = min{dMUS(M,M′) |
α ∈M′}.

In fact, the distance between a given formula α ∈ K and
a MUS M corresponds to the shortest path from α to M
along a sequence of intersecting MUSes. Note that if α
and M do not belong to the same connected component of
GMUS(K), this means that M is not reachable from α and
in this case, the distance is assigned an infinite value, i.e.,
dMUS(α,M) = +∞.

Example 3. (Example 2 Contd.) Let α = ¬b, we have
dMUS(α,M2) = 0 dMUS(α,M3) = 1
dMUS(α,M4) = 1 dMUS(α,M5) = 2

3For a better display of the new notions introduced in this
paper, we use a different example from the illustrative one
given in Section 1.
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We note that the distance dMUS allows for an ordering
over the minimal inconsistent subsets of K according to their
distances from α.

In the following, we quantify the inconsistency value of
α in the light of the distances from α to reachable MUSes
of K. Indeed, for each formula belonging to some MUSes,
there exists at least one such a finite distance. To com-
pare different formulae by their inconsistency values, only
finite distances are meaningful. For free formulae, all the
distances will be +∞. But by Free Formula Independence
principle, they should not be contributors to inconsistency
anyway. Let us note dmaxMUS(α) = max{dMUS(α,M) | M ∈
MUSes(K ), dMUS(α,M) 6= +∞}. Note that the maximum
distance is not more than the cardinality of the connected
component that α belongs to, that is, dmaxMUS(α) < |C|.

Definition 13. Let K be a knowledge base, and α ∈ K.
Write SMUS (α, k) = {M ∈ MUSes(K ) | dMUS(α,M) = k}.
SQMUS(α) is defined as follows: SQMUS (α)= {SMUS (α, 0 ),
SMUS (α, 1 ), . . . ,SMUS (α, dmax

MUS (α))}.

Note that SMUS (α, k) represents the set of MUSes with
a distance k from α, and SQMUS (α) gives the sequence of
MUSes distributed in terms of the distance dMUS .

Example 4. (Example 2 Contd.) For α = ¬b, we have
SMUS(α, 0) = {M2}, SMUS(α, 1) = {M3,M4}, SMUS(α, 2)
= {M5}. Then, SQMUS(α) = {{M2}, {M3,M4}, {M5}}.
Figure 1 depicts a graphical representation of the connected
components of K. Also, Figure 2 represents the distribution
of MUSes according to their distances to α. We remark that
the MUSes are arranged into different levels.

d ∧ e ¬c ∨ ec¬e

¬c ∧ d

b ∨ ¬c
¬b

M5

M2

M4

M3

M1

¬a a ∧ d

Figure 1: MUS-graph of K

Distance = 0

Distance = 1

Distance = 2

M3 M4

M5

M2

α = ¬b

Figure 2: Distribution of MUSes according to α

It is easy to check that the MIV# measure is just a char-
acterization of the set SMUS when applying uniquely the
minimum distance from the formulae. More formally,

Proposition 5. Let K be a knowledge base, and α ∈ K.
Then, MIV#(K,α) = |SMUS(α, 0)|.

Proposition 5 shows that the MIV# value considers only
the nearest neighbors of α. However, this measure is not suf-
ficiently discriminating for our purposes, since it takes into
account only the first level of MUSes. Indeed, let us con-
sider the formulae d∧e, and ¬c∨e of Example 2. According
to MIV# or MIVC measure, these two formulae have the
same inconsistency value. However, according to Figure 1
d∧ e and ¬c∨ e do not have the same structural properties.
Indeed, the MUS containing ¬c ∨ e is more connected than
the one of d ∧ e. Hence, one has to go beyond the nearest
neighbors to obtain a finer-grained measure.

A first inconsistency measure can be defined as follows:

Definition 14. Let K be a knowledge base, and α ∈ K.
The inconsistency value of α is defined as:

DIMC(α,K) = |SMUS(α,0)|
dmax
MUS

(α)+1

Unlike MIV#, the DIMC value takes into account the
structure of connected components by considering the near-
est and the farthest MUSes. More precisely, the DIMC

measure aims to assign a higher value to a formula that has
numerous nearest neighbors with the remaining MUSes con-
centrated around it. Put differently, while two formulae have
the same number of neighbors of distance 0, the distance
from the farthest MUSes allows us to find out the most in-
consistent one. Note that if α is a self-contradictory formula,
the DIMC measure takes value one, i.e., DIMC(α,K) = 1.

Let us now illustrate the behavior of the DIMC measure
in the next example.

