
Safety First: Strategic Navigation in Adversarial
Environments

(Extended Abstract)
Ofri Keidar, Noa Agmon

Bar Ilan University
Israel

ofri.keidar@biu.ac.il, agmon@cs.biu.ac.il

ABSTRACT
This work deals with the problem of navigation while avoid-
ing detection by a mobile adversary, which is a novel vari-
ant of pursuit-evasion featuring adversarial modeling. In
this problem, an evading agent is placed on a graph, where
one or more nodes are defined as safehouses. The agent’s
goal is to find a path from its current location to a safe-
house, while minimizing the probability of meeting a mobile
adversarial agent at a node along its path (i.e., being cap-
tured). We examine several models of this problem, where
each one has different assumptions on what the agents know
about their opponent, all using a framework for computing
node utility, introduced herein. We use several risk attitudes
for computing the utility values, whose impact on the con-
structed strategies is analyzed both theoretically and empir-
ically. Furthermore, we allow the agents to use information
gained along their movement, in order to efficiently update
their motion strategies on-the-fly. Analytic and empirical
analysis show the importance of using this information and
these on-the-fly strategy updates.

Keywords
Robot Navigation, Pursuit-Evasion, Adversarial Modeling

1. INTRODUCTION
The modern battle field has moved towards civilian popu-

lation. Cities and villages are surrounded by hostiles, mak-
ing the delivery of food, water and medical aid a life endan-
gering mission. Thus, emerges the problem of path plan-
ning in an environment with a hostile entity, with the ad-
vantage of strategic behavior. In this paper we introduce a
new variant of traditional path planning problem: Strategic
Navigation in Adversarial Environments (or StratNAV,
in short). In this problem, we aim at planning a path for
our agent (denoted as R), while avoiding being captured
by a mobile adversarial agent (denoted as C). The agents
travel about a graph, representing a map of the environment,
where some nodes in this graph are defined as safehouses.
The goal of R is to arrive at one of the safehouses without
being intercepted by C on its way there (capture it).

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

The problem of traveling in an environment while avoiding
threats has been studied from different perspectives [1,3,5–
7, 11]. In the problem of Pursuit-Evasion [2, 4, 9, 10], two
rival agents move around the environment (e.g., along the
edges of a graph), until the pursuer moves to the evader’s
location. Most research in pursuit evasion focuses on aspects
concerning topology of the graph, for example, on defining
properties related to graph theory of the given graph, in
order to characterize graphs where the pursuer is guaranteed
to capture the evader or finding minimal number of pursuers
required. In our problem, however, the evader R moves to a
certain destination, and does not try only evade its pursuer
indefinitely. Furthermore, our problem addresses strategic
behavior and game theory concepts. R’s path is planned
based on strategies that take into account its risk attitude.

We formally define the StratNAV problem, and examine
its different variants. A framework for computing utilities
associated with each node in the graph is presented, used
for finding solutions to the StratNAV problem in all ex-
amined variants. Theoretical guarantees are proven, e.g.,
expected utility maximization, or equilibrium. Assuming
the agents may gain information about their opponent while
they are on their way to their target—either a safehouse or
interception—we use this information to adjust the strategy
efficiently. Theoretical analysis and extensive experiments
show that these updates significantly increase the chances
of R to reach its destination safely.

2. PROBLEM DEFINITION
The StratNAV (Strategic Navigation in Adversarial

Environments) problem is formally defined as follows:
Given a graph G = (V,E), representing a map of the en-
vironment (referred to as map graph), VG⊆V a set of goal
nodes (safehouses) and two distinct initial positions of an
agent R and an adversarial agent C, find a strategy that will
maximize R’s chances of reaching some node vg∈VG without
being captured by C. R is captured by C if both agents re-
side the same node. R wins if it reached a goal node vg ∈ VG

without being captured, while C wins if it captures R.
Note that the strategy may be deterministic or stochas-

tic, and changes based on the knowledge the agents have
on their opponent’s strategy and location, and on the risk
attitude adopted by the agents. We assume C is capable of
performing the same computations as R.