Example 5. (Example 2 Contd.) It is not hard to see:
DIMC(a ∧ d,K) = 1 DIMC(¬a,K) = 1
DIMC(¬b,K) = 1

3
DIMC(¬c ∧ d,K) = 1

3

DIMC(¬e,K) = 1 DIMC(b ∨ ¬c,K) = 1
3

DIMC(d ∧ e,K) = 1
3

DIMC(c,K) = 3
2

DIMC(¬c ∨ e,K) = 1
2

Notice that now we can make a distinction between d ∧ e,
and ¬c ∨ e, since DIMC(d ∧ e,K) < DIMC(¬c ∨ e,K).

However, the problem remains between the formulae d∧e,
and ¬b. In order to make the measure more accurate, we
propose to extend our framework by not only considering
the farthest MUSes, but the whole structure of the con-
nected components, which leads to a more useful inconsis-
tency measure defined as follows:

Definition 15. Let K be a knowledge base, and α ∈ K.
The inconsistency value of α is defined as:

DIMH(α,K) =
∑

M∈MUSes(K)
dMUS(α,M)6=+∞

1

dMUS(α,M) + 1

We can see more clearly by the following example that
DIMH gives a more precise view of the conflict brought by
each formula.

Example 6. (Example 2 Contd.) We have:
DIMH(a ∧ d,K) = 1 DIMH(¬a,K) = 1
DIMH(¬b,K) = 7

3
DIMH(¬c ∧ d,K) = 7

3

DIMH(¬e,K) = 3 DIMH(b ∨ ¬c,K) = 7
3

DIMH(d ∧ e,K) = 13
6

DIMH(c,K) = 7
2

DIMH(¬c ∨ e,K) = 7
3

881



Using the DIMH measure, the formula d ∧ e has now an
inconsistency value 13

6
less than that of ¬b which is 7

3
.

The DIMH measure could be refined by using the fol-
lowing notion of a weighting function that assigns a weight
to each MUS in the MUS-graph. The idea is that a weight
represents the significance of a MUS with respect to their
distance from a given formula, thus leading to a better as-
signment of inconsistency responsibility to formulae. These
weights can take into consideration other criteria like the de-
gree of each MUS in the MUS-graph. A general definition
is stated as follows.

Definition 16. Let K be a knowledge base, and w(M) ∈
R a given weight function. The inconsistency value of α is
defined as:

DIMW (α,K) =
∑

M∈MUSes(K)
dMUS(α,M)6=+∞

w(M)

dMUS(α,M) + 1

The following result shows that the DIMW measure can
be expressed by using the sequence SQMUS(α). The idea is
that w(M) only depends on the distance between M, and
α.

Proposition 6. Let K be a knowledge base, and α ∈ K.
Then, the following equation holds:

DIMW (α,K) =
∑

SMUS∈SQMUS

w(i)× |SMUS(α, i)|
(i+ 1)

Note that w(i) represents the weight associated to each
MUS at distance i from α.

4.1 Measuring Inconsistency of Sub-bases
Instances of a DIM (such as those given in Definitions 14,

15, and 16) can be obviously extended to a set of formulae.
For this purpose it will be convenient to define the distance
between a subset K′ ⊆ K, and a MUS M∈ MUSes(K ).

Definition 17. Let K be a knowledge base, K′ a subset
of K, and M ∈ MUSes(K ). The distance between K′, and
M is defined as:

dMUS(K′,M) = min{dMUS(α,M) | α ∈ K′}

Clearly, the set of MUSes can be partitioned into different
subsets according to their distances to the subset K′. Here,
we denote by dmaxMUS(K′) the maximum distance of MUSes
from K′.

Now, the inconsistency measure of K′ through DIMC

value is defined as follows:

Definition 18. Let K be a knowledge base, and K′ ⊆ K.
The inconsistency degree of K′ is defined as:

DIMC(K′,K) = |SMUS(K′,0)|
dmax
MUS

(K′)+1

Interestingly, we note that while considering more than
one formula, different connected components should be taken
into account. In the light of the property of additivity,
DIMC(K′,K) can be rewritten as stated in Proposition 7.

Proposition 7. Let K be a knowledge base, K′ ⊆ K,
and {C1, . . . , Cp} the MUS-decomposition of K. Then,

DIMC(K′,K) =

i=p∑
i=1

DIMC(K′ ∩Ki,K)

Example 7. Let us consider again the knowledge base
K = {a∧ d,¬a,¬b, b∨¬c,¬c∧ d,¬c∨ e, c,¬e, e∧ d}. Then,
DIMC({a ∧ d, c},K) = 1 + 3

2
= 5

2
.

Similarly, DIMC , DIMH , and DIMW inconsistency val-
ues can be naturally extended to a set of formulae. In par-
ticular, if we consider the case K′ = K, then DIMC(K) =
|SMUS(K,0)|
dmax
MUS

(K)+1
= |MUSes(K)|, which corresponds to the IMI

measure. The same result is obtained when using DIMH ,
i.e., DIMH(K) = |MUSes(K)|.

4.2 Monotonicity
As seen earlier, the DIMC value combines the distances to

the nearest MUSes, and the inverse of that to the farthest
in order to quantify the participation of each formula in
the inconsistencies. Note that adding new formulae to a
knowledge base may grow the distance to the farthest MUS,
and consequently the DIMC value decreases. This means
that DIMC is not monotonic. For illustration, consider the
knowledge base K = {a,¬a∧ b,¬b∧ c,¬c∧d,¬d∧e}. Then,
we have DIMC(a) = 1

4
. Now if we add to K the formula

¬e, then the value of a in K ∪ {¬e} becomes 1
5
.

In contrast, DIMH counts the inverse of all distances from
a formula to each MUS. Moreover, adding new formulae can-
not decrease the number of MUSes, and cannot increase the
distance of existing MUSes from the formula, thus the in-
verse of the distances will be non-dereasing. Consequently,
the DIMH measure is monotonic.

5. MEASURING INCONSISTENCIES OF A
WHOLE BASE

This section is devoted to the definition of an inconsis-
tency measurement for a whole knowledge base.

To address this question, let us firstly give a general char-
acterization of our measure with respect to the additivity
property. Then, we discuss different measures obtained by
different instantiations of the general case.

Definition 19. Let K be a knowledge base, and CC =
{C1, . . . , Cn} the connected components of K. The inconsis-
tency measure of K, denoted ICC(K), is defined as ICC(K) =∑n
i=1 δ(Ci) where δ is a function valuing in R.

The general definition given above allows for a range of
possible measures. Next we first instantiate some ICC mea-
sures by varying the δ function. The simplest one is obtained
when δ(Ci) = 1. In this case, we get a measure that assigns
toK the number of its connected components, i.e., ICC(K) =
|CC|. Note that this measure is not monotonic. Indeed,
adding new formulae to the knowledge base can decrease
the number of connected components of the base. For in-
stance, let us consider the knowledge base K = {a,¬a, b,¬b}
that contains two connected components C1 = {a,¬a}, and
C2 = {b,¬b}; now adding the formula a ∨ b to K leads to a
new knowledge base containing a unique connected compo-
nent C = {a,¬a, b,¬b, a∨ b}. Note that this simple measure
considers each connected component as an inseparable en-
tity.
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Moreover, when we consider δ(Ci) = |Ci|, the ICC mea-
sure leads to an existing inconsistency measure. More pre-
cisely, as |Ci| corresponds exactly to the number of MUSes
involved in the connected component Ci, it is obvious to
see that ICC(K) is equal to IMI measure, i.e., ICC(K) =
|MUSes(K )|. This second value is of little interest, since
it states exactly the fact that the inconsistency value only
takes into account the number of the minimal inconsistent
subsets of a base.

In the following, we propose to deeply explore the proper-
ties of additivity, and monotony to define a new interesting
inconsistency measure.

Definition 20. Let K be a knowledge base, and K1, . . . ,Kn

subsets of K. The set {K1, . . . ,Kn} is called a conditional
independent MUS partition of K if the following conditions
are satisfied:

(1) Ki ` ⊥, for 1 ≤ i ≤ n,

(2) MUSes(K1 ∪ . . . ∪Kn) =
⊕

1≤i≤n MUSes(Ki),

(3) Ki ∩Kj = ∅, ∀i 6= j.

According to Definition 20, K can be written as K =
K1∪. . .∪Kn∪R where R is a subset of K, and {K1, . . . ,Kn}
is a conditional independent MUS partition of K. That is,
when removing the set of formulae R from K the remaining
base can be partitioned into sub-bases K1, . . . ,Kn satisfying
conditions (1), (2), and (3) (Definition 20).

In general, for a given knowledge baseK, there exist differ-
ent subsets R ⊆ K such that Definition 20 holds. Moreover,
if K = K1∪ . . .∪Kn∪R, then there exists {M1, . . . ,Mn} ⊆
MUSes(K) being a conditional independent MUS partition
of K. In other words, K = M1 ∪ . . . ∪ Mn ∪ R′ where
Mi ∩ Mj = ∅, ∀ 1 ≤ i 6= j ≤ n, and MUSes(M1 ∪
. . . ∪ Mn) = ⊕1≤i≤nMi. Indeed, it is sufficient to pick
a MUS Mi from each Ki since Ki ` ⊥, and consider R′ =
R ∪ {K1 \M1} ∪ . . . ∪ {Kn \Mn}.

Let us now characterize our inconsistency measure I in
the light of both additivity, and monotony properties. Using
Definition 20, I(K) = I(K1∪ . . .∪Kn∪R). Using monotony
property, we have I(K) ≥ I(K1 ∪ . . . ∪ Kn). Finally by
additivity, we conclude that I(K) ≥ I(K1) + . . .+ I(Kn).