1581



3. ESTIMATING SAFETY OF MAP NODES
A utility value is defined for each map graph node v∈V .

The utility of v∈V expresses how safe it is for R if moves
to v, i.e., how probable it is to evade capture and reach a
goal node and win. This value is obtained by evaluating the
game configurations (i.e., game states) where R resides at v.

Specifically, a game configuration holds current location
of both agents R,C. The configuration graph Gconf=(Vconf ,
Econf ) is defined with a node for each configuration and an
edge between any pair of consecutive game states. Config-
urations matching win configuration – game states where R
wins – are given a utility of 1, while those matching game
states where R loses (lose configurations) are given a utility
of 0. For all other configurations, the utility value depends
on that of its neighbors, and this value is propagated from
the win and lose configurations (terminal configurations):
Configurations are traversed along Gconf in ascending order
of distance (in hops) from any terminal configuration. The
utility of a configuration V is computed based only on its
neighbors whose utility value had already been computed.
Various risk attitudes can be used: risk averse (utility of V
is minimal utility among visited neighbors) or risk neutral
(average utility among neighbors).

Once all configurations have been given a utility value, the
utility for a map graph node v∈V is the average utility of all
configurations V∈Vconf , such that V =< v, u >, u∈V . This
manner relates to a risk neutral type of player. Other risk
attitudes can be applied, e.g., risk averse (node v’s utility is
the minimal utility of a configuration V=< v, u >).

C’s objective is opposed to R’s, i.e., a win configuration
for R is a lose one for C and vice versa – as expected in
a zero-sum game. Therefore, C plans its strategies based
on utility values that are opposed to R’s: a terminal con-
figuration where R is captured is given a value of 1 and a
terminal configuration where R resides at a goal node (and
C at another node) is given a value 0, while for any other
configuration V ∈ Vconf , UC(V) = 1− UR(V) (where UR(V)
is the utility value of V as computed for R). In that case,
greater utility values relate to nodes where it is more prob-
able for C to capture R. Unless stated otherwise, the term
utility values refers to R’s utilities.

4. OFFLINE STRATEGIES
In the offline model the agents are not visible during the

game, unless they occupy the same map node. An excep-
tion is made for the initial location: four cases are ad-
dressed herein, differ in which agent knows where its op-
ponent starts. In cases C does not know R’s initial location,
R follows a deterministic motion strategy, maximizing the
sum of node utilities along R’s path, proven1 to maximize
its probability to reach some goal node safely. C follows a
stochastic strategy, proven1 to maximize C’s probability to
capture R. We have observed1 that in case only R knows its
opponent’s initial location, R benefits more from planning
its path ignoring this information.

In case C knows R location, R moves stochastically (oth-
erwise will be easily intercepted by C): R chooses stochasti-
cally a neighbor, biased towards neighbors with greater node

1Full proofs and analysis are available in the full ver-
sion of this paper, at: https://sites.google.com/site/
ofrikeidarhomepage/publications Please remove space at
newline break

utility values. C follows a similar stochastic strategy, based
on its utility values (opposed to R’s). We have proven1 that
if the players apply risk neutral as configurations and map
nodes utility function when computing utility values, and
follow their stochastic strategies, then at each time step R,C
maximize their expected payoff.