Now, let us denote by µmax(K) the maximal cardinal-
ity of sets {K1, . . . ,Kn} satisfying the conditions (1), (2),
and (3) of Definition 20. That is, µmax(K) corresponds to
the number of maximal connected components that can be
obtained while removing some formulae from K, i.e., the
maximum value taken by n. By considering the maximal
conditional independent partition value µmax, one can de-
duce that if the measure I is additive then, I(K) ≥ I(K1) +
. . .+I(Kµmax(K)). Now, by using this bound one can define
a new inconsistency measure as stated in Definition 21.

Definition 21. Let K be a knowledge base. We define
the inconsistency measure of K as:

ICC(K) = µmax(K)

So now we can show that:

Proposition 8. The inconsistency measure ICC is addi-
tive, and monotonic.

Proof. Let K, and K′ be two knowledge bases such that
K = K1 ∪ . . . ∪Kµmax(K) ∪ R. Then, K ∪K′ = K1 ∪ . . . ∪
Kµmax(K)∪R∪K′. Hence, K ∪K′ = K

′
1∪ . . .∪K

′

µmax(K)∪
R′. Thus, µmax(K ∪ K′) ≥ µmax(K) which proves that
ICC is monotonic. Suppose now that (K \ free(K)) ∩ (K′ \
free(K′)) = ∅, and MUSes(K)∩MUSes(K′) = ∅, it is easy
to conclude that µmax(K ∪K′) = µmax(K) +µmax(K′). As
consequently, ICC is additive.

Example 8. Let us consider K = {a,¬a, a∨b,¬b, b, c,¬c∧
d,¬d∧e∧f,¬e,¬f}. The figure 3 depicts its connected com-
ponents. K contains two connected components C1, and C2
such that C1 = {a,¬a, a∨ b,¬b, b}, and C2 = {c,¬c∧ d,¬d∧
e ∧ f,¬e,¬f}. The conditional independent MUS partition
of C1 of maximum size is equal to 2, and can be obtained
from C1 by removing a ∨ b. For C2, for all removed subsets
of C2, the number of resulting connected components can not
exceed 1. Then, we have ICC(K) = ICC(C1) + ICC(C2) = 3.

¬a ¬b ¬c ∧ d

C1

a ∨ b c

¬e

¬d ∧ e ∧ f

C2 ¬f

b

a

Figure 3: Connected components of the knowledge
base K

Let us note that among measures that are additive, mono-
tonic, and MinInc, ICC is the smallest one, as shown below.

Proposition 9. For any I that is additive, monotonic,
and MinInc, ICC(K) ≤ I(K).

Proof. Indeed, an additive, and monotonic measure must
attribute to a knowledge base a value greater than I(K1) +
. . . + I(Kµmax(K)). When a measure satisfies MinInc, and
monotonicity, I(Ki) ≥ 1. Hence, I(K) ≥ µmax(K).

Moreover, Proposition 10 shows the relationship between
the maximal conditional independent MUS partition, and
the smallest minimal hitting set.

Proposition 10. Let K be a knowledge base. Then,

ICC(K) ≤ LBHS(K)

Proof. As K can be partitioned into µmax(K) indepen-
dent components by removing some formulae, then a min-
imal hitting set of K must contain at least one formula
from each independent component of the maximal partition.
Hence, µmax(K) ≤ LBHS(K).

Example 9. Let us consider again Example 8, and its
second connected component C2. We have LBHS(K) = 2
while the conditional independent MUS partition of K can
not exceed 1.

6. CONCLUSION
We proposed in this paper a new framework for defining

inconsistency values that allow to associate each formula
with its degree of responsibility for the inconsistency of a
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whole knowledge base. This approach is based on the corre-
lation between minimal inconsistent subsets which is shown
a useful way to quantify the amount of inconsistencies in
a finer way. We showed that such a framework can be ex-
tended to quantify the inconsistency of a whole knowledge
base. We also proposed an enhanced additivity property to
better capture its intuition according to the debat existing
in the literature.

In the future, we plan to investigate deeply the architec-
ture of the connected components. For instance, we plan
to use logical argumentation theory [4] to deepen the analy-
sis of the graph representation of a knowledge base [3]. We
are also going to investigate results coming from graph the-
ory in order to offer a finer grained evaluation of the incon-
sistencies. The theoretical complexity of our inconsistency
measures, and practical algorithms are under investigation.

7. ACKNOWLEDGMENTS
The first author benefits from the support of both CNRS

and OSEO within the ISI project Pajero.

8. REFERENCES
[1] S. Benferhat and L. Garcia. A local handling of

inconsistent knowledge and default bases. In
Applications of Uncertainty Formalisms, pages
325–353, 1998.

[2] L. E. Bertossi, A. Hunter, and T. Schaub.
Introduction to inconsistency tolerance. In
Inconsistency Tolerance, pages 1–14, 2005.
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