5. STRATEGY UPDATES ON-THE-FLY
In the offline problem variant (Section 4), strategies aim to

reduce the probability that C captures R, based on the map
graph’s topology. However, relying solely on graph topol-
ogy, i.e., offline planning, means no reaction to new infor-
mation gained while moving around the map graph. Now,
some nodes can be observed by the other nodes, which can
be considered as viewpoints. Such nodes provide informa-
tion regarding an agent, e.g., tracks the agent had left be-
hind or perhaps whether the agent currently resides at the
node. When the agents follow the stochastic strategies com-
puted as stated in Section 4, they can use these viewpoints
in order to acquire information concerning their opponent’s
location or visited nodes, and update their strategies accord-
ingly (each agent and its own objective). The updates are
performed in each time step and are very efficient, i.e., lin-
ear in the number of neighbors. The contribution of these
runtime updates had been proven1 both theoretically and
empirically. Moreover, we have proven1 that the game con-
verges into a a Markov perfect equilibrium [8].

6. EMPIRICAL EVALUATION
We have evaluated our navigation strategies, using differ-

ent risk attitudes for computing the utility functions, and
examined the effect of online strategies update. A collection
of graphs with 30 to 100 (with jumps of 5) nodes was ran-
domly generated (40 of each size), so were the viewpoints.
For each number of nodes, 10% of the nodes where randomly
set as goal nodes (i.e., safehouses). Utility functions were
used in order to compute a utility value for a map graph
node or a configuration node and also used to evaluate the
information obtained at a node visited by an agent.

An experiment was executed for each combination of node
and configuration utility functions for R,C. Each experiment
was repeated 20 times for each graph, choosing randomly
new starting locations for both agents (not among the safe-
houses). For each graph size, combination of node, configu-
ration and information utilities, the average winning rate of
R was calculated (R’s winning rate).

We have examined R’s winning rate when both agents per-
form on-the-fly updates (i.e., run online) and when only C
does. In both scenarios, the agents were set with risk-averse
utility for configurations and risk-neutral for map nodes. In
order to specifically examine the influence of on-the-fly up-
dates, when R ran online, executions where R did not observe
C towards the last quarter of the game were discarded. Same
for C when R ran offline. When running online, R’s winning
rate was 85% but only 76% without on-the-fly updates.
T-Test with α=0.05 has confirmed that if C runs online, R’s
winning rate is significantly greater with on-the-fly updates.

Acknowledgments
We gratefully acknowledge support by ISF grant #1337/15.

1582



REFERENCES
[1] M. Aigner and M. Fromme. A game of cops and

robbers. Discrete Applied Mathematics, 8(1):1–12,
1984.

[2] B. Alspach. Searching and sweeping graphs: a brief
survey. Le matematiche, 59(1, 2):5–37, 2006.

[3] R. B. Borie, C. A. Tovey, and S. Koenig. Algorithms
and complexity results for pursuit-evasion problems.
In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), volume 9, pages
59–66, 2009.

[4] T. H. Chung, G. A. Hollinger, and V. Isler. Search and
pursuit-evasion in mobile robotics. Autonomous
Robots, 31(4):299–316, 2011.

[5] F. V. Fomin and D. M. Thilikos. An annotated
bibliography on guaranteed graph searching.
Theoretical Computer Science, 399(3):236–245, 2008.

[6] M. Marzouqi and R. A. Jarvis. Covert path planning
for autonomous robot navigation in known
environments. In Proceedings of the Australasian
Conference on Robotics and Automation, Brisbane.
Citeseer, 2003.

[7] M. Marzouqi and R. A. Jarvis. Covert robotics:
Covert path planning in unknown environments. In
Proceedings of the Australasian Conference on
Robotics and Automation, Brisbane, Australia.
Citeseer, 2003.

[8] E. Maskin and J. Tirole. Markov perfect equilibrium,
i: Observable actions. Journal of Economic Theory,
100(2):191–219, 2001.

[9] R. Nowakowski and P. Winkler. Vertex-to-vertex
pursuit in a graph. Discrete Mathematics,
43(2):235–239, 1983.

[10] J. Sgall. Solution of david gale’s lion and man
problem. Theoretical Computer Science,
259(1-2):663–670, 2001.

[11] R. Yehoshua and N. Agmon. Adversarial modeling in
the robotic coverage problem. In Proceedings of
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2015.

1583